第10章达朗贝尔原理及虚位移原理
- 格式:ppt
- 大小:1.19 MB
- 文档页数:33
拉格朗日方程的三种推导方法 1 引言拉格朗日方程是分析力学中的重要方程,其地位相当于牛顿第二定律之于牛顿力学。
2 达朗贝尔原理推导达朗贝尔原理由法国物理学家与数学家让•达朗贝尔发现并以其命名。
达朗贝尔原理表明:对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总合为零。
即:δW =∑(F i +I i )∙δr i =0i(1)其中I i 为惯性力,I i=−m i a i 。
F i 为粒子所受外力,δr i 为符合系统约束的虚位移。
设粒子 P i 的位置 r i 为广义坐标q 1,q 2,⋯,q n 与时间 t 的函数:r i =r i (q 1,q 2,⋯,q n ,t)则虚位移可以表示为:δr i =∑ðr i ðq jjδq j(2)粒子的速度v i=v i (q 1,q 2,⋯,q n ,q 1,q 2,⋯,q n ,t) 可表示为:取速度对于广义速度的偏微分:(3)首先转化方程 (1) 的加速度项。
将方程 (2) 代入:应用乘积法则:注意到的参数为,而速度的参数为,所以,。
因此,以下关系式成立:(4) 将方程 (3) 与 (4) 代入,加速度项成为代入动能表达式:,则加速度项与动能的关系为(5) 然后转换方程(1)的外力项。
代入方程 (2) 得:(6) 其中是广义力:将方程(5) 与 (6) 代入方程(1) 可得:(7) 假设所有的广义坐标都相互独立,则所有的广义坐标的虚位移也都相互独立。
由于这些虚位移都是任意设定的,只有满足下述方程,才能使方程 (7) 成立:(8) 这系统的广义力与广义位势之间的关系式为代入得:定义拉格朗日量为动能与势能之差,可得拉格朗日方程:3哈密顿原理推导哈密顿原理可数学表述为:21ttLdtδ=⎰在等时变分情况下,有()dq q dt δδ•=2211()0t t t t Ldt L dt δδ==⎰⎰ (1)由拉格朗日量定义得,在等时变分情况下有L LL q q qqδδδ••∂∂=+∂∂(2)其中第一项可化为:()()()LL d d L d L q q q q dt dt dt q q q q δδδδ•••••∂∂∂∂==•-∂∂∂∂(3)将(3)代入(2)得()()d L d L LL q q qdt dt qq q δδδδ••∂∂∂=•-+∂∂∂ (4)将(4)代入(1)得2121()(())0t t t t L d L L q q q dt dt qqq δδδ••∂∂∂•+-+=∂∂∂⎰(5)在12,t t 处0q δ=,所以(5)变为21(())0t t d L Lq q dt dt qq δδ•∂∂-=∂∂⎰(6)即21[(())]0t t d L Lq dt dt qq δ•∂∂-+=∂∂⎰(7)q 是独立变量,所以 拉格朗日方程:4欧拉-拉格朗日方程推导欧拉-拉格朗日方程可以表述为:设有函数和:其中是自变量。
达朗贝尔定理
达朗贝尔(Jean le Rond d'Alembert)定理或称达朗贝尔原理是指,在刚体静力学中,一个刚体在平衡状态下,其任一点的受力与其对该点的矩(即力乘以距离)相等。
换句话说,如果一个刚体处于平衡状态,那么作用在这个刚体上的所有力的矩之和为零。
这个定理是由法国数学家达朗贝尔在他的著作《静力学原理》中提出的。
它是刚体静力学的基本原理之一,对于分析刚体的平衡状态和设计刚体结构具有重要意义。
达朗贝尔定理的数学表达式为:对于一个刚体,如果它处于平衡状态,则对于任一点,作用在该点的所有力的矢量和为零。
用数学语言表达,如果M是刚体上所有力矩的矢量和,则对于任一向量v,有M·v = 0。
这个原理可以应用于分析和设计各种刚体结构,例如桥梁、建筑、机械零件等。
通过应用达朗贝尔定理,工程师可以确保他们的设计符合刚体静力学原理,从而确保结构的稳定性和安全性。
达朗贝尔原理(D'Alembert's principle)是求解约束系统动力学问题的一个普遍原理。
其发展在于可以把动力学问题转化为静力学问题处理,还可以用平面静力的方法分析刚体的平面运动,这一原理使一些力学问题的分析简单化,而且为分析力学的创立打下了基础。
达朗贝尔原理因其发现者法国物理学家与数学家J·达朗贝尔而命名。
达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零。
或者说,作用于一个物体的外力与动力的反作用之和等于零。
受约束的非自由质点受有主动力F及约束力FN,如果再加上虚构的惯性力FI=-ma,则下式成立:
F+FN+FI=0(1)
即在质点运动的任一时刻,主动力、约束力与惯性力构成平衡力系。
上式为质点的达朗贝尔原理。
对质点系,如果在每个质点上都加上虚构的惯性力F Ii=-m i a i,则质系中每个质点均处于平衡,即:
F i+F Ni+F Ii=0(i=1,2,…,n)(2)
达朗贝尔最初提出的原理与式(1)不同。
把主动力F分为两部分:F(1)使质点产生加速度,F(1)=ma,称为有效力;F(2)=F-F(1)克服约束力。
对改变质点的运动状态不起作用,称为损失力。
损失力与约束力平衡:
F(2)+F N=0
这就是达朗贝尔原理,它与质点静止时的平衡方程F+F N=0形式上一致。
如果将前面F(1)、F(2)的表达式代入达朗贝尔原理,就得到:
F+F N+(-ma)=0
与式(1)相同,它们均与牛顿第二运动定律等价。
达朗贝尔原理知识总结1.质点的惯性力。
•设质点的质量为m ,加速度为,则质点的惯性力定义为2.质点的达朗贝尔原理。
•质点的达朗贝尔原理:质点上除了作用有主动力和约束力外,如果假想地认为还作用有该质点的惯性力,则这些力在形式上形成一个平衡力系,即3.质点系的达朗贝尔原理。
•质点系的达朗贝尔原理:在质点系中每个质点上都假想地加上各自的惯性力,则质点系的所以外力和惯性力,在形式上形成一个平衡力系,可以表示为4.刚体惯性力系的简化结果(1)刚体平移,惯性力系向质心C 简化,主矢与主矩为(2)刚体绕定轴转动,惯性力系向转轴上一点O 简化,主矢与主矩为其中如果刚体有质量对称平面,且此平面与转轴z 垂直,则惯性力系向此质量对称平面与转轴z 的交点O 简化,主矢与主矩为(3)刚体作平面运动,若此刚体有一质量对称平面且此平面作同一平面运动,惯性力系向质心C简化,主矢和主矩为式中为过质心且与质量对称平面垂直的轴的转动惯量。
5.消除动约束力的条件。
刚体绕定轴转动,消除动约束力的条件是,此转轴是中心惯性主轴(转轴过质心且对此轴的惯性积为零);质心在转轴上,刚体可以在任意位置静止不动,称为静平衡;转轴为中心惯性主轴,不出现轴承动约束力,成为动平衡。
常见问题问题一在惯性系中,惯性力是假想的(虚加的),达朗贝尔原理也是数学形式上的,物体一般并不是真的处于平衡。
问题二惯性力系一般都是向定点或者质心简化,因此这时惯性力系的主矩,而向其它的点简化,一般上是不成立的。
如果一定要向某一任意点A简化,那么要先向定点或质心简化,之后将其移至A点(注意力在平移时将会有附加力偶)。
惯性力系的主失是与简化中心无关的。
问题三用达朗贝尔原理解题时,加上惯性力系后就完全转化成静力学问题,其求解方法与精力学完全相同。
问题四物体系问题。
每个物体都有惯性力系,因此每个物体的惯性力系向质心(或定点)简化都得到一个力与一个力偶。
虚位移原理知识点总结1.虚位移·虚功·理想约束。
达朗贝尔原理知识总结1.质点的惯性力。
m 定义为,加速度为,则质点的惯性力? 设质点的质量为2.质点的达朗贝尔原理。
外,如 ? 质点的达朗贝尔原理:质点上除了作用有主动力和约束力,则这些力在形式上形成一个平衡力果假想地认为还作用有该质点的惯性力系,即3.质点系的达朗贝尔原理。
? 质点系的达朗贝尔原理:在质点系中每个质点上都假想地加上各自的惯,在形式上形成一个平衡力系,和惯性力性力,则质点系的所以外力可以表示为4.刚体惯性力系的简化结果C 简化,主矢与主矩为(1)刚体平移,惯性力系向质心O 简化,主矢与主矩为)(2 刚体绕定轴转动,惯性力系向转轴上一点其中1z 垂直,则惯性力系向此质量如果刚体有质量对称平面,且此平面与转轴z O 简化,主矢与主矩为的交点对称平面与转轴(3)刚体作平面运动,若此刚体有一质量对称平面且此平面作同一平面运C 简化,主矢和主矩为动,惯性力系向质心式中为过质心且与质量对称平面垂直的轴的转动惯量。
5.消除动约束力的条件。
刚体绕定轴转动,消除动约束力的条件是,此转轴是中心惯性主轴(转轴过质心且对此轴的惯性积为零);质心在转轴上,刚体可以在任意位置静止不动,称为静平衡;转轴为中心惯性主轴,不出现轴承动约束力,成为动平衡。
常见问题问题一在惯性系中,惯性力是假想的(虚加的),达朗贝尔原理也是数学形式上的,物体一般并不是真的处于平衡。
问题二惯性力系一般都是向定点或者质心简化,因此这时惯性力系的主矩,而向其它的点简化,一般上是不成立的。
如果一定要向某一任意点A简化,那么要先向定点或质心简化,之后将其移至A点(注意力在平移时将会有附加力偶)。
惯性力系的主失是与简化中心无关的。
问题三用达朗贝尔原理解题时,加上惯性力系后就完全转化成静力学问题,其求解方法与精力学完全相同。
问题四物体系问题。
每个物体都有惯性力系,因此每个物体的惯性力系向质心(或定点)简化都得到一个力与一个力偶。
虚位移原理知识点总结1.虚位移·虚功·理想约束。
拉格朗日-达朗贝尔方法-概述说明以及解释1.引言1.1 概述拉格朗日-达朗贝尔方法作为一种数学分析工具,被广泛应用于物理学、工程学以及经济学等领域。
它是以数学家约瑟夫·拉格朗日和皮埃尔-路易·达朗贝尔的名字命名的,两位数学大师通过研究力学问题而发展出了这一方法。
拉格朗日-达朗贝尔方法是一种基于最小作用原理的表达方式,它通过定义一个被称为拉格朗日量的函数,通过对该函数进行极值求解来获得系统的运动方程。
在这个方法中,系统的状态可以由一组广义坐标来描述,这些广义坐标与系统的自由度一一对应。
同时,拉格朗日-达朗贝尔方法还考虑了约束条件对系统运动的影响,通过施加拉格朗日乘子来处理这些约束。
通过这种数学工具,我们可以更加简洁地描述物体在复杂运动中的行为。
拉格朗日-达朗贝尔方法的优点之一是能够将复杂的物理问题转化为数学问题,从而简化求解过程并提供洞察力。
通过引入广义坐标和拉格朗日乘子,我们可以降低问题的复杂性,并从中提取出关键的信息。
此外,拉格朗日-达朗贝尔方法具有坐标无关性,不依赖于特定的坐标系,因此可以应用于各种不同的问题和情境中。
然而,拉格朗日-达朗贝尔方法也存在一些局限性。
首先,对于涉及非线性系统或系统的高阶导数的问题,其求解可能会变得相对复杂。
其次,在实际应用中,选择合适的广义坐标和拉格朗日乘子可能是一项具有挑战性的任务。
此外,由于该方法的推导基于最小作用原理,对于不满足最小作用原理的系统,拉格朗日-达朗贝尔方法可能不适用。
总之,拉格朗日-达朗贝尔方法作为一种重要的数学工具,在物理学和工程学领域发挥着重要的作用。
通过它,我们能够更加深入地理解自然界和工程系统中的运动行为,并从中得出有价值的结论。
虽然该方法存在一些限制,但仍然是一种强大而有用的工具,对于解决各种实际问题具有广阔的应用前景。
1.2文章结构在文章结构部分,我们将对拉格朗日-达朗贝尔方法进行详细的介绍和探讨。
文章主要分为3个部分:引言、正文和结论。
多自由度系统振动微分方程的建立如下图所示三个自由度系统的有阻尼强迫振动,分别用达朗贝尔原理、牛顿第二定律、拉格朗日方程、能量法、虚位移原理建立其振动微分方程。
1、直接平衡法建立方程(1)达朗贝尔原理根据达朗贝尔原理,当系统振动时,将受到干扰力、惯性力、阻尼力以及弹性恢复力作用,这四种力在系统的每一个广义坐标上的分量应保持平衡。
对于n 个自由度结构系统,力的平衡关系可以表示成为:)(t P F F F S D I =++I F 为惯性力列阵,D F 为阻尼力列阵;S F 为弹性恢复力列阵)(t P 为干扰力列阵。
设系统位移矢量为Tn t y y y y Y ]......,[21=,则: ..X M F I =, .X C F D = , KX F S = ∴)(...t P KX X C X M =++对以上三自由度系统进行受力分析如下图所示:11x k )(1t F )(122x x k - )(2t F )(233x x k - )(3t F.11x c ..11x m .1.22)(x x c - ..22x m .2.33)(x x c - ..33x m由达朗贝尔原理列平衡方程:1m :0)()()(..11.11.1.22111221=---+--+x m x c x x c x k x x k t F1m2m 3m2k2c3k 3c1k 1c1x2x3x)(1t F )(2t F)(3t F1m2m2m2m :0)()()()()(..22.1.22.2.331222332=----+---+x m x x c x x c x x k x x k t F 3m :0)()()(..33.2.332333=-----x m x x c x x k t F整理得:⎪⎪⎩⎪⎪⎨⎧=+-+-=-++--++-=-++-++)()()()()()()(33323.33.23..3323323212.33.232.12..22122121.22.121..11t F x k x k x c x c x m t F x k x k k x k x c x c c x c x m t F x k x k k x c x c c x m 写成矩阵形式得:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--++⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--++⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)()()(0)(0)(0)(0)(00000321321333322221.3.2.1333322221..3..2..1321t F t F t F x x x k k k k k k k k k x x x c c c c c c c c c x x x m m m 2、牛顿第二定律由牛顿第二定律建立上述系统振动微分方程,与达朗贝尔原理类似,分析各质量单元受力图,只是此时将不加惯性力。
第十二章动静法达朗贝尔原理(动静§12-1 惯性力·质点的达朗贝尔原理NF F a m +=0=−+a m F F N 令a m F I −=惯性力a (0F F F I N =++有►质点的达朗贝尔原理:作用在质点的主动力、设非自由质点的质量为m ,加速度为a ,作用在质点上的主动力为约束力为根据牛顿第二定律,有,F ,F N需要指出的是:实际质点上只受主动力和约束题,所以亦称动静法。
►需要指出的是:实际质点上只受主动力和约束力的作用,惯性力并不作用在质点上,质点也非处于平衡状态。
►达朗贝尔原理将动力学问题转化为静力学问题,所以亦称动静法。
b (0F F F 0F F F 0F F F Iz Nz z Iy Ny y Ix Nx x ⎪⎭⎪⎬⎫=++=++=++式(a 的投影式为例12-1用达朗贝尔原理求解例10-3已知:o 60,m 3.0,kg 1.0===θl m 求:.,T F v0=++I T F F g m 0mg cos F ,0F T b =−=∑θ∑=−=0sin ,0n I T n F F F θ解得N 96.1cos ==θmg F T s m 1.2sin 2==ml F v T θθsin l v m r v m ma F 22n n I ===解:§12-2 质点系的达朗贝尔原理记(e iF 为作用于第i 个质点上外力的合力。
(i i F 为作用于第i 个质点上内力的合力。
则有(((((((⎪⎭⎪⎬⎫=++=++∑∑∑∑∑∑0F M F M F M 0F F F Ii 0ii 0e i 0Ii i i e i n21i 0F F F Ii Ni i ,,,L ==++质点系的达朗贝尔原理:质点系中每个质点上作用的主动力,约束和它的惯性力在形式上组成平衡力系。
因(((∑∑==,0,00i i i i F M F 有((((∑∑∑∑=+=+0000Ii e i Ii e i F M F M F F 也称为质点系的达朗贝尔原理:作用在质点系上的外力与虚加在每个质点上的惯性力在形式上组成平衡力系。