南京航空航天大学工科数学分析期末考试_2012_06_26(试题)B
- 格式:docx
- 大小:139.23 KB
- 文档页数:11
航空《航空数学》期末考试试题及答案基本信息:[矩阵文本题] *1. 下列语句是命题的是(). [单选题] *A. 4大于3吗?B. 请关门C. x大于yD. 4>3(正确答案)2. 下列命题是真命题的是() [单选题] *A. 正方形是矩形,且正方形是菱形(正确答案)B. -1<0,且-1是正数C. π>3,且π是有理数D. 3是偶数,且2是奇数3. 下列命题是假命题的是() [单选题] *A. 5>4,或5=4B. 5>5,或5=5C. 5<4,或5=4(正确答案)D. 实数a的绝对值等于a或-a.4.下列命题不是简单命题的是() [单选题] *A. 5>4B. 5=5C. 5<4D. 4≤5(正确答案)5. 下列不是复合命题的联结词的是() [单选题] *A. 且B. 或C. 不是D. 联结(正确答案)6. 当p为真,q为假时,下列复合命题是真命题的是() [单选题] *A. p且qB. p或q(正确答案)C. 非pD. 以上都不是7. 设p和q是两个命题,如果p q,那么称p是q的()[单选题] *A. 充分条件(正确答案)B. 必要条件C. 充分必要条件D.等价条件8. ab>0是a>0且b>0的() [单选题] *A. 充分条件B. 必要条件(正确答案)C. 充分必要条件D.等价条件9. (1) 如果p,那么q;(2) 如果q,那么p,则(2)叫做(1)的() [单选题] *A. 逆命题(正确答案)B. 否命题C. 逆否命题D.假命题10.如果原命题是真,下列正确的是() [单选题] *A. 逆命题一定真B.否命题一定假C. 逆否命题一定真(正确答案)D.逆命题一定假11. (1) 如果p,那么q; (2) 如果非q,那么非P。
则 (2)叫做(1)的() [单选题] *A. 逆命题B. 否命题C. 逆否命题(正确答案)D.假命题12. (1) 如果p,那么q; (2) 如果非p,那么非q; 则 (2)叫做(1)的() [单选题] *A. 逆命题B. 否命题(正确答案)C. 逆否命题D.假命题13. 若植树这件事的算法表示为:挖坑→栽树苗→填土→浇水,这种算法结构为() [单选题] *A. 顺序结构.(正确答案)B. 条件结构C. 循环结构.D.模块结构14.不属于算法的三种结构的是() [单选题] *A. 顺序结构.B. 条件结构C. 循环结构.D.模块结构(正确答案)15.有关数组,下列叙述不正确的是() [单选题] *A. 两个数组之和即两个数组的对应分量相加,得到的新数组B. 两个数组之差即两个数组的对应分量相减,得到的新数组C. 数组中分量的个别数叫做数组的维数D. 数组的加、减运算的维数不必相同.(正确答案)16. 有关数乘,下列说法不正确的是() [单选题] *A. 数乘就是一个实数乘一个数组B.数乘的法则就是把实数分别与分量相乘C.数乘后还是一个数组D.数乘后数组的维数会改变.(正确答案)17.有关数组的内积,下列说法正确的是() [单选题] *A. 内积即是数乘,即一个实数与数组的乘积B. 不同维数的数组可以求内积C. 两数组的内积还是一个数组D.内积的结果是一个实数(正确答案)18.对编制计划的理解下列不正确的是() [单选题] *A.编制计划就是对工作进行合理的安排B. 一个合理的计划不需考虑工期。
工科数学分析(下)期末考试模拟试题姓名:___________得分: _________一、填空题(每小题3分,满分18分)1、设()xz y x z y x f ++=2,,,则()z y x f ,,在()1,0,1沿方向→→→→+-=k j i l 22的方向导数为_________.2.,,,-__________.222L L xdy ydx L x y=⎰+Ñ设为一条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线积分1,()cc x y x y ds +=+=⎰Ñ3.设曲线为则曲线积分 ___________4、微分方程2(3xy y)dx 0x dy +-=的通解为___________5、2sin(xy)(y)______________.y yF dx x=⎰的导数为 6、{,01,0x (x),2x e x f x ππππ--≤<≤≤==则其以为周期的傅里叶级数在点处收敛于_____________.二、计算下列各题(每小题6分,满分18分) 1. (1) 求极限lim0→→y x ()xy yx y x sin 11232+-(2) 220)(lim 22y x x y x y +→→2.设f ,g 为连续可微函数,()xy x f u ,=,()xy x g v +=,求xvx u ∂∂⋅∂∂(中间为乘号).3..222V z x y z V +=设是由所围成的立体,求的体积.三、判断积数收敛性(每小题4分,共8分)1. ∑∞=1!.2n n n nn2.∑∞=-1!2)1(2n n nn四、(本小题8分)求向量场2(23)()(2)x z xz y y z =+-+++A i j k u r r r u r 穿过球面∑: 222(3)(1)(2)9x y z -+++-=流向外侧的通量; 五、(本小题7分)2(1sin )cos ,(0,1)(0,1)y y lx e x dy e xdx l x A B +--=-⎰计算其中为半圆到的一段弧。