第一章轴向拉伸和压缩、剪切改
- 格式:ppt
- 大小:6.08 MB
- 文档页数:10
轴向拉伸与压缩教学教案第一章:轴向拉伸与压缩概念介绍教学目标:1. 让学生理解轴向拉伸与压缩的基本概念。
2. 让学生了解轴向拉伸与压缩的物理现象及其在实际中的应用。
教学内容:1. 轴向拉伸与压缩的定义。
2. 轴向拉伸与压缩的物理现象。
3. 轴向拉伸与压缩的应用实例。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本概念及其物理现象。
2. 通过实物展示或图片,使学生更直观地了解轴向拉伸与压缩的应用实例。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩概念的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第二章:轴向拉伸与压缩的基本理论教学目标:1. 让学生掌握轴向拉伸与压缩的基本理论。
2. 让学生了解轴向拉伸与压缩的计算方法。
教学内容:1. 轴向拉伸与压缩的基本力学原理。
2. 轴向拉伸与压缩的计算方法。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本力学原理。
2. 通过示例,让学生了解轴向拉伸与压缩的计算方法。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩基本理论的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第三章:轴向拉伸与压缩的实验研究教学目标:1. 让学生了解轴向拉伸与压缩实验的原理。
2. 培养学生进行实验操作和数据处理的能力。
教学内容:1. 轴向拉伸与压缩实验的原理。
2. 轴向拉伸与压缩实验的操作步骤。
3. 实验数据的处理方法。
教学方法:1. 采用实验教学法,让学生亲身体验轴向拉伸与压缩实验。
2. 通过实验操作和数据处理,使学生更好地理解轴向拉伸与压缩的物理现象。
教学评估:1. 通过实验报告,评估学生对轴向拉伸与压缩实验原理的理解程度。
2. 通过实验操作和数据处理的评价,培养学生进行实验的能力。
第四章:轴向拉伸与压缩在工程中的应用教学目标:1. 让学生了解轴向拉伸与压缩在工程中的应用。
2. 培养学生解决实际问题的能力。
教学内容:1. 轴向拉伸与压缩在工程中的应用实例。
作者简介:郭志明,现在就读天津大学固体力学专业绪论基本概念材料力学得任务:载荷,弹性变形,塑性变形设计构件需要满足以下三个方面得要求:强度,刚度,稳定性强度:构件抵抗破坏得能力刚度:构件抵抗变形得能力稳定性:构件维持其原有平衡形式得能力基本假设:连续均匀性,各项同性,小变形研究对象及变形形式:杆:构件得某一方向得尺寸远大于其她两个方面得尺寸平板,壳,块体变形形式:拉伸(压缩),剪切,扭转,弯曲基本概念内力:构件内部相邻两部分之间由此产生得相互作用截面法:假象切开,建立平衡方程,求截面内力第一章:轴向拉伸,压缩与剪切基本概念轴力:截面内力FN及FN’得作用线与轴线重合,称为内力轴力图:表示轴力随横截面位置得变化应力:轴力FN均匀分布在杆得横截面上(正应力)圣维南原理斜截面上得应力:拉压杆得变形:(弹性范围内)EA 称为杆件得抗拉(压)刚度泊松比:弹性范围内。
横向应变与纵向应变之比得绝对值工程材料得力学性能:材料在外力作用下在强度与变形方面表现出得性能。
Eg:应力极限值,弹性模量,泊松比等。
力学性能决定于材料得成分与结构组织,与应力状态,温度与加载方式相关,力学性能,需要通过实验方法获得。
弹性变形:塑性变形:低碳钢拉伸实验四个阶段:弹性,屈服,强化,颈缩屈服:应力在应力-应变曲线上第一次出现下降,而后几乎不变,此时得应变却显著增加,这种现象叫做屈服冷作硬化:常温下经过塑性变形后材料强度提高,塑性降低得现象真应力应变:,(工程应变)其她材料得拉伸实验温度,时间及加载速率对材料力学性能得影响蠕滑现象:松弛现象:冲击韧性:材料抵抗冲击载荷得能力(可以通过冲击实验测定)许用应力:对于某种材料,应力得增长就是有限得,超过这一限度,材料就要破坏,应力可能达到得这个限度称为材料得极限应力。
通常把材料得极限应力/n作为许用应力[σ] ,强度条件:杆内得最大工作应力节点位移计算集中应力:由于试件截面尺寸急剧改变而引起得应力局部增大得现象应力集中系数:,σn就是指同一截面上认为应力均匀分布时得应力值超静定问题:未知力得数目超过独立得平衡方程得数目,因此只由平衡方程不能求出全部未知力,这类问题成为超静定问题。
材料力学拉伸压缩与剪切材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
在材料力学中,拉伸、压缩和剪切是三种常见的受力方式。
本文将对这三种受力方式进行详细的讨论。
一、拉伸拉伸是将材料的两个端点向相反方向施加力,使材料产生变形和应力的一种受力方式。
在拉伸过程中,应力沿受力方向逐渐递增,直到材料达到其抗拉极限,引起断裂。
拉伸强度是指材料在拉伸过程中所能承受的最大伸长应力,常用于评价材料的抗拉性能。
材料在拉伸过程中会发生塑性变形和弹性变形。
当应力较小时,材料发生弹性变形,即材料在去除应力后能恢复原状。
当应力较大时,材料发生塑性变形,即材料变形后无法完全恢复原状。
材料的塑性变形通常伴随着颈缩现象,即材料在拉伸过程中发生细颈,最终引起断裂。
在拉伸过程中,材料的变形主要通过断裂面的拉伸和滑移来实现。
断裂面的拉伸是指材料在拉伸过程中,沿断裂面发生直接断裂的现象。
滑移是指材料分子、原子或晶粒之间发生相对滑动的行为。
材料的拉伸性能主要由断裂面的塑性变形和滑移行为共同决定。
二、压缩压缩是将材料的两个端点向相同方向施加力,使材料产生变形和应力的一种受力方式。
在压缩过程中,材料的体积减小,应力沿受力方向逐渐递增,直到材料达到其抗压极限,引起破坏。
抗压强度是指材料在压缩过程中所能承受的最大应力,常用于评价材料的抗压性能。
与拉伸不同,材料在正常应力下的压缩变形主要是弹性变形。
材料在压缩过程中会呈现出不同的弹性阶段,即初期弹性阶段、线弹性阶段和屈服弹性阶段。
初期弹性阶段材料呈现出线性弹性变形;线弹性阶段材料呈现出弹性变形,但变形量不再是线性增加;屈服弹性阶段材料呈现出应力和应变之间非线性关系。
三、剪切剪切是指材料在外力作用下,造成平行于断裂面的错切运动和应力的一种受力方式。
在剪切过程中,材料发生剪切变形,即材料平行于受力方向发生错开运动。
剪切强度是指材料在剪切过程中所能承受的最大剪应力,常用于评价材料的剪切性能。
材料的剪切变形属于塑性变形,主要发生在晶体或晶体之间的滑移面上。