11.线缺陷、刃型位错
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
线缺陷和面缺陷在材料科学和工程中,缺陷是指材料在制造、加工或使用过程中出现的各种不规则形态。
这些缺陷可能影响材料的性能,如强度、电导率、热导率等。
根据存在的范围,缺陷可以分为线缺陷、面缺陷和体缺陷。
以下是关于线缺陷和面缺陷的详细解释。
一、线缺陷线缺陷是指沿着材料某一特定方向(通常是晶体结构中的某一方向)分布的缺陷。
这种缺陷可以在晶体内任何位置出现,影响材料的力学、电学和热学性能。
常见的线缺陷包括位错和层错。
1.位错位错是指晶体中某处的原子或离子偏离了正常的晶格位置,形成了一个“线状”的缺陷。
位错是金属材料中最常见的一种缺陷,它对材料的强度、硬度、塑性和韧性等力学性能都有重要影响。
根据形成机制,位错可以分为刃型位错、螺型位错和混合位错等。
2.层错层错是指晶体中相邻的两个原子平面之间出现的错位。
它通常发生在两个不同原子面的交界处,对材料的力学和电学性能有很大影响。
层错的形成与材料中的温度、压力和杂质等因素有关。
二、面缺陷面缺陷是指分布在材料表面或近表面的缺陷。
这类缺陷对材料性能的影响主要表现在表面效应和界面效应上。
常见的面缺陷包括晶界、相界和表面粗糙等。
1.晶界晶界是指多晶体材料中相邻晶粒之间的界面。
由于不同晶粒的晶体取向不同,晶界处会产生一定的应力集中。
晶界对材料的力学性能、电学性能和热学性能都有一定影响。
为了提高材料性能,可以通过优化晶粒尺寸和分布来减少晶界数量。
2.相界相界是指多相材料中不同相之间的界面。
相界处的原子结构和化学成分往往与主体材料不同,导致其性能具有各向异性。
相界对材料的力学性能、电学性能和热学性能都有重要影响。
优化相界结构可以提高材料的综合性能。
3.表面粗糙表面粗糙是指材料表面或近表面的微观不平整性。
它可能是由于加工过程中冷却速度不均匀、材料氧化等原因导致的。
表面粗糙会影响材料的表面能、润湿性、涂层附着力和摩擦学性能等。
通过表面处理技术(如抛光、喷砂等)可以改善表面粗糙度,提高材料的性能。
第一章原子结构与键合此章主要掌握概念1.金属键(1)典型金属原子结构的特点是其最外层电子数很少,极易挣脱原子核的束缚而成为自由电子,并在整个晶体内运动,及弥漫于金属正离子组成的晶格之中而形成电子云。
这种由金属中的自由电子与金属正离子相互作用所构成的键合为金属键。
(2)绝大多数金属均以金属键方式结合,它的基本特点是电子的共有化,而且无方向性,无饱和性.(3)金属一般具有良好的到点和导热,以及良好的延展性的原因:自由电子的存在。
2.离子键大多数盐类、碱类和金属氧化物主要以离子键的方式结合,靠静电引力结合在一起。
3。
共价键共价键是由两个或多个电负性相差不大的原子通过共用电子对而形成的化学键。
共价键又分为非极性键和极性键两种.有方向性和饱和性。
4.范德瓦耳斯力是借助这种微弱的、瞬时的电偶极矩的感应作用,将原来具有稳定的原子结构的原子或分子结合为一体的键合,没有方向性和饱和性.5.氢键氢键是一种极性分子键,存在于HF、H2O、NF3等分子间,它的键能介于化学键与范德瓦耳斯力之间。
第二章固体结构重点:晶面指数和晶向指数、配位数以及致密度等一些概念、合金相结构的几种类型、间隙固溶体和间隙化合物和间隙相的异同点.主要是简答题按照原子或分子排列的特征可将固态物质分为两大类:晶体和非晶体.1.晶体结构的基本特征是,原子或分子或离子在三维空间呈周期性重复排列,即存在长程有序。
(各向异性)2.空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵。
(概念题)3.晶格:为了便于描述空间点阵的图形,可用许多平行的直线将所有阵点连接起来,构成了一个三维几何架子。
(概念题)4。
晶胞:可在点阵中取出一个具有代表性的基本单元,作为点阵的组成单元。
(概念题)5。
选取晶胞的原则:a.选取的平行六面体应反映出点阵的最高对称性。
b.平行六面体内的棱和角相等的数目应最多。
c。
当平行六面体的棱边夹角存在直角时,直角数目应最多。
过冷度:理论结晶温度T0与开始结晶温度Tn之差。
非自发形核:依附于杂质而生成的晶核变质处理:在液体金属中加入孕育剂或变质剂以细化晶粒和改善组织铁素体:碳在a-Fe中的见习固溶体珠光体:铁素体与渗碳体的共析混合物滑移:在晶体切应力作用下,晶体的一部分沿一定晶面上的一定方向相对于另一部分发生滑动加工硬化:金属发生塑性变形时随形变量增大金属的强度,硬度提高。
韧性,塑性明显降低。
再结晶:变形后的金属在较高温度加热时对其组织性能影响恢复到原来软化状态的过程。
滑移系:一个滑移面与其上一个滑移方向组成本质晶粒度:钢加热到930℃±10℃,保温8h,冷却后测得的晶粒度球化退火:使钢中碳化物球状化的处理工艺马氏体:碳在α—Fe中饱和固溶体淬透性:钢淬火时形成马氏体的能力淬硬性:钢淬火后能够达到的最大硬度调制处理:淬火加高温回火回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性二次硬化:硬度不是随回火温度升高而降低,而是达到某一温度反而增大并在另一更高温度达到峰值回火脆性:在250℃~400℃和450℃~650℃两个温度区间回火后,钢的冲击韧性明显下降致密度:晶胞中所包含的原子所占有的体积与该晶胞体积之比晶体的向异性:不同晶面和晶向上原子排列的方式和密度不同,它们之间的结合力大小也不相同,因而金属晶体不同方向上的性能不同刃型位错:晶体的一部分相对于另一部分出现一个多余的半原子面固溶体:合金组元通过溶解形成一种成分和性能均匀的、且结构与组元之一相同的固相固溶强化:晶格畸变增大位错运动的阻力,使金属滑移变得困难,从而提高合金的强度和硬度。
金属化合物:合金组元相互作用形成的晶格类型和特性完全不同于任一组元的新相组织:金属材料磨光和抛光在显微镜下观察到的内部微观形貌组织组成物:由于形成条件不同,合金中各相构成的晶粒将以不同的数量、形状、大小和分布等相组合,并在显微镜下可区分的部分,称为组织组成物。
原子结构与结合键 + 材料的结构1、第一电离能气态原子失去一个电子成为气态一价正离子所需要的最低能量称为第一电离能。
2、第二电离能气态A+再失去一个电子成为气态二价正离子所需要的最低能量称为第二电离能。
3、结合键原子间的结合力,主要表现为原子间的吸引力和排斥力的合力结果。
4、离子键通过两个或多个原子失去或获得电子而成为离子后形成,本质上可以归结为静电吸引作用,主要存在于晶体化合物中。
5、共价键由两个或多个电负性相差不大的原子共用电子对所形成的化学键,有方向性、饱和性。
6、金属键金属正离子和自由电子之间的相互作用所构成的结合力,无方向性、饱和性7、范德华键由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键,属于分子间作用力,无方向性和饱和性。
8、氢键已经与电负性很强的原子形成共价键的氢原子与另一分子中电负性很强的原子之间的作用力,具有方向性和饱和性。
9、晶体指内部质点(原子、分子或离子)在三维空间按周期性重复排列的固体,即晶体是具有格子构造的固体。
10、晶胞能充分反映晶体的晶体结构特征的最小体积单位(平行六面体)。
11、阵胞在三维方向上两两平行且相等的六面体,是空间点阵中的体积单元。
12、晶格原子在晶体中排列规律的空间格架。
13、空间点阵由一系列在三维空间按周期性排列的几何点称为一个空间点阵。
空间点阵四要素:阵点、阵列、阵面、阵胞)14、晶族依据晶体中高次轴(n>2)的数目,将晶体分为低级(无高次轴),中级(一个高次轴)和高级(多于一个高次轴)晶族。
15、空间群晶体结构中所有对称要素的组合所构成的对称群,晶体微观结构中共存在230种空间群。
16、晶面/晶向在晶体内部构造中,由物质质点所组成的平面/穿过物质质点所组成的直线方向。
17、晶带所有相交于某一直线或平行于此直线的所有晶面的组合(此直线称为晶带轴)。
18、晶面间距一组平行晶面中,最近邻的两个晶面间距称为晶面间距。
晶面间距越大,晶面上原子排列的密度越大,反之越小。
1、化学键:组成物质整体的质点(原子、分子或离子)间的相互作用力叫做化学键。
共价键:有些同类原子,例如周期表IV A、V A、VIA族中大多数元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键。
离子键:当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一起形成离子键。
范德瓦尔键(分子键):分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起,称为范德瓦尔键,也叫分子键。
金属键:由金属正离子和自由电子之间互相作用而结合称为金属键。
2、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。
单晶体:由一个晶粒组成的晶体。
准晶:原子在晶体内部是长程有序的具有准周期性的具有五次对称轴的介于晶体与非晶体之间的一类晶体,叫做准晶。
玻璃体:液体冷却时,尚未转变为晶体就凝固了,它实质是一种过冷的液体结构,称为玻璃体。
非晶态金属(金属玻璃):在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液体短程有序结构的非晶态金属。
非晶态金属又称作金属玻璃。
微晶合金:晶粒尺寸达微米(μm)的超细晶粒合金材料,称为微晶合金。
纳晶合金:晶粒尺寸达纳米(nm)的超细晶粒合金材料,称为纳晶合金。
3、空间点阵(点阵):代表原子(分子或离子)中心的点的空间排列,称为空间点阵,简称点阵。
阵点:代表原子(分子或离子)中心的点。
晶格:将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。
晶胞:点阵中能保持点阵特征的最基本单元叫晶胞。
晶体结构:是指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型,因此实际存在的晶体结构是无限多的。
4、晶向:晶体中某些原子在空间排列的方向叫晶向。
一、解释概念(3×5=15分)1.空位:晶格中某格点上的原子空缺了,则称为空位,这是晶体中最重要的点缺陷。
脱位原子有可能挤入格点的间隙位置,形成间隙原子。
2.刃型位错:有一多余半原子面,好象一把刀插入晶体中,使半原子面上下两部分晶体之间产生了原子错排,称为刃型位错。
其半原子面与滑移面的交线为刃型位错线。
3.螺型位错:晶体沿某条线发生上下两部分或左右两部分错排,在位错线附近两部分原子是按螺旋形排列的,所以把这种位错称为螺型位错。
4.攀移:刃型位错在垂直于滑移面方向的运动称作攀移。
通常把多余半原子面向上运动称为正攀移,向下运动称为负攀移。
攀移可视为半原子面的伸长或缩短,可通过物质迁移即空位或原子扩散来实现。
5.割阶:一个运动的位错线特别是在受到阻碍的情况下,有可能通过其中一部分线段首先进行滑移。
若该曲折线段垂直于位错的滑移面时,称为割阶6.层错:实际晶体结构中,密排面的正常堆垛顺序遭到破坏和错排,称为堆垛层错,简称层错。
7.晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界。
8.扭折:一个运动的位错线特别是在受到阻碍的情况下,有可能通过其中一部分线段首先进行滑移。
若由此形成的曲折在位错的滑移面上时,称为扭折。
9.柏氏矢量:用来表征位错特征,揭示位错本质的物理量。
其大小表示位错的强度,方向及与位错线的关系表示位错的正负及类型。
10.扩展位错:通常把一个全位错分解成两个不全位错,中间夹着一个堆垛层错的位错组态称为扩展位错。
11.科垂尔气团:围绕刃型位错形成的溶质原子聚集物,通常阻碍位错运动,产生固溶强化效果。
12.面角位错:在FCC晶体中形成于两个{111}面的夹角上,由三个不全位错和两个层错构成的不能运动的位错组态。
二、填空(1×15=15分)1.螺位错的滑移矢量与位错线________,凡是包含位错线的平面都可以作为它的滑移面。
但实际上,滑移通常是在那些原子________面上进行。
材料科学基础基本概念-名词解释单晶体:是指在整个晶体内部原子都按照周期性的规则排列。
多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。
在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。
包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes等。
线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。
主要为位错dislocations。
面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。
包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。
空位:晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。
弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。
晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。
从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。
热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。
过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。
名词解释弗伦克尔缺陷:在晶格热振动时,一些能量足够大的原子离开平衡位置后,挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位。
这种缺陷称为弗伦克尔缺陷。
肖特基缺陷:如果正常格点上的原子,热起伏过程中活的能量离开平衡位置迁移到晶体的表面,在晶体内正常格点上留下空位,这即是肖特基缺陷。
刃型位错:伯格斯矢量b与位错线垂直的位错称为刃型位错。
螺形位错:位错线和滑移方向(伯格斯矢量b)平行,由于位错线垂直的平行面不是水平的,而是像螺旋形的,故称螺旋位错。
类质同晶:物质结晶时,其晶体结构中原有离子或原子的配位位置被介质中部分类质类似的它种离子或原子占存,共同结晶成均匀的,单一的混合晶体,但不引起键性。
同质多晶:化学组成相同的物质,在不同的热力学条件下结晶或结构不同的晶体。
正尖晶石:二价阳离子分布在1/8四面体空隙中,三价阳离子分布在1/2八面体空隙的尖晶石。
反尖晶石:如果二价阳离子分布在八面体空隙中,而三价阳离子一半在四面体空隙中,另一半在八面体空隙中的尖晶石。
晶子学说:硅酸盐玻璃是由无数“晶子”组成,“晶子”的化学性质取决于玻璃的化学组成。
所谓“晶子”不同于一般微晶,而是带有晶格变形的有序区域,在“晶子”中心质点排列较有规律,愈远离中心则变形程度愈大。
“晶子”分散在无定形部分的过渡是逐步完成的,两者之间无明显界线。
晶子学说的核心是结构的不均匀性及进程有序性。
无规则网络学说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。
这种网络是由离子多面体(三角体或四面体)构筑起来的。
晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。
分化过程:架状[SiO4]断裂称为熔融石英的分化过程。
缩聚过程:分化过程产生的低聚化合物相互发生作用,形成级次较高的聚合物,次过程为缩聚过程。
网络形成剂:正离子是网络形成离子,单键强度大于335?kJ/mol,能单独形成玻璃的氧化物。
《工程材料》复习思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂.答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小.如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小.如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂.2.常见的金属晶体结构有哪几种?α—Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
材科基考点强化(第4讲--缺陷)本章特点本章的中心内容就是各种缺陷的分类,特性,相互作用以及对材料的影响。
重点是位错的理解。
出题形式本章内容试题的题型有选择题、简答题、此类试题的容量和难度都不会太大,以记忆知识为主,比较简单。
但还有综合性质的计算题,这类题目难度较大,需要对于知识有更深入的掌握,理解和运用。
主要考点考点1:晶体缺陷的分类考点2:空位浓度的计算考点3:点缺陷的分类和形成考点4:点缺陷对于材料性能的影响考点5:位错的一些基础知识:位错分类,柏氏矢量,滑移方式考点6:位错的运动与增殖考点7:位错的相互作用考点8:扩展层错考点9:位错应力场考点10:位错与点缺陷和面缺陷的交互作用考点11:全位错,不全位错考点12:位错反应考点13:面缺陷的分类考点14:晶界考点15:相界考点1:晶体缺陷的分类例1:什么是晶体缺陷?按照晶体缺陷的几何组态,晶体缺陷可分为哪几类?例2:缺陷的特征是()。
A.不随外界条件的改变而变动,也不会合并和消失B.随着各种条件的改变而不断变动,它们运动,发展以及会产生交互作用、合并和消失。
C.随着各种条件的改变而不断变动,但不产生交互作用,不会合并和消失考点2:空位浓度的计算(1)已知温度T,求形成能。
例:由600℃降温到300℃时,锗晶体中的空位平衡浓度降低了6个数量级。
试计算锗晶体中的空位形成能(玻尔兹曼常数k=1.38×10-23J/K)。
(2)已知形成能,求温度T。
例:计算某金属的空位浓度比室温(300K)空位浓度大1000倍时的温度。
已知Cu的空位形成能力为1.7×1019J/mol。
(3)求点缺陷数目例1:已知空位形成能是1.08eV/atom,铁的原子量是55.85,铁的密度是7.65g/cm3,阿伏加德罗常数N A=6.023×1023,玻尔兹曼常数k=8.62×10-5eV/atom-K,请计算1立方米的铁在850℃下的平衡数目。
判断题1.螺位错的位错线平行于滑移方向。
( )2.真实晶体在高于0K的任何温度下,一定存在有热缺陷。
( )3.对称倾侧晶界是由螺型位错构成,而扭转晶界是由刃型位错构成。
( )4.纯刃型肖克莱不全位错可以作滑移和攀移运动。
()5.位错属于线缺陷,但它实际上是一个晶格畸变的管道区域。
( )6.小角度晶界的晶界能比大角度晶界的晶界能高。
( )7.大角度晶界是相邻晶粒的位向差大于10。
的晶界。
()8.相界面与晶界的主要区别是相邻两相,不仅位向不同,而且结构或成分也不相同。
( )9.不全位错的柏氏矢量小于单位点阵矢量。
( )10.刃型肖克莱不全位错可以进行滑移和攀移运动。
( )11.点缺陷是热稳定缺陷,在一定的温度时晶体中的点缺陷具有一定的平衡浓度。
( )12.刃型位错的柏氏矢量与其位错线垂直,螺型位错的柏氏矢量与其位错线平行。
( )13.位错的柏氏矢量与其位错线既不平行也不垂直。
( )14.位错属于线缺陷,因为它的晶格畸变区为一条几何线。
()15.扭折对原位错运动不起阻碍作用,割阶对原位错起阻碍作用。
( )16.晶体缺陷在热力学上是不稳定的。
( )17.一个位错环不可能处处是刃位错,也不可能处处都是螺位错。
()18.一个不含空位的完整晶体在热力学上是不稳定的。
( )19.扩展位错之间常夹有一片层错区。
因此扩展位错是面缺陷。
( )20.位错受力方向处处垂直于位错线,位错运动过程中.晶体发生相对滑动的方向始终是柏氏矢量方向。
( )21.不全位错的柏氏矢量小于单位点阵矢量。
( )22.能进行交滑移的位错必然是螺型位错。
( )23.实际晶体内部总是存在缺陷。
(判断说法是否正确,并说明理由)24.混合型位错由刃型和螺型位错混合而成,所以具有二个柏氏矢量。
( )25.对于螺型位错,其柏氏矢量平行于位错线,因此纯螺型位错只能是一条直线。
()26.晶粒长大过程中,大角度晶界具有比较快的迁移速度。
()27.两侧晶粒位相差小于2°的称为大角度晶界。
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。
二,线缺陷
线缺陷和位错的概念:
晶体中的线缺陷就是各种类型的位错,它是在晶体某处有一列或若千列原子发生了有规律的错排现象,使长度达几百至几万个原子问距、宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。
虽然位错有多种类型但其中最简单最基本的类型有两种:
一种是刃型位错,另一种是螺型位错。
位错是一种极为重要的晶体缺陷
它对于金属的强度、断裂和塑性变形等起着决定性的作用
这里主要介绍位错的基本类型和一些基本概念,关于位错的运动、位错的增殖和交割等内容将在第六章中讲述
()一刃型位错
刃型位错的模型如图1-3所示
1.设有一简单立方晶体,某一原子面在品体内部中断,这个原子平面中断处的边缘就
是一个刃型位错,
2.犹如用一把锋利的钢刀将晶体上半部分切开,沿切口硬插入一额外半原子面一样
3.将刃口处的原子列称之为刃型位错线
刃型位错有正负之分
若额外半原子面位于晶体的上半部,则此处的位错线称为正刃型位错,以符号"丄"表示。
反之,若额外半原子面位于晶体的下半部,则称为负刃型位错,以符号"丁"表示。
实际上,这种正负之分并无本质上的区别,只是为了表示两者的相对位,便于以后讨论而已。
刃型位错的形成原因分析:
1.事实上,晶体中的位错并不是由于外加额外半原子而造成的,它的形成可能由于多
种原因。
2.例如晶体在塑性变形时,由于局部区域的晶体发生滑移即可形成位错,如图1-35所
示。
局部区域的品体发生滑移即可形成位错如图1.35所示
设想在晶体右上角施加一切应力,促使右上部晶体中的原子沿着滑移面ABCD自右至左移动一个原子间距,由于此吋晶体左上角的原子尚未滑移,于是在晶体内部就出现了已滑移区和未滑移区的边界,在边界附近,原子排列的规则性遭到了破坏,此边界线EF 就相当于图1.33中额外半原子面的边缘,其结构恰好是一个正刃型位错。
因此可以把位错理解为品体中已滑移区和未滑移区的边界
从图1.34b可以看出在位错线周围一个有限区域内
1.原子离开了原来的平衡位置即发生了晶格畸变
2.并且在额外半原子面左右两边的畸变是对称的
3.就好像通过额外半原子面对周围原子施加一弹性应力,这些原子就产生一定的弹性
应变一样
4.所以可以把位错线周围的晶格畸变区看成是存在着一个弹性应力场
5.就正刃型位错而言,滑移面上边的原子显得拥挤,原子间距变小,晶格受到压应力;
晶格下边的原子则显得稀疏,原子间距变大,晶格受到拉应力,而在滑移面上,晶格受到的是切应力。
刃型位错不同位置畸变程度:
在位错中心,即额外半原子面的边缘处,晶格畸变最大,随着距位错中心距离的增加,畸变程度逐渐减小。
位错的宽度和位错线的长度:
1.通常把晶格畸变程度大于其正常原子间距1/4的区域称为位错宽度,其值约为3~5个
原子间距。
2.位错线的长度很长,一般为数百到数万个原于间距
位错称为线缺陷
相形之下,位错宽度显得非常小,所以把位错看成是线缺陷
但事实上位错是一条具有一定宽度的细长管道
刃型位错的特征:
1.刃型位错有一额外半原子而,
2.位错线是一个具有一定长度的细长晶格畸变管道,其中既有正应变,又有切应变。
对于正刃型位错,滑移面之上品格受到压应力,滑移而之下为拉应力。
负刃型位错与此相反
3.位错线与晶体滑移的方向相垂直,即位错线运动的方向垂直于位错线。