第六章步进电动机
- 格式:ppt
- 大小:1.38 MB
- 文档页数:66
实验六步进电动机实验一、实验目的1、通过实验加深对步进电动机的驱动电源和电机工作情况的了解。
2、掌握步进电动机基本特性的测定方法。
二、预习要点1、了解步进电动机的工作情况和驱动电源步进电动机有哪些基本特性?怎样测定?三、实验项目图1为步进电机控制器和步进电机实验台之间的连线图步进电机控制器步进电机实验台24V0A AB BC C图1 步进电机实验连线图1、单步运行状态接通电源,将控制器系统设置于单步运行状态,或复位后,按执行键,步进电机走一步距角,绕组相应的发光管发亮,再不断按执行键,步进电机转子也不断步进运动。
改变电机转向,电机作反向步进运动。
2、角位移和脉冲数的关系控制系统接通电源,设置好预置步数,按执行键,电机运转,观察并记录电机偏转角度,再重设置另一置数值,按执行键,观察并记录电机偏转角度于表1中,并利用公式计算电机偏置较大与实际值是否一致。
表1 角位移和脉冲数的关系序号步数实际电机偏转角度理论电机偏转角度123、空载突跳频率的测定控制系统置连续运行状态,按执行键,电机连续运转后,调节速度调节旋钮使频率提高至某频率(自动指示当前频率)。
按设置键让步进电机停转,再从新启动电(按执行键),观察电机能否运行正常,如正常,则继续提高频率,直至电机不失步启动的最高频率,则该频率为步进电机的空载突跳频率。
记为Hz。
4、空载最高连续工作频率的测定步进电机空载连续运转后,缓慢调节速度调节旋钮使频率提高,仔细观察电机是否不失步,如不失步,则再缓慢提高频率,直至电机能连续运转的最高频率,则该频率为步进电机空载最高连续工作频率。
记为Hz。
5、转子振动状态的观察步进电机空载连续运转后,调节并降低脉冲频率,直至步进电机声音异常或出现电机转子来回偏摆即为步进电机的振荡状态。
6、定子绕组中电流和频率的关系在步进电机电源的输出端串联一只直流电流表(注意+、-端)使步进电机连续运转,由低到高逐渐改变步进电机的频率,读取并记录6组电流表的平均值、频率值于表2中表2 定子绕组电流和频率的关系序号 1 2 3 4 5 6f(Hz)I(A)7、平均转速和脉冲频率的关系接通电源,将控制系统设置于连续运转状态,再按执行键,电机连续运转,改变速度调节旋钮,测量频率f与对应的转速n,即n=f(f)。
步进电动机是一种将电脉冲信号转换成角位移或者线位移的机电元件。
步进电动机的输入量是脉冲序列,输出量则为相应的增量位移或者步进运动。
正常运动情况下,它每转一周具有固定的步数;做连续步进运动时,其旋转转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。
由于步进电动机能直接接受数字量的控制,所以特殊适宜采用微机进行控制。
图1 三相反应式步进电动机的结构示意图1 ——定子2——转子3——定子绕组{{分页}}图1 是最常见的三相反应式步进电动机的剖面示意图。
机电的定子上有六个均布的磁极,其夹角是60º。
各磁极上套有线圈,按图1 连成A、B、C 三相绕组。
转子上均布40 个小齿。
所以每一个齿的齿距为θ E=360º/40=9º,而定子每一个磁极的极弧上也有5 个小齿,且定子和转子的齿距和齿宽均相同。
由于定子和转子的小齿数目分别是30 和40,其比值是一分数,这就产生了所谓的齿错位的情况。
若以A 相磁极小齿和转子的小齿对齐,如图1,那末B 相和C 相磁极的齿就会分别和转子齿相错三分之一的齿距,即3º。
因此,B、C 极下的磁阻比A 磁极下的磁阻大。
若给B 相通电,B 相绕组产生定子磁场,其磁力线穿越B 相磁极,并力图按磁阻最小的路径闭合,这就使转子受到反应转矩(磁阻转矩) 的作用而转动,直到B 磁极上的齿与转子齿对齐,恰好转子转过3º;此时A、C 磁极下的齿又分别与转子齿错开三分之一齿距。
接着住手对B 相绕组通电,而改为C 相绕组通电,同理受反应转矩的作用,转子按顺时针方向再转过3º。
挨次类推,当三相绕组按A一B一C一A 顺序循环通电时,转子会按顺时针方向,以每一个通电脉冲转动3º的规律步进式转动起来。
若改变通电顺序,按A一C一B一A 顺序循环通电,则转子就按逆时针方向以每一个通电脉冲转动3º的规律转动。
因为每一瞬间惟独一相绕组通电,并且按三种通电状态循环通电,故称为单三拍运行方式。