附表7 水管最不利环路阻力计算
- 格式:et
- 大小:25.00 KB
- 文档页数:9
并联环路压力损失的最大允许差值双管同程:15%双管异程:25%附录C 当量长度表所谓水泵的选取计算其实就是估算(很多计算公式本身就是估算的),估算分的细致些考虑的内容全面些就是精确的计算。
特别补充:当设计流量在设备的额定流量附近时,上面所提到的阻力可以套用,更多的是往往都大过设备的额定流量很多。
同样,水管的水流速建议计算后,查表取阻力值。
关于水泵扬程过大问题。
设计选取的水泵扬程过大,将使得富裕的扬程换取流量的增加,流量增加才使得水泵噪音加大。
特别的,流量增加还使得水泵电机负荷加大,电流加大,发热加大,“换过无数次轴承”还是小事,有很大可能还要烧电机的。
另外“水泵出口压力只有0.22兆帕”能说明什么呢?水泵进出口压差才是问题的关键。
例如将开式系统的水泵放在100米高的顶上,出口压力如果是0.22MPa,就这个系统将水泵放在地上向100米高的顶上送,出口压力就是0.32MPa了!1、水泵扬程简易估算法暖通水泵的选择:通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。
按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程(mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷水机组蒸发器的水压降。
△P2为该环中并联的各占空调未端装置的水压损失最大的一台的水压降。
L为该最不利环路的管长K为最不利环路中局部阻力当量长度总和和与直管总长的比值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.62、冷冻水泵扬程实用估算方法这里所谈的是闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。
1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。
2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。
若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。
管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
管道阻力计算一、管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。
直管以摩擦阻力为主,弯头处局部阻力大图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。
摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。
在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。
通常,高速风管的流动状态也处于过渡区。
只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。
计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中 K——风管内壁粗糙度,mm;D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。
只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。
线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。
管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:ρλ242v R R s m ⨯= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ;υ——风管内空气的平均流速,m /s ;ρ——空气的密度,kg /m 3;λ——摩擦阻力系数;Rs ——风管的水力半径,m 。
对圆形风管:4D R s =(5—4)式中 D ——风管直径,m 。
对矩形风管 )(2b a abR s += (5—5)式中 a ,b ——矩形风管的边长,m 。
因此,圆形风管的单位长度摩擦阻力ρλ22v D R m ⨯= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:)Re 51.27.3lg(21λλ+-=D K (5—7)式中 K ——风管内壁粗糙度,mm ;Re ——雷诺数。
υvd=Re (5—8)式中 υ——风管内空气流速,m /s ;d ——风管内径,m ;ν——运动黏度,m 2/s 。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5—2是计算圆形钢板风管的线解图。
它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图5—2 圆形钢板风管计算线解图[例] 有一个10m 长薄钢板风管,已知风量L =2400m 3/h ,流速υ=16m /s ,管壁粗糙度K =0.15mm ,求该风管直径d 及风管摩擦阻力R 。
管道阻力计算空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时 (如三通、弯头等 ),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算:v2R m4R s 2 (5— 3)式中Rm——单位长度摩擦阻力,Pa/m;υ——风管内空气的平均流速,m/ s;ρ——空气的密度,kg/ m3;λ——摩擦阻力系数;Rs——风管的水力半径,m。
对圆形风管:R s D4 (5— 4)式中D——风管直径, m。
对矩形风管R sab2(a b) (5— 5)式中a, b——矩形风管的边长, m。
因此,圆形风管的单位长度摩擦阻力R mv2D 2 (5— 6)摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。
计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下:1 2 lg( K 2.51 )3.7D Re (5— 7)式中K ——风管内壁粗糙度,mm;Re——雷诺数。
Re vd(5—8)式中υ——风管内空气流速,m/ s;d——风管内径,m;ν——运动黏度,m2/ s。
在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。
图5— 2 是计算圆形钢板风管的线解图。
它是在气体压力B=101. 3kPa、温度 t=20 ℃、管壁粗糙度K = 0.15mm 等条件下得出的。
经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/ d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。
只要已知风量、管径、流速、单位摩擦阻力 4 个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。
图 5— 2 圆形钢板风管计算线解图[例 ]有一个10m长薄钢板风管,已知风量L = 2400m3/ h,流速υ= 16m/ s,管壁粗糙度 K = 0. 15mm,求该风管直径 d 及风管摩擦阻力R。
⽔管系统各部件局部阻⼒系数(汇编)并联环路压⼒损失的最⼤允许差值双管同程:15%双管异程:25%附录C 当量长度表所谓⽔泵的选取计算其实就是估算(很多计算公式本⾝就是估算的),估算分的细致些考虑的内容全⾯些就是精确的计算。
特别补充:当设计流量在设备的额定流量附近时,上⾯所提到的阻⼒可以套⽤,更多的是往往都⼤过设备的额定流量很多。
同样,⽔管的⽔流速建议计算后,查表取阻⼒值。
关于⽔泵扬程过⼤问题。
设计选取的⽔泵扬程过⼤,将使得富裕的扬程换取流量的增加,流量增加才使得⽔泵噪⾳加⼤。
特别的,流量增加还使得⽔泵电机负荷加⼤,电流加⼤,发热加⼤,“换过⽆数次轴承”还是⼩事,有很⼤可能还要烧电机的。
另外“⽔泵出⼝压⼒只有0.22兆帕”能说明什么呢?⽔泵进出⼝压差才是问题的关键。
例如将开式系统的⽔泵放在100⽶⾼的顶上,出⼝压⼒如果是0.22MPa,就这个系统将⽔泵放在地上向100⽶⾼的顶上送,出⼝压⼒就是0.32MPa了!1、⽔泵扬程简易估算法暖通⽔泵的选择:通常选⽤⽐转数ns在130~150的离⼼式清⽔泵,⽔泵的流量应为冷⽔机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。
按估算可⼤致取每100⽶管长的沿程损失为5mH2O,⽔泵扬程(mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷⽔机组蒸发器的⽔压降。
△P2为该环中并联的各占空调未端装置的⽔压损失最⼤的⼀台的⽔压降。
L为该最不利环路的管长K为最不利环路中局部阻⼒当量长度总和和与直管总长的⽐值,当最不利环路较长时K值取0.2~0.3,最不利环路较短时K值取0.4~0.62、冷冻⽔泵扬程实⽤估算⽅法这⾥所谈的是闭式空调冷⽔系统的阻⼒组成,因为这种系统是最常⽤的系统。
1.冷⽔机组阻⼒:由机组制造⼚提供,⼀般为60~100kPa。
2.管路阻⼒:包括磨擦阻⼒、局部阻⼒,其中单位长度的磨擦阻⼒即⽐摩组取决于技术经济⽐较。
若取值⼤则管径⼩,初投资省,但⽔泵运⾏能耗⼤;若取值⼩则反之。
管道水阻计算管道水阻是指水在管道中流动时所受到的阻碍力,它是管道流体力学中重要的参数之一。
了解管道水阻的计算方法对于设计和运营管道系统至关重要。
本文将介绍一种常用的管道水阻计算方法,并探讨其应用。
在管道系统中,水阻力主要由两个因素引起:摩擦阻力和阻力损失。
摩擦阻力是由于水在管道内壁上的摩擦而产生的,它与水流速度和管道内壁粗糙度有关。
阻力损失是由于管道内的转弯、收缩、扩张等几何变化以及水流受到的阻碍而产生的。
计算管道水阻时,我们一般使用阻力系数来表示。
阻力系数是指单位长度管道所受到的阻碍力与单位长度管道内流体动能的比值。
阻力系数可以根据管道的几何形状和流动状态来确定。
一般情况下,阻力系数是通过试验或经验公式得到的。
为了计算管道水阻,我们需要知道管道的直径、长度、流速以及管道内壁的粗糙度。
根据这些参数,可以使用一些经验公式来计算阻力系数。
常用的经验公式有:达西公式、库塔公式和曼宁公式等。
达西公式是最常用的计算管道水阻的方法之一。
它是根据实验数据拟合得到的经验公式。
达西公式可以用来计算不同直径和流速下的阻力系数。
达西公式的具体形式如下:f = (k * L * V^2) / (D * 2g)其中,f是阻力系数,k是摩擦系数,L是管道长度,V是流速,D 是管道直径,g是重力加速度。
库塔公式是另一种常用的计算管道水阻的方法。
它是根据实验数据和理论分析得到的经验公式。
库塔公式可以用来计算流速较小的管道的阻力系数。
库塔公式的具体形式如下:f = (k * L * V^2) / (D * 2g)其中,f是阻力系数,k是摩擦系数,L是管道长度,V是流速,D 是管道直径,g是重力加速度。
曼宁公式是用来计算自由流情况下的管道水阻的方法。
它是根据实验数据和理论分析得到的经验公式。
曼宁公式可以用来计算流速较大的管道的阻力系数。
曼宁公式的具体形式如下:f = (1 / (R^(1/6))) * (V^2 / (2g))其中,f是阻力系数,R是水力半径,V是流速,g是重力加速度。