高中数学必修四常考题型总结
- 格式:doc
- 大小:1.54 MB
- 文档页数:15
必修四常考题型总结三角函数篇三角函数的基础知识与基本运算:。
的值为1.585sin3232??(D) (C) (B)(A)22222.(列关系式中正确的是()000000BA..cos10sin11?sin11sin168?cos10??sin168000000CD..cos10?sin168?sin11sin11?sin168?cos10?1???”是“.(2009北京理)“)”的(3?cos2)?Z?(kk?226 .必要而不充分条件 BA.充分而不必要条件.既不充分也不必要条件 D C.充分必要条件??? 4.(2008浙江理)( )tan???5,若cos则?2sin11 D)()C(B)2 )(A(?2?22图像与性质:1.已知是实数,则函数的图象不可能是( )aax?asin)f(x?1...?2??f()??,则的图象如图所示,=Acos(3.已知函数)=)xf((0)f?x232211?(B) (C)-(D) )(Aw.w.w.k.s.5.u.c.o.m 3223????,数数为(常函4.),?AsinA(x?,)y??上的图象如图所)在闭区间,0]?0?[A?0,?. 示,则=??????示,则图)的知函数y=sin(图x+)(像>0, -如<所已4.??=________________?7?????f。
的图像如图所示,则5.已知函数)xf()??2sin(x??12??w.w.w.k.s.5.u.c.o.m???7.已知函数的图象如图所示,0)???xf()sin(x)(?则=????(cos0))?3sinxx?(fx y?f(x)的图像与直线,已知函数的2y??,则的单调递增区间是两个相邻交点的距离等于)f(x????5115)A )((B?????k[],k?Zk,?Z],k?,k??k[12121212????2(D)(C)????Z],?[kk?,k?Z?,?],[kk?k3663?4?? 2.如果函数的最小值的图像关于点中心对称,那么,0)(||)?y?3sin(2x 3 C)为(????(B)(A)(C)(D) 3264?,下面结论错误的是3.已知函数)?R?sin(x?)(xf(x)..2?A.函数的最小正周期为)(xf2?函数在区间上是增函数B.][0,)(xf2x 0 C.函数的图象关于直线对称=)xf(函数是奇函数 D.)f(x?(本小题共12分)已知函数.4.x)cos?f(x)?2sin(x的最小正周期;(Ⅰ)求)(xf????,?上的最大值和最小值.在区间(Ⅱ)求)x(f??26??????????0,0A?0,?,的周期为已知函数)(其中.5Rf(x?sin(Ax?),x)?2?2,?2)M(.且图象上一个最低点为3?][0,?x,求求(Ⅱ)当的解析式;的最值.)( Ⅰ)x(x(f)f12?2x. f(x)=cos(2x+)+sin本小题满分12分)设函数2. (3(1)求函数f(x)的最大值和最小正周期.C11(2)设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,??f()?324求sinA.4.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)???xx2.设函数1)?2cos?f(x)?sin(?468(Ⅰ)求的最小正周期.)(xf4(Ⅱ)若函数与的图像关于直线对称,求当时][0,x?)f()y?g(xxy?1?x 3的最大值.)g(xy?图像的变换:????的单位后,得到函数.将函数的图象向左平移20 <1)(xy?sin??的图象,则等于())?sin(xy?6????7511 D. B. C. A.6666 w.w.w.k.s.5.u.c.o.m????))(x?0?tan(y?个单位长度后,与函数2.若将函数的图像向右平移64???)xy?tan(?的最小值为的图像重合,则61111(B)(A) (C) (D) 21世纪教2346育网?个单位, 再向上平移1将函数的图象向左平移个单位,所得图象的3.xy?sin24 ).函数解析式是(?2C.B.A.xy?2cos)x?y?1?sin(2xcosy?242.D x?2siny??,的最小正周期为的图4.已知函数)0w?f(x)?sin(wx?R)(x?,)(xy?f4??的一个值是(y轴对称,则)像向左平移个单位长度,所得图像关于||????3 B C D A 8824????,为了得到函数5.已知函数的最小正周期为0),?)(x?f(x)?sin(Rx?4?的图象,只要将的图象)(xyg(x)?cos?xf??个单位长度 B 向右平移个单位长度 A 向左平移88??个单位长 D 向右平移个单位长度21世纪教育网C 向左平移44 度三角恒等变换:22???????sin?sincos2cos1.已知,则2tan?4345??)()D(B)()(AC 54432.函数最小值是xcos)?sinx(fx11?C. B A.-1 .D.12211???2?cossin”的21世纪教育网3.“”是“22A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件f(x)?(1?3tanx)cosx的最小正周期为4 .函数??3??.C D...A B 2222x?sin2xy?2cos的最小值是_____________________ .函数5.??x0?x)xcostan3(1)(fx??,则,6.若函数的最大值为)x(f2.23?1?3.. C .D A.1 B2??3。
高一数学必修四知识点加题型高一数学必修四是一门重要的学科,其中包括了多个知识点和题型。
下面将为大家详细介绍这些内容以及相应的解题方法。
1. 二次函数二次函数是高一数学必修四中的重点内容。
它的一般形式为f(x) = ax² + bx + c。
其中,a、b、c为常数,a ≠ 0。
我们可以通过以下几个步骤来解二次函数相关题目:- 确定抛物线的开口方向:若a > 0,则开口向上;若a < 0,则开口向下。
- 求解顶点坐标:顶点坐标为(-b/2a, f(-b/2a))。
- 求解零点:根据二次函数的解的性质,利用求根公式或配方法可以求得二次函数的零点。
2. 三角函数三角函数在高一数学必修四中也占有重要地位。
常见的三角函数包括正弦函数、余弦函数和正切函数等。
我们可以通过以下几个步骤来解三角函数相关题目:- 根据已知条件确定所需求的角所在象限。
- 利用三角函数的定义和性质,结合已知条件求解所需角的值。
- 结合三角函数的图像和周期性,求解三角函数的方程式。
3. 数列与数列的通项公式数列是高一数学必修四中的基础内容。
在解数列的相关题目时,我们可以采用以下几个方法:- 根据给定的数列前几项,观察它们之间的规律,推测数列的通项公式。
- 利用已知的数列通项公式,计算指定位置上的项的值。
- 根据数列的性质,如等差数列、等比数列等,解决相应题目。
4. 平面向量平面向量也是高一数学必修四的重点内容。
在解平面向量相关题目时,我们可以采用以下几个步骤:- 确定平面向量的坐标或起点和终点的坐标。
- 利用平面向量的定义和性质进行向量的运算,如加法、减法、数量乘法等。
- 根据已知条件和向量运算的结果,求解题目所需的向量。
5. 概率与统计概率与统计是高一数学必修四的重要内容。
在解概率与统计的相关题目时,我们可以采用以下几个步骤:- 确定事件的样本空间和可能的结果。
- 利用概率的定义和性质,计算事件发生的概率。
- 对样本数据进行统计分析,如计算平均值、方差、标准差等。
高中数学必修四 题型归类山石第一章 三角函数1.1任意角和弧度制题型一:终边相同角1.与2003-终边相同的最小正角是______________,最大负角是_________。
2.终边在y 轴上的角的集合为________。
3.若角α与5α的终边关于y 轴对称,则角α的集合________ __ 。
题型二:区域角1.第二象限的角的集合为______ __2.如图,终边落在阴影部分(含边界)的角的集合是______ __3.若α是第二象限的角,确定2α的终边所在位置 .确定2α的终边所在位置 .题型三:弧度制1.若扇形的面积是1cm 2,它的周长是4cm 2,则扇形圆心角的弧度数为 .2.若扇形周长为一定值c (c >0),当α= ,该扇形面积最大.1.2任意角的三角函数题型一:三角函数定义y45030x1.α是第二象限角,P (x ,5)为其终边上一点,且cos α=42x,则sin α的值为 .2.已知角α的终边在直线3x+y=0上,则sin α= ,tan α=题型二:三角函数值的符号与角所在象限的关系1.4tan 3cos 2sin 的值。
A 小于0 B 大于0 C 等于0 D 无法确定 ( )2.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在 ( )A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上题型三:三角函数线1.设MP 和OM 分别是角1819π的正弦线和余弦线,则MP 、OM 和0的大小关系为______2.1sin 、1cos 、1tan 的大小关系为_______________题型四:同角公式1.化简1-2sin200°cos160°=________.2.222tan1tan 2tan 88tan 89sin 1sin 2sin 89οοοοοοο⨯⨯⋅⋅⋅⨯⨯++⋅⋅⋅+的值为________. 3.已知ααcos sin 21=,求下列各式的值: (1)ααααcos 9sin 4cos 3sin 2--; (2) 4sin 2α-3sin αcos α-5cos 2α.4.tan110°=k ,则sin70°的值为 ( )A .-k 1+k 2 B.k 1+k2C.1+k 2k D .-1+k2k5.已知51cos sin =-θθ ()πθ,0∈ 求值:(1)θθcos sin ; (2)θθcos sin -;(3)θtan ; (4) θθ33cos sin -1.3三角函数的诱导公式题型:诱导公式1.437tan323cos 641sin πππ-= ________.2.已知cos(3π2+α)=-35,且α是第四象限角,则cos(-3π+α)=3.已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),则α等于 ( )A .2B .223-πC .2-π2D.π2-24.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin(-α-3π2)sin(3π2-α)tan 3αcos(π2-α)cos(π2+α)=1.4.三角函数的图像与性质题型一:三角函数的定义域1.(1)函数)12sin 2lg(+-=x y 的定义域是(2)函数y =1)43tan(-+πx 的定义域是________________.题型二:三角函数的值域1.(1)函数y =cos 2x +sin x -1的值域为___________.(2)函数xx y cos 31cos 2+-=的值域为___________.(3)函数f(x)=sin xsin(x -π3)在⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为________.(4) 函数y =sin x +cos x +sin xcos x 在⎣⎡⎦⎤-π6,π3的值域为____ 2.设函数f (x )=A +B sin 2x ,若B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.3.(1)(2012·高考湖南卷)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32]题型三:三角函数的周期1.画出函数x y tan =的图象并指出函数的周期______2.(1)函数y =2sin (4π-2x)+1的周期为_____.(2)函数y =-2tan ⎝⎛⎭⎫3x +π4的周期____(3)函数21)42sin(-+=πx y 的周期_______3.设函数f(x)=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f(x 1)≤f(x)≤f(x 2)成立,则|x 1-x 2|的最小值为________.4.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=________.题型四:三角函数的奇偶性1.判断下列函数的奇偶性 (1))234cos(2π-=x x y (2)3tan 2-=x y(3)xxx y sin 1cos sin 12+-+=2.函数()f x =(x +1)2+sin xx 2+1的奇偶性_________________3.函数f (x )=sin(x+φ-π12) 是R 上的奇函数,则ϕ的值是__________________4.已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π3题型五:三角函数的单调性1.将52sinπ,56cos π,57tan π按从小到大的顺序排列,依次是_________________2.指出下列函数的的单调递减区间 (1)y =2)24sin(x-π+1(2)y =-2tan ⎝⎛⎭⎪⎫3x +π4 .(3)x y 2sin log 3.0= .3.下列函数中,周期为π,且在(0, π2)上单调递增的是 ( )A .y =tan|x|B .y =sin|x|C .y =|sinx|D .y =|cosx|4.函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上 ( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M5.已知ω是正实数,函数f (x )=2sin ωx 在[-π3,π4]上是增函数,那么ω的取值范围是________.6.★已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎫3π4,0对称,且在区间⎣⎡⎦⎤0,π2上是单调函数,求ω和φ的值.7.已知函数y =x x x cos sin 23cos 212+ +1,x ∈R.(1)当函数y 取最大值时,求自变量x 的集合;(2)指出此函数的振幅、周期、初相、频率和单调区间;题型六:三角函数的对称性1.函数y =cos ⎝⎛⎭⎫2x +π3图象的对称轴为 ,对称中心为 .2. 函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________;3.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.4.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A.π4 B.π3 C.π2 D.3π45.如果函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,那么=a( )A ,2B ,2-C ,1D ,1-6.把函数y x -sin x 的图象向左平移m (m >0)个单位,所得的图象关于y 轴对称,则m 的最小正值是 .7.已知函数f(x)=3sin (ωx -π6)(ω>0)和g(x)=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f(x)的取值范围是( )A .[-32,3]B .[-3,3]C .[-12,32]D .[0,32]8.函数f(x)=sin xsin(x -π3)的最小正周期、最值、对称中心、单调区间.1.5 函数y=Asin(ωx+φ)图象题型一:三角函数的图象变换1.要得到y =)2sin(x -的图象,只需将y =)62sin(π--x 的图象( ) A .向左平移π3个单位 B .向右平移π3个单位C .向左平移π6个单位 D .向右平移π6个单位2.已知函数y =23sin (2x +6π)(1)当[)+∞∈,0x ,指出此函数的振幅、周期、初相、相位、频率;(2)用五点作图法画出函数y =23sin (2x +6π)[]0,4x π∈的图象;(3)说明此函数的图象可以由y =sin x 的图象经怎样的变换得到?3. (2013·济宁模拟)给出下列六种图象变换方法:①图象上所有点的纵坐标不变,横坐标缩短到原来的12;②图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图象向右平移π3个单位长度;④图象向左平移π3个单位长度;⑤图象向右平移2π3个单位长度;⑥图象向左平移2π3个单位长度.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是________________(要求按变换先后顺序填上一种你认为正确的标号即可).4.已知函数21cos sin 3cos )(2++=x x x x f (1)先将)(x f y =化成B x A y ++=)sin(ϕω)0,0(>>ωA 的形式,再求函数()f x的周期;(2)列表、描点画出)(x f y =在⎥⎦⎤⎢⎣⎡-ππ1211,12上的图象。
必修 3 重要知识点梳理第一部分 知 回 : 一、算法与程序框 :1. 程序框 相关符号及 名称和功能 .2. 基本 构: 序 构、 条件 构 和循 构 .3. 基本算法 句: 入 句、 出 句、 句、条件 句、循 句.4. 算法案例:求最大公 数 ---- 相除法 与更相减 ;秦九韶算法; 位制 .二、 : (一)随机抽[ 来源 : 学 #科 #网 ]抽 方法:随机抽 ( 抽 法和 随机数法 )系 抽分 抽 .(二)用 本估 体:1. 用 本的 率分布估 体分布 率分布表, 率分布直方 ,茎叶 , 率分布折 , 体密度曲.2. 用 本的数字特征估 体的数字特征通 原始数据求众数、中位数、平均数和方差/ 准差 .通 率分布直方 估 数据的众数、中位数、平均数和方差/ 准差 .(三) 量 的相关关系1. 相关关系 -- 正相关和 相关2. 两个 量的 性相关回 直 , 最小二乘法求回 直 方程 三、概率:(一)随机事件的概率事件、 数和 率以及概率的正确理解 . 事件的关系:包含、相等、互斥和 立 .事件的运算:并 ( 和) 事件和交 () 事件 .概率的基本性.(二) 古典概型和几何概型 :相 概率模型的特征及运算公式.第二部分 巩固:算法和程序框图部分:1.如果 行下面的程序框 ,那么 出的S 等于 ()A . 2 450B . 2 500C . 2 550D . 2 652 2.若下面的程序框 出的 S 是 126, ① () A . n ≤ 5? B . n ≤ 6? C . n ≤ 7?D . n ≤ 8?3. 下列程序, 其 出的 果() 633112715A.64B.32C.128D.16S = 0n = 2 i = 1 DOS =S + 1/n n = n*2 i = i + 1LOOP UNTIL i> = 7 PRINT S END第 1第 2第 34.如 是求x 1, x 2 ,⋯, x 10 的乘 S 的程序框 , 中空白框中 填入的内容()A . S = S*( n +1)B . S = S*x n + 1C . S = S* nD . S = S*x n5.某程序框 如 所示,若 出的S = 57, 判断框内()A . k>4?B . k>5?C . k>6?D . k>7?6. 如 所示的程序框,运行相 的程序 ,若 出的 果是 16,那么在程序框中的判断框内 填写的条件是 ________.第 5第 4第 5第 67 已知三个数 12(16), 25(7), 33(4),将它 按由小到大的 序排列________.8把 10 231(5)化 四 制数 ________.统计部分:1.某 位有老年人 27 人,中年人 54 人,青年人 81 人, 了 他 的身体状况的某 指 ,需从他中 抽取一个容量 36 的 本 , 老年人 、中年人 、青年人分 抽取的人数是()A . 7,11,19B . 6,12,18C . 6,13,17D . 7,12,1712.已知一 数据 x 1, x 2, x 3, x 4, x 5 的平均数是 2,方差是 3,那么另一 数3x 1 -2,3x 2- 2,3x 3- 2,3x 4-2,3x 5- 2 的平均数 ,方差分 是 ( )12A . 2, 3B .2,1C . 4,3D . 4,3 3.如果在一次实验中 ,测得 (x , y)的四组数值分别是 A(1,3),B(2,3.8) ,C(3,5.2) ,D(4,6) ,则 y 与 x 之间 的回归直线方程是 ( )^^^^A. y = x +1.9B. y = 1.04x + 1.9C.y = 0.95x + 1.04D.y = 1.05x -0.9 4.某商店统计了最近 6个月某商品的进价x 与售价 y(单位:元 )的对应数据如下表: x 3 5 2 8 9 12y46391214假设得到的关于 x 和 y 之间的回归直线方程是 ^^ ^y = b x +a ,那么该直线必过的定点是 ________.5.某单位为了了解用电量y 度与气温 x ℃之间的关系 ,随机统计了某4 天的用电量与当天气温 .气温 (℃ ) 14 12 8 6用电量 (度)22263438^^^^由表中数据得回归方程 y =b x + a 中b =- 2,据此预测当气温为 5℃时 ,用电量的度数约为 ______.6.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 x(吨 )与相应的生产能耗 y(吨标准煤 )的几组对照数据 .x 3 4 5 6y 2.53 4 4.5(1) 请画出上表数据的散点图;^^^(2) 请根据上表提供的数据 ,用最小二乘法求出y 关于 x 的回归直线方程 y = bx + a ;(3) 已知该厂技改前 100 吨甲产品的生产能耗为90 吨标准煤.试根据 (2)求出回归直线方程 ,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值: 3× 2.5+ 4× 3+ 5×4+ 6× 4.5= 66.5)7.农科院的专家为了了解新培育的甲 、乙两种麦苗的长势情况 ,从甲、乙两种麦苗的试验田中各抽取6 株麦苗测量麦苗的株高 ,数据如下: ( 单位: cm)(1) 在下面给出的方框内绘出所抽取的甲 、乙两种麦苗株高的茎叶图;(2) 分别计算所抽取的甲 、乙两种麦苗株高的平均数与方差 ,并由此判断甲 、乙两种麦苗的长势情况.甲: 9,10,11,12,10,20乙: 8,14,13,10,12,21.8.今年西南一地区遭遇严重干旱 ,某乡计划向上级申请支援 ,为上报需水量 ,乡长事先抽样调查了 100户村民的月均用水量 ,得到这 100 户村民月均用水量的频率分布表如下表: (月均用水量的单位:吨 )用水量分组 频数 频率[0.5,2.5)12 [2.5,4.5)[4.5,6.5) 40[6.5,8.5)0.18[8.5,10.5]6合计1001(1) 请完成该频率分布表 ,并画出相对应的频率分布直方图和频率分布折线图; (2) 估计样本的中位数是多少?(3) 已知上级将按每户月均用水量向该乡调水 ,若该乡共有 1 200 户,请估计上级支援该乡的月调水量是多少吨?9.从高三抽出 50 名学生参加数学竞赛 ,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这 50 名学生成绩的众数与中位数.(2)这 50 名学生的平均成绩.3.若 A 表示四件产品中至少有一件是废品的事件,B 表示废品不少于两件的事件,试问对立事件 A 、B 各表示什么 ?4.回答下列问题:(1)甲、乙两射手同时射击一目标 ,甲的命中率为 0.65,乙的命中率为 0.60,那么能否得出结论:目标被命中的概率等于 0.65+0.60=1.25, 为什么 ?(2) 一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75, 为什么 ?(3) 两人各掷一枚硬币, “同时出现正面”的概率可以算得为12 .由于“不出现正面”是上述事件的对立事132件 ,所以它的概率等于12,这样做对吗 ?说明道理 .245.在一只袋子中装有7 个红玻璃球 ,3 个绿玻璃球 .从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率;(3) 取得两个同颜色的球的概率;(4)至少取得一个红球的概率.6.盒中有 6 只灯泡 ,其中 2 只次品 ,4 只正品 ,有放回地从中任取两次,每次取一只 ,试求下列事件的概率:(1)取到的 2 只都是次品; (2)取到的 2 只中正品、次品各一只;(3) 取到的 2 只中至少有一只正品.概率部分:随机事件的概率:1.一口袋内装有大小一样的 4 只白球与 4 只黑球 ,从中一次任意摸出 2 只球 .记摸出 2 只白球为事件 A, 摸出 1 只白球和 1 只黑球为事件 B.问事件 A 和 B 是否为互斥事件?是否为对立事件?2.在一个盒子内放有10 个大小相同的小球,其中有 7 个红球、 2 个绿球、 1 个黄球 ,从中任取一个球,求:(1)得到红球的概率;( 2)得到绿球的概率;(3)得到红球或绿球的概率;( 4)得到黄球的概率 .(5)“得到红球”和“得到绿球”这两个事件 A 、B 之间有什么关系 ,可以同时发生吗?(6)( 3)中的事件 D“得到红球或者绿球”与事件 A 、 B 有何联系?7.某市派出甲、乙两支球队参加全省足球冠军赛.甲、乙两队夺取冠军的概率分别是3和1.试求该市74足球队夺得全省足球赛冠军的概率.古典概型:8.在大小相同的 5 个球中 ,2 个是红球 ,3 个是白球 ,若从中任取 2 个 ,则所取的 2 个球中至少有一个红球的概率是 _____________.9.抛掷 2 颗质地均匀的骰子,求点数和为8 的概率 .10.豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因记为d,则杂交所得第一子代的一对基因为 Dd, 若第二子代的 D,d 基因的遗传是等可能的 ,求第二子代为高茎的概率(只要有基因 D 则其就是高茎 ,只有两个基因全是 d 时 ,才显现矮茎) .11.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,(1) 从袋中随机取出两个球,求取出的球的编号之和不大于 4 的概率;(2)先从袋中随机取一个球,该球的编号为 m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求 n< m+ 2 的概率.几何概型:12.有一段长为 10 米的木棍 ,现要将其截成两段 ,要求每一段都不小于 3 米 ,则符合要求的截法的概率是多大?13.郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以3看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的,谁能将铜板整4个地落到方几上就可以进行下一轮比赛 .郭靖一扔 ,铜板落到小方几上 ,且没有掉下 ,问他能进入下一轮比赛的概率有多大?14 甲、乙两人相约在上午 9:00 至 10:00 之间在某地见面 ,可是两人都只能在那里停留 5 分钟 .问两人能够见面的概率有多大?15.在 5 升水中有一个病毒,现从中随机地取出 1 升水 ,含有病毒的概率是多大?现在我们将这个问题拓展一下:16.在 5 升水中有两个病毒,现从中随机地取出 1 升水 ,含有病毒的概率是多大?17.在圆心角为90°的扇形中 ,以圆心为起点作射线OC,求使得∠ AOC 和∠ BOC 都不小于 30°的概率 .18.设关于x的一元二次方程x22ax b20 .(1)若a是从 0, 1, 2, 3 四个数中任取的一个数,b是从 0, 1,2 三个数中任取的一个数,求使上述方程组有实数根都概率 .(2)若a是从[0,3]上任取的一个数,b是从区间[0,2]上任取的一个数,求上述方程有实根的概率.19. 某工厂生产A、B两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品 .现从一批产品中随机抽取这两种元件各 5 件进行检测,检测结果记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x 、 y 看不清,统计员只记得x y ,且 A 、 B 两种元件的检测数据的平均值相等,方差也相等 .求表格中 x 与 y 的值从被检测的 5 件B种元件中任取2 件,求 2 件都为正品的概率.。
数学必修4知识点归纳总结第一章 三角函数周期现象与周期函数周期函数定义的理解要掌握三个条件,即存在不为0的常数T ;x 必须是定义域内的任意值; f(x +T)=f(x)。
练习:(1)已知函数f(x)对定义域内的任意x 满足:存在非零常数T ,使得f(x +T)=f(x)恒成立。
求:f(x +2T) ,f(x +3T)解:f(x +2T)=f[(x +T)+T]=f(x +T)=f(x), f(x +3T)=f[(x +2T)+T]=f(x +2T)=f(x)(2)已知函数f(x)是R 上的周期为5的周期函数,且f(1)=2005,求f(11) 解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知函数f(x)是R 上的奇函数,且f(1)=2,f(x +3)=f(x),求f(8) 解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 角的概念的推广1、正角、负角、零角的概念一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向(或顺时针方向)旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
规定:按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°;钟表的时针和分针在旋转时所形成的角总是负角。
过去我们研究了0°~360°(00360α≤<)范围的角。
如果我们将角α=030的终边OB 继续按逆时针方向旋转一周、两周……而形成的角分别得到390°,750°……的角。
角的概念经过这样的推广以后就成为任意角,任意角包括正角、负角和零角. 2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴(包括原点)重合,那么角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角. 300°、-60°角都是第四象限角;585°角是第三象限角。
高中数学必修4知识点经典题型编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4知识点经典题型)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4知识点经典题型的全部内容。
第三章三角恒等变换★1、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭. ★2、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.★3、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⑹()tan tan tan 1tan tan αβαβαβ++=-★4、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 22tan tan 21tan ααα=-★5。
高一数学必修4知识点归纳加题型高一数学必修4是一门重要的学科,涵盖了许多重要的数学知识点。
在本文中,将对高一数学必修4中的知识点进行归纳整理,并附加一些相关的题型,以帮助同学们更好地掌握这些知识。
1. 函数与方程1.1 一次函数一次函数的数学表示形式为y = kx + b,其中k为斜率,b为截距。
常见的题型包括求解线性方程组,求解一次函数的图像等。
示例题:已知一次函数的图像为直线y = 2x - 3,求函数的解析式。
1.2 二次函数二次函数的数学表示形式为y = ax^2 + bx + c,其中a为二次项的系数,b为一次项的系数,c为常数。
常见的题型包括求顶点坐标,求零点,绘制二次函数的图像等。
示例题:已知二次函数的顶点坐标为(-2, 5),且过点(1, 2),求函数的解析式。
2. 三角函数2.1 正弦函数正弦函数的数学表示形式为y = A*sin(Bx + C) + D,其中A为振幅,B为周期,C为初相位,D为垂直位移。
常见的题型包括求解三角方程,求解三角函数的图像等。
示例题:在区间[0, 2π]上,求解方程sin(2x) = 1的解。
2.2 余弦函数余弦函数的数学表示形式为y = A*cos(Bx + C) + D,其中A为振幅,B为周期,C为初相位,D为垂直位移。
常见的题型包括求解三角方程,求解三角函数的图像等。
示例题:在区间[0, 2π]上,求解方程cos(2x) = -1/2的解。
3. 平面向量平面向量的数学表示形式为A = (x, y),其中x和y分别表示向量在x轴和y轴上的分量。
常见的题型包括向量的加法、减法,向量的数量积,向量的模等。
示例题:已知向量A = (2, -1),向量B = (-3, 4),求向量A与向量B的数量积。
4. 解析几何4.1 直线和圆的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
圆的标准方程为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)为圆心坐标,r为半径长度。
三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。
o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。
高中数学必修四三角函数知识点总结,附真题讲解!
2、象限角角a的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,
则称a为第几象限角.3、
的象限已知a是第几象限角,确定所在象限的
方法:先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则a原来是第几象限对应的标
号即为终边所落在的区域.4、弧度制⑴ 1弧度的定义:长度等于半径长的弧所对的圆心角叫做1弧度.⑵ 弧长公式 半径为r的圆的圆心角a所对弧的长为l,则角a的弧度数的绝对值是
.⑶弧度制与角度制的换算公式:,,
.⑷若扇形的圆心角为a(a位弧度制),半径为
r,弧长为l,周长为C,面积为S,则,,
.
【答案】。
必修四常考题型总结三角函数篇三角函数的基础知识与基本运算: 1. sin 585。
的值为(A) 22-(B)22 (C)32- (D) 322.(列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<<3.(2009北京理)“2()6k k Z παπ=+∈”是“1cos 22α=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.(2008浙江理)cos 2sin 5,tan ( )ααα+=-=若则(A )12 (B )2 (C )12- (D )2-图像与性质:1.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )3.已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =(A )23- (B) 23 (C)- 12 (D) 124.)函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .4.已知函数y=sin (ωx+ϕ)(ω>0, -π≤ϕ<π)的图像如图所示,则ϕ=________________5.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
7.已知函数()sin()(0)f x x ωϕω=+>的图象如图所示, 则ω =已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是(A )5[,],1212k k k Z ππππ-+∈ (B )511[,],1212k k k Z ππππ++∈(C )[,],36k k k Z ππππ-+∈ (D )2[,],63k k k Z ππππ++∈2.如果函数3sin(2)y x ϕ=+的图像关于点4(,0)3π中心对称,那么||ϕ 的最小值为(C )(A )6π (B )4π (C )3π (D) 2π3.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A . 函数)(x f 的最小正周期为2πB . 函数)(x f 在区间[0,]2π上是增函数C .函数)(x f 的图象关于直线x =0对称D . 函数)(x f 是奇函数4.(本小题共12分)已知函数()2sin()cos f x x x π=-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.5.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的周期为π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[0,]12x π∈,求()f x 的最值.2. (本小题满分12分)设函数f(x)=cos(2x+3π)+sin 2x. (1) 求函数f(x)的最大值和最小正周期.(2) 设A,B,C 为∆ABC 的三个内角,若cosB=31,1()24C f =-,且C 为锐角,求sinA.4.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)设函数2()sin()2cos 1468x xf x πππ=--+.(Ⅰ)求()f x 的最小正周期.(Ⅱ)若函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值.图像的变换:1.将函数sin y x =的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数sin()6y x π=-的图象,则ϕ等于()A .6π B .56π C. 76π D.116π2.若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为(A)61 (B)41(C)31 (D)213.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A .cos 2y x =B .22cos y x =C .)42sin(1π++=x yD .22sin y x =4.已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )A2π B 83π C 4π D 8π5.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度C 向左平移4π个单位长度 D 向右平移4π个单位长度三角恒等变换: 1.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(A )43-(B )54 (C )34-(D )452.函数()sin cos f x x x =最小值是A .-1B . 12- C . 12 D .13.“1sin 2α=”是“1cos 22α=”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 4.函数()(13)cos f x x x =+的最小正周期为A .2πB .32π C .π D .2π5.函数22cos sin 2y x x =+的最小值是_____________________ . 6.若函数()(13)cos f x x x =+,02x π≤<,则()f x 的最大值为A .1B .2C 31D 32 1.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
7. (本小题满分12分)设函数2()cos(2)sin 3f x x x π=++(1)求函数()f x 的最大值和最小正周期.(2)11,,cos ,(),,sin 324c A B C ABC B f C A ∆==-设为的三个内角,若且为锐角求8.设函数2()sin()2cos 1468x xf x πππ=--+.(Ⅰ)求()f x 的最小正周期.(Ⅱ)若函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值.9.设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的最小正周期.(Ⅱ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间.三角函数与向量综合: 1.(本小题满分12分)已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值2.(本小题满分14分)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值;(2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b .3. 已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(Ⅰ)若//a b ,求tan θ的值;(Ⅱ)若||||,0,a b θπ=<<求θ的值。
4.已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- . (1) 若m //n ,求证:ΔABC 为等腰三角形;(2) 若m ⊥p ,边长c = 2,角C = ABC 的面积 .5.已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.平面向量篇题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(5)直角坐标平面上的x 轴、y 轴都是向量。
(6)相等向量一定是共线向量,但共线向量不一定相等; (7)若a 与b 共线, b 与c 共线,则a 与c 共线。
(8)若ma mb =,则a b =。
(9)若ma na =,则m n =。
(10)若a 与b 不共线,则a 与b 都不是零向量。
(11)若||||a b a b ⋅=⋅,则//a b 。
(12)若a 与b 均为非零向量,||||a b a b +=-,则a b ⊥。
2.给出命题(1)零向量的长度为零,方向是任意的. (2)若a ,b 都是单位向量,则a =b . (3)向量AB 与向量BA 相等.(4)若非零向量AB 与CD 是共线向量,则A ,B ,C ,D 四点共线. 以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4)题型2.向量的线性运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += 。
2.化简()()AB MB BO BC OM ++++= AB AC BC -+=_______;AB AD DC --=________; _ .NQ QP MN MP ++-________=3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 。
4.已知AC AB AD 为与的和向量,且,AC a BD b ==,则AB = ,AD = 。
5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC 。
6.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+7计算:(1)3()2()a b a b +-+= (2)2(253)3(232)a b c a b c +---+-=8.已知,24),(=a 求与a 垂直的单位向量的坐标。