弹性力学第九章
- 格式:ppt
- 大小:1.07 MB
- 文档页数:81
第九章 弹性体振动的准确解9.1 引言在引论中我们曾经提到,实际的振动系统都是弹性体系统。
弹性体具有分布的物理参数(质量,阻尼,刚度)。
它可以看做由无数个质点借弹性联系组成的连续系统,其中每个质点都具有独立的自由度。
所以,一个弹性体的空间位置需要用无数个点的独立空间坐标来确定。
也就是说,弹性体具有无限多个自由度。
在数学上,弹性体的运动需要用偏微分方程来描述。
前面我们论述的多自由度系统只是弹性体的近似力学模型。
本章讨论理想弹性体的振动,所谓理想弹性体.....是指满足以下三个条件的连续系统模型:(1)匀质分布;(2)各向同性;(3)服从虎克定律。
通过对一些简单形状的弹性体的振动分析,着重说明弹性体振动的特点,弄清它与多自由度系统振动的共同点与不同点。
我们将看到,任何一个弹性体具有无限多个固有频率以及无限多个与之相应的主振型;而且这些主振型之间也存在着关于质量与刚度的正交性;弹性体的自由振动也可以表示为各个主振动的线性叠加;而且对于弹性体的动响应分析,主振型叠加法仍然是适用的。
所以说,弹性体振动与多自由度系统的振动,二者有着一系列共同的特性,这就是它们的共性。
而二者的差别仅在于数量上弹性体有无限多个固有频率与主振型,而多自由度系统只有有限多个。
我们还将看到,对于一些简单情形下的弹性体振动问题,可以很方便地找到它们的准确解。
尽管实际问题往往是复杂的,很少可以归结为这些简单情形;但是了解这些简单情形下准确解的特征,对于处理复杂问题是有帮助的。
为了避免用到弹性力学的知识,而仅以材料力学作为基础,我们将限于讨论一维弹性体(梁,轴,杆等)。
9.2弦的振动设有理想柔软的细弦张紧于两个固定支点之间,张力为T ,跨长为l ,弦单位长度的质量为ρ。
两支点连线方向取为x 轴(向右为正),与x 轴垂直的方向取为y 轴(向上为正),如图9.2-1(a )。
设弦的振动发生在xoy 平面内,弦的运动可表示为y=y (x,t ).还假设弦的振动幅度是微小的,即 y 与xy∂∂均为小量;在这假设下弦的张力T 可近似地看做常量。