水管摩擦阻力计算表
- 格式:xls
- 大小:30.50 KB
- 文档页数:5
管道压力计算管道比阻值什么地方有?奖励分数:20 |解决时间:2022-8-409:17 |提问者:黑泉黑泉管道比阻值什么地方有?最佳答案管道比阻值与管道的内径和内管壁的粗糙度有关,可以在《给水排水设计手册》、《给水工程》教材、《水力设计手册》等查到,由内径d、内壁糙率即可查到管道比阻值。
也可用公式来计算管道的比阻值,有很多公式,如:通式为s=1/(C^2RA),其中a-截面积,C-谢蔡系数,C=R^(1/6)/N,N-粗糙度,R-水力半径,R=a/x,x为湿周长;对于圆管,上述公式可简化为s=10.3n^2/D^5.33。
对于钢管和铸铁管,s=0.001736/D^5.3对于塑料管s=0.000915/(d^4.774q^0.226)管道流量为21吨/小时,水压为1.25兆帕。
计算管道的直径悬赏分:0|提问时间:2021-8-1310:07|提问者:白文110推荐答案流量每小时21吨,即体积流量q=21m^3/s管子有多长?如果管道长度为l,管道的比电阻为s(s与管道内径D和粗糙度n有关),管道两端的压差为p=1.25mpa,则PGP=slq^2S=PGP/(LQ^2)再由s=10.3n^2/d^5.33,可求管内径d。
管道内径17mm,管道长度1m,气压1100pa。
每小时有多少立方米的气体流量?悬赏分:0|解决时间:2021-3-208:38|提问者:cszh2518管道内径17mm,管道长度1m,气压1100pa。
每小时有多少立方米的气体流量?补充问题:管内是工人煤气最佳答案不知管内是何种气体,密度多少?设密度ρ=1kg/m^3,管道长度1米上的气体压力差p=1100pa,流量为q,管道沿程阻力系数取λ=0.03,则流量q=√[pd^5/(ρl*6.26*10^7λ)]=√[1100*17^5/(1*1*6.26*10^7*0.03)]=28.84m^3/s在已知水管:管道压力0.4mp、管道长度1000、管道口径700、怎么算出流速与每小时流量?奖励分数:0 |解决时间:2022-5-1411:11 |提问者:42825126管道是普通螺旋钢管最佳答案钢管糙率n=0.012管道摩擦力s=10.3*n^2/D^5.33=10.3*0.012^2/0.7^5.33=0.00993流量q=[0.4*1000000/(1000*9.8*0.0093*1000)]^(1/2)=2.095m^3/s=7542m^3/h速度v=4q/(3.1416d^2)=4*2.095/(3.1416*0.7^2)=5.44m/s每小时流量7542立方立方米,流速5.44米米秒压力为7.5kg时,管道长度为100m;管道直径为DN125。
长距离输水管道水力计算公式的选用之马矢奏春创作1. 经常使用的水力计算公式:供水工程中的管道水力计算一般均依照均匀流计算,目前工程设计中普遍采取的管道水力计算公式有: 达西(DARCY )公式:gd v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C lQ h h f ***= (3) 式中hf------------沿程损失,m λ―――沿程阻力系数 l――管段长度,m d-----管道计算内径,m g----重力加速度,m/s2 C----谢才系数 i----水力坡降; R―――水力半径,mQ―――管道流量m/s2 v----流速 m/sCn----海澄――威廉系数其中大西公式,谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对分歧的设计条件,推荐采取的水力计算公式也有所差别,见表1:表1 各规范推荐采取的水力计算公式4. 公式的适用范围:3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采取经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108.大量的试验结果标明柯列勃洛克公式与实际商用圆管的阻力试验结果吻合良好,不但包含了光滑管区和完全粗糙管区,而且覆盖了整个过渡粗糙区,该公式在国外得到及为广泛的应用. 布拉修斯公式25.0Re 316.0=λ是1912年布拉修斯总结光滑管的试验资料提出的,适用条件为4000<Re<105,一般用于紊流光滑管区的计算. 3.2 谢才公式该式于1775年由CHEZY 提出,实际是达西公式的一个变形,式中谢才系数C 一般由经验公式y e R n C *=1计算得出,其中61=y 时称为曼宁公式,y 值采取)1.0(75.013.05.2---=n R n y (n 为粗糙系数)公式计算时称为巴浦洛夫斯基,这两个公式应用范围均较广.就谢才公式自己而言,它适用于有压或无压均匀流动的各阻力区,但由于计算谢才系数C 的经验公式只包含反映管壁粗糙状况的粗糙系数n 和水力半径R,而没有包含流速及运动年度,也就是与雷诺数Re 无关,因此该式一般仅适用于粗糙区.曼宁公式的适用条件为n<0.02,R<0.5m;巴浦洛夫斯基公式的适用条件为0.1m≤R≤3m;0.011≤n≤0.04.3.3 海澄-威廉公式是在直径≤3.66m 工业管道的大量测试数据基础上建立的著名经验公式,适用于常温的清水输送管道,式中海澄-威廉系数Ch 与分歧管材的管壁概况粗糙程度有关.因为该式参数取值简单,易用,也是得到广泛应用的公式之一.此公式适用范围为光滑区至部分粗糙度区,对应雷诺数Re 范围介于104-2*106. 通过对各相关规范所推荐计算公式的比较,除混凝土管仍然推荐采取谢才公式外,其它管材大多推荐采取达西公式.在新版《室外给水设计规范》中取消舍维列夫公式的相关条文,笼统采取达西公式,但未明确要求计算λ值采取的经验公式.由于舍维列夫公式是建立在对旧钢管及旧铸铁管研究的基础上,然而现在一般采取的钢或铸铁材质管道,内壁通常需进行防腐内衬,经过涂装的管道内壁概况均比旧钢管,旧铸铁管内壁光滑得多,也就是Δ值小得多,采取舍维列夫公式显然也就会发生较大得计算误差,该公式得适用范围相应较窄.经过内衬得金属管道采取柯列勃洛克公式或谢才公式计算更为合理.PVC-U,PE等塑料管道,或者内衬塑料得金属管道,因为其内壁Δ值很低,一般处于0.0015-0.015,管道流态大多位于紊流光滑区,采取适用光滑区得布拉修斯公式以及柯列勃洛克公式一般均能够得到与实际接近得计算结果.因此,《埋地硬聚氯乙稀给水管道工程技术规程》及《埋地聚乙稀给水管道工程技术规程》中对塑料管道水力计算公式均是合理得且与《室外给水设计规范》其实不矛盾.海澄-威廉公式可以适用于各种分歧材质管道得水力计算,其中海澄-威廉系数Ch得取值应根据管材确定.对于内衬水泥砂浆或者涂装有比较光滑得内防腐涂层得管道,其海澄-威廉系数应该参考类似工程经验参数或者实测数据,合理取用.因此,无论采取达西公式,谢才公式或者海澄-威廉公式计算,分歧管材得差别均表示在管内壁概况当量粗糙程度得分歧上,各公式中与粗糙度相关系数得取值是影响计算结果得重要因素.值得一提得是,同种材质管道由于采取分歧得加工工艺,其内概况得粗糙度也可能有所差别,这一因素在设计过程种也应重视(经常使用管材得粗糙度系数参考值见表2)表2 罕见管材粗糙度相关系数参考值根据雷诺数计算公式vVd Re ,雷诺数与流速v,管径d 成正比,与运动粘度成反比,因此对应管道得分歧设计条件应对所使用计算公式得适用范围进行复核.包管计算得准确性.大多说供水工程得设计依照水温10℃,运动粘度1.3*10-5 m2/s 得条件考虑,因此雷诺数实际受流速及管道口径得影响.以塑料管道为例,在正常设计流速范围条件下,管道内径大于100mm 时,虽然管道仍然处于紊流光滑区,但其雷诺数Re>105,也就是说已经超出了布拉修斯公式得适用范围,而且误差大小与雷诺数成正比.对PVC-U 管,采取布拉修斯公式与柯列勃洛克公式对比计算,当管内径为500mm ,流速1.5 m/s 时,采取布拉修斯公式得出得水力坡降比柯列波列克得结果低11%以上.采取《埋地硬聚氯乙稀给水管道工程技术规程》推荐得修正公式与柯式对比计算,修正公式计算结果,小口径管偏平安,中等口径与柯式符合较好,大口径管得负误差达5%以上.因此笔者认为,大口径塑料管或采取塑料内衬管不宜采取布拉修斯公式计算,而更宜于采取如柯列波洛克公式等适用条件更宽得其它经验公式,或应通过试验等对其进行修正.与上述情况类似,采取谢才公式计算时,如果管道内径大于2m 时则不采取曼宁公式计算谢才系数.如果采取巴甫洛夫斯基公式,其适用管径可以达到12m,对一般输水工程管道已完全足够了.海澄-威廉公式的数据基础是WILLIAMS和HAZEN在大量工业管道现场或试验丈量或得的.该公式因为简单易用,被广泛运用在管网水力计算中,国内外很多管道水力计算软件均采取该公式编制.由此可见,对于口径大于2m得管道应尽量防止采取海澄-威廉公式计算以策平安.6.值得提出得是,上述所有水力计算公式中采取得管径均为计算内径,各种管道均应采取管道净内空直径计算,对于采取水泥砂浆内衬得金属管道应考虑内衬层厚度得影响.大口径管道计算应尽量防止采取海澄-威廉公式,建议采取柯列勃洛克公式计算,大量试验结果证明该公式计算结果与实际工业管道符合性好,水力条件适用范围广,虽然运用该式需要进行多次迭代计算才干得到λ值,较为麻烦,不过运用计算机简单编程既能方便地得到较为准确地结果,手工计算时也可以通过查表或者查询蓦迪图辅助计算.。
空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。
一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即(1-1)若直管段长度l=1m时,则式中λ——摩擦阻力系数,m;——管道直径,m;R——单位长度直管段的摩擦阻力(比摩阻),Pa/m;——水的密度,kg/m3;——水的流速,m/s。
对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。
当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。
根据管径、流速,查出管道动压、流量、比摩阻等参数。
计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。
所以这种空调末端承担负荷应计算精确,以避免负荷叠加。
同时应清楚了解水管系统的方式,如同程式,异程式。
不同的接管方式对沿程阻力具有一定的影响。
在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。
二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。
(2-1)式中——管道配件的局部阻力系数;——水流速度,m/s。
常用管道的配件可以通过相应的表格进行查询。
根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。
对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。
因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。
在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。
第五节 阻力损失1-5-1 两种阻力损失直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管, 另一种是弯头、三通、阀门等各种管件。
无论是直管或管件都对流动有一定的阻力, 消耗一定的机械能。
直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失);管件造成的机械能损失称为局部阻力损失。
对阻力损失作此划分是因为两种不同阻力损失起因于不同的外部条件,也为了工程计算及研究的方便, 但这并不意味着两者有质的不同。
此外, 应注意将直管阻力损失与固体表面间的摩擦损失相区别。
固体摩擦仅发生在接触的外表面, 而直管阻力损失发生在流体内部, 紧贴管壁的流体层与管壁之间并没有相对滑动。
图1-33 阻力损失阻力损失表现为流体势能的降低 图1-33表示流体在均匀直管中作定态流动, u 1=u 2。
截面1、2之间未加入机械能, h e =0。
由机械能衡算式(1-42)可知: ρρρ212211P P -=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=g z p g z p h f (1-71) 由此可知, 对于通常的管路,无论是直管阻力或是局部阻力, 也不论是层流或湍流, 阻力损失均主要表现为流体势能的降低, 即ρ/P ∆。
该式同时表明, 只有水平管道, 才能以p ∆(即p 1-p 2)代替P ∆以表达阻力损失。
层流时直管阻力损失 流体在直管中作层流流动时, 因阻力损失造成的势能差可直接由式(1-68)求出: 232dlu μ=∆P (1-72) 此式称为泊稷叶(Poiseuille)方程。
层流阻力损失遂为: 232dlu h f ρμ=(1-73)1-5-2 湍流时直管阻力损失的实验研究方法层流时阻力损失的计算式是由理论推导得到的。
湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究, 获得经验的计算式。
这种实验研究方法是化工中常用的方法。
因此本节通过湍流时直管阻力损失的实验研究, 对此法作介绍。
实验研究的基本步骤如下:(1) 析因实验──寻找影响过程的主要因素对所研究的过程作初步的实验和经验的归纳, 尽可能地列出影响过程的主要因素对于湍流时直管阻力损失h f , 经分析和初步实验获知诸影响因素为:流体性质:密度ρ、粘度μ;流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε (管内壁表面高低不平);流动条件:流速u ;于是待求的关系式应为:),,,,,(ερμu l d f h f = (1-74)(2) 规划实验──减少实验工作量当一个过程受多个变量影响时, 通常用网络法通过实验以寻找自变量与过程结果的关系。
水电站、水利水电工程、压力管等水头压力的计算公式及参数一、工程压力单位:0.01mpa=1米水头(请参考下表)二、水电站有关装机、流量、水头经验公式电站装机容量W=集雨面积S×水头高H×0.3~0.5或W=设计流量Q×水头高H×7电站流量Q=装机容量W÷水头高H÷0.8电站引水洞径R半径=√Q÷(0.27~0.25)或R半径=√Q÷3.14÷2.7三、管径和流速计算、水头损失流量与管径、压力、流速的一般关系,一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。
其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
水头损失计算Chezy 公式Chezy这里:Q ——断面水流量(m3/s)C ——Chezy糙率系数(m1/2/s)A ——断面面积(m2)R ——水力半径(m)S ——水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach公式由于这里:hf ——沿程水头损失(mm3/s)f ——Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。
四、管道常用沿程水头损失计算公式及适用条件:管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。
风系统以及水系统的阻力计算风系统以及水系统的阻力计算风系统水力计算风管设计原则参见《空调与制冷设计手册》P269,设计中要兼顾制作管道的材料耗量,管道保温用料,管道所占的空间体积,风机耗功率以及满足噪声允许值的风管风速等。
其风速参考值如下表:表7-1低速风管内的风速(m/s)室内允许噪声级Db(A)主管风速m/s支管风速m/s新风入口m/s25~353~4≤2335~504~72~33.550~656~93~54~4.565~858~125~85根据新风量和参考风速,由《供暖通风设计手册》表18-12 查的。
7.1.1 一层商场风管计算结果表7-2一层商场风管计算管段流量(m3 /h)管宽(㎜)管高(㎜)长度(m)ν(m/s)R(Pa/m)△Py(Pa)ξ动压(Pa)△Pj(Pa)管段阻力(Pa)1-2114250020023.890.6161.23219.109.1010.332-3114250020023.890.6161.23219.109.1010.332-4218450032053.620.371.84817.857.859.704-6114250020023.890.6161.23219.109.1010.334-5114250020023.890.6161.23219.109.1010.334-7425650032037.241.2919.294131.4131.4140.71 7-9224050032013.620.371.84817.857.859.708-9114250020023.890.6161.23219.109.1010.339-10114250020023.890.6161.23219.109.1010.33 7-1163815003208.10.852.69821.582170.6870.6892.2618-19114250020023.890.6161.23219.109.1010.3316-19228450032053.620.371.84817.857.859.7015-16114250020023.890.6161.23219.109.1010.3316-17114250020023.890.6161.23219.109.1010.3319-20114250020023.890.6161.23219.109.1010.3311-16425650032037.241.2919.294131.4131.4140.71 12-13124550020023.890.6161.23219.109.1010.3313-14124550020023.890.6161.23219.109.1010.3311-21134826305007.511.031.81613.620172.9472.9486.5 621-23224050032013.620.371.84817.857.859.7023-24114250020023.890.6161.23219.109.1010.3322-23114250020023.890.6161.23219.109.1010.3321-32196438006306.310.341.2227.698164.1164.1171.81 21-26425650032037.241.2919.294131.4131.4140.71 25-26114250020023.890.6161.23219.109.1010.3326-27114250020023.890.6161.23219.109.1010.3329-30114250020023.890.6161.23219.109.1010.3328-29114250020023.890.6161.23219.109.1010.3332-31114250020013.890.6160.61619.109.109.7132-33228450032033.620.371.10917.857.858.9633-34114250020053.890.6163.07919.109.1012.1832-3530572100063049.650.9663.862155.8555.8559.717.1.2 二楼商场风管计算结果表7-3 二楼商场风管计算管段流量(m3 /h)管宽(㎜)管高(㎜)长度(m)ν(m/s)R(Pa/m)△Py(Pa)ξ动压(Pa)△Pj(Pa)管段阻力(Pa)1-210525002002.52.790.3220.80414.404.405.212-310525002002.52.790.3220.80414.404.405.212-5208350032053.390.3281.64016.886.888.524-51055002002.52.790.3220.80414.404.405.215-610525002002.52.790.3220.80414.404.405.215-740785003202.56.771.1442.861127.5027.5030.36 7-920835002002.53.390.3280.82016.886.887.708-910525002002.52.790.3220.80414.404.405.219-1010525002002.52.790.3220.80414.404.405.217-176578500320810.162.39019.120161.8861.8881.00 11-1210525002002.52.790.3220.80414.404.405.2112-1310525002002.52.790.3220.80414.404.405.2115-16114250020023.890.6161.23219.109.1010.3312-15114250020023.890.6161.23219.109.1010.3314-15114250020023.890.6161.23219.109.1010.3315-16425650032037.241.2919.294131.4131.4140.71 15-17124550020023.890.6161.23219.109.1010.3317-19124550020023.890.6161.23219.109.1010.3318-19134826305007.511.031.81613.620172.9472.9486.5 619-20224050032013.620.371.84817.857.859.7017-27114250020023.890.6161.23219.109.1010.3321-2210835002002.52.790.3220.80414.404.405.2122-23196438006306.310.341.2227.698164.1164.1171.81 22-25425650032037.241.2919.294131.4131.4140.71 25-27114250020023.890.6161.23219.109.1010.3327-29114250020023.890.6161.23219.109.1010.3327-37114250020023.890.6161.23219.109.1010.3321-32114250020023.890.6161.23219.109.1010.3332-31114250020013.890.6160.61619.109.109.7132-33228450032033.620.371.10917.857.858.9633-34114250020053.890.6163.07919.109.1012.1832-3530572100063049.650.9663.862155.8555.8559.717.1.3 三层办公室风管计算结果表7-4 三层办公室风管计算管道流量(m3 /h )风速(m/s)管径(mm)动压(pa)单位摩擦阻力(pa/h)1-23861.71250×2501.84650.1792-36643.13250×2505.23860.4993-414354.95320×25017.0241.1284-522006.00320×32020.3331.4175-625225.00400×32019.0001.1566-735895.21400×40021.0021.0337-835234.2500×40017.6980.4506`-76251.66320×3201.2110.0951`-23451.62250×2001.68550.1987.1.4 四层宾馆风管计算结果表7-5 四层宾馆风管计算管道流量(m3 /h )风速(m/s)管径(mm)动压(pa)单位摩擦阻力(pa/h)1-21561.50160×1201.6820.4512-32213.05160×1206.2651.4143-43052.29200×1604.9230.2174-54943.54200×2008.3001.0025-66956.04200×20014.9241.4266-79125.88200×20024.6642.8827-812446.4250×20024.6583.0018-913445.8250×25020.6651.5649-1015637.0250×25026.1512.45610-1116885.9320×25022.3941.56411-1218775.4320×32015.9911.46112-1320484.6400×32018.2451.1451`-21122.04120×1202.4100.5197.2 三层阻力计算沿程损失=单位摩擦阻力(pa/h)×管段长(m);局部损失=局部阻力系数×空气密度×速度的平方/2;根据三通断面与总断面之比、风量之比,查得局部阻力系数。