3.4.2位错的伯氏矢量
- 格式:pdf
- 大小:1.35 MB
- 文档页数:10
《材料科学基础》复习思考题第一章:材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属晶格分别为(),()和()。
5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。
两种经典位错位错线与柏氏矢量的关系
位错线与柏氏矢量在不同的位错类型中有不同的关系。
刃型位错中,位错线与柏氏矢量是垂直的。
在晶体中,位错是发生滑动的部分,柏氏矢量用于描述晶体中原子排列的一组向量,它表示原子或原子集团在滑移前后位置的变化。
因为刃型位错的滑移矢量垂直于滑移面,所以其位错线与柏氏矢量也是垂直的。
而在螺型位错中,位错线与柏氏矢量是平行的。
此外,还有一种混合位错,其柏氏矢量与位错线的角度是任意的,既不平行也不垂直。
以上内容仅供参考,建议查阅关于位错的书籍或者咨询材料研究专家以获取更准确的信息。
位错环的柏氏矢量
【实用版】
目录
1.位错环的概述
2.柏氏矢量的概念
3.位错环与柏氏矢量的关系
4.位错环柏氏矢量的应用
正文
1.位错环的概述
位错环是一种存在于晶体结构中的缺陷,主要是由于晶体在生长过程中出现的排列错误导致的。
位错环通常会在材料遭受外力或者在制备过程中产生,它们对材料的性能有着重要的影响。
因此,研究位错环的性质和行为对于了解材料的强度、韧性等性能至关重要。
2.柏氏矢量的概念
柏氏矢量是一种描述位错环的矢量,它可以用来衡量位错环的大小和方向。
柏氏矢量的大小等于位错环的线密度,方向则与位错环的轴线方向相同。
柏氏矢量在材料科学中具有重要的意义,它可以用来描述位错环的运动和演化,进而预测材料的性能。
3.位错环与柏氏矢量的关系
位错环与柏氏矢量之间存在着密切的关系。
位错环是由一系列原子排列错误构成的,而柏氏矢量则是用来描述这些排列错误的大小和方向。
因此,位错环的大小和方向可以通过柏氏矢量来描述。
另外,位错环的运动也会导致柏氏矢量的变化,因此,研究位错环的运动规律也可以通过研究柏氏矢量的变化来实现。
4.位错环柏氏矢量的应用
位错环柏氏矢量在材料科学中有着广泛的应用。
首先,它可以用来研究材料的强度和韧性。
通过研究位错环的大小和分布,可以了解材料的强度和韧性,从而为材料的设计和制备提供理论依据。
其次,位错环柏氏矢量还可以用来研究材料的疲劳寿命。