位错基本理论
- 格式:pptx
- 大小:7.60 MB
- 文档页数:141
关于位错的理论与思考任新凯1,什么是位错位错是晶体中最为常见的缺陷之一,它对晶体材料的各种性质都有程度不同的影响,很早就被人们关注和研究,有了比较成熟的理论和大量的实验研究成果。
晶体在结晶时受到杂质、温度变化或振动产生的应力作用,或由于晶体受到打击、切削、研磨等机械应力的作用,使晶体内部质点排列变形,原子行间相互滑移,而不再符合理想晶体的有秩序的排列,由此形成的缺陷称位错。
位错是原子的一种特殊组态,是一种具有特殊结构的晶格缺陷,因为它在一个方向上尺寸较长,所以被称为线状缺陷。
位错的假说是在30年代为了解释金属的塑性变形而提出来的,50年代得到证实。
位错的存在对晶体的生长、相变、扩散、形变、断裂、以及其他许多物理化学性质都有重要影响,了解位错的结构及性质,对研究和了解金属尤为重要,对了解陶瓷等多晶体中晶界的性质和烧结机理,也是不可缺少的。
最初为解释的塑性变形而提出的一种排列缺陷模型.晶体滑移时,已滑移部分与未滑移部分在滑移面上的分界,称为"位错",又可称为差排。
它是一种"线缺陷".基本型式有两种:滑移方向与位错线垂直的称为"刃型位错";滑移方向与位错线平行的称为"螺型位错".位错的存在已经为等观察所证实.实际晶体在生长,变形等过程中都会产生位错.它对晶体的塑性变形,相变,扩散,强度等都有很大影响.刃型位错设有一简单立方结构的晶体,在切应力的作用下发生局部滑移,发生局部滑移后晶体内在垂直方向出现了一个多余的半原子面,显然在晶格内产生了缺陷,这就是位错,这种位错在晶体中有一个刀刃状的多余半原子面,所以称为刃型位错。
位错线的上部邻近范围受到压应力,而下部邻近范围受到拉应力,离位错线较远处原子排列正常。
通常称晶体上半部多出原子面的位错为正刃型位错,用符号“┴”表示,反之为负刃型位错,用“┬”表示。
当然这种规定都是相对的。
螺型位错又称螺旋位错。
一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
材料科学基础位错理论位错理论是材料科学领域中的重要概念之一、它是位错理论与晶体缺陷之间相互关联的核心。
本文将从位错的定义、分类和特征出发,进一步介绍位错理论的基本原理和应用。
首先,位错是固体晶体结构中的一种缺陷。
当晶体晶格中发生断裂、错位或移动时,就会形成位错。
位错可以被看作是晶体中原子排列的异常,它具有一定的形态、构型和特征。
根据位错发生的方向和类型,位错可分为直线位错、面位错和体位错。
直线位错是沿晶体其中一方向上的错排,常用符号表示为b。
直线位错一般由滑移面和滑移方向两个参数来表征。
滑移面是指位错的平移面,滑移方向是位错在晶体中的移动方向。
直线位错可以进一步分为边位错和螺位错。
边位错的滑移面为滑移方向的垂直面,螺位错则是在滑移面上存在沿位错线方向扭曲的位错。
面位错是晶体晶格上的一次干涉现象,即滑移面上的两部分之间发生错排。
面位错通常由面位错面和偏移量来描述。
面位错可以是平面GLIDE面位错、垂直GLIDE面位错或螺脚面位错。
体位错是沿体方向上的排列不规则导致的位错。
体位错通常是由滑移面间的晶体滑移产生的。
位错理论的基本原理是通过研究位错在晶体中的移动机制和相互作用,来理解材料的塑性变形和力学行为。
位错理论最早由奥斯勒(Oliver)于1905年提出,他认为材料的塑性变形是由于位错在晶体中游走和相互作用所引起的。
这一理论为后来的位错理论奠定了基础。
位错理论的应用非常广泛。
在材料加工和设计中,位错理论被广泛用于控制材料的力学性能和微观结构。
通过控制位错的生成、运动和相互作用,可以获得理想的材料性能。
同时,位错理论也被用于研究材料的磁性、电子输运和热传导性能等方面。
此外,位错理论也在材料的缺陷工程和腐蚀研究中发挥着重要作用。
通过控制位错的形态和分布,在材料中引入有利于抵抗腐蚀的位错类型,可以提高材料的抗腐蚀性能。
位错理论也可以用于解释材料的断裂行为和疲劳寿命等方面。
总结起来,位错理论是材料科学基础中的重要内容。
位错理论《位错与位错强化机制》杨德庄编著哈尔滨⼯业⼤学出版社1991年8⽉第⼀版1-2 位错的⼏何性质与运动特性⼀、刃型位错2.运动特性滑移⾯:由位错线与柏⽒⽮量构成的平⾯叫做滑移⾯。
刃型位错运动时,有固定的滑移⾯,只能平⾯滑移,不能能交叉滑移(交滑移)。
刃型位错有较⼤的滑移可动性。
这是由于刃型位错使点阵畸变有⾯对称性所致。
⼆、螺型位错1. ⼏何性质螺型位错的滑移⾯可以改变,有不唯⼀性。
螺型位错能够在通过位错线的任意平⾯上滑移,表现出易于交滑移的特性。
同刃型位错相⽐,螺型位错的易动性较⼩。
、位于螺型位错中⼼区的原⼦都排列在⼀个螺旋线上,⽽不是⼀个原⼦列,使点阵畸变具有轴对称性。
2.混合位错曲线混合位错的结构具有不均⼀性。
混合位错的运动特性取决于两种位错分量的共同作⽤结果。
⼀般⽽⾔,混合位错的可动性介于刃型位错和螺型位错之间。
随着刃型位错分量增加,使混合位错的可动性提⾼。
混合位错的滑移⾯应由刃型位错分量所决定,具有固定滑移⾯。
四、位错环⼀条位错的两端不能终⽌于晶体内部,只能终⽌于晶界、相界或晶体的⾃由表⾯,所以位于晶体内部的位错必然趋向于以位错环的形式存在。
⼀般位错环有以下两种主要形式:1. 混合型位错环在外⼒作⽤下,由混合型位错环扩展使晶体变形的效果与⼀对刃型位错运动所造成的效果相同。
2. 棱柱型位错环填充型的棱柱位错环空位型棱柱位错环棱柱位错环只能以柏⽒⽮量为轴的棱柱⾯上滑移,⽽不易在其所在的平⾯上向四周扩展。
因为后者涉及到原⼦的扩散,因⽽在⼀般条件下(如温度较低时)很难实现。
1-3 位错的弹性性质位错是晶体中的⼀种内应⼒源。
——这种内应⼒分布就构成了位错的应⼒场。
——位错的弹性理论的基本问题是对位错周围的弹性应⼒场的计算,进⽽还可以推算位错所具有的能量,位错的线张⼒,位错间的作⽤⼒,以及位错与其他晶体缺陷之间的相互作⽤等⼀些特性。
——⼀般采⽤位错的连续介质模型(不能应⽤于位错中⼼区),把晶体作为各向同性的弹性体来处理,直接采⽤胡克定律和连续函数进⾏理论计算。
2.2 位错的基本概念晶体中的线缺陷是各种类型的位错。
其特点是原子发生错排的范围,在一个方向上尺寸较大,而另外两个方向上尺寸较小,是一个直径为3—5个原子间距,长几百到几万个原子间距的管状原子畸变区。
虽然位错种类很多,但最简单,最基本的类型有两种:一种是刃型位错,另一种是螺型位错。
位错是一种极为重要的晶体缺陷,对金属强度、塑变、扩散、相变等影响显著。
一位错学说的产生位错:晶体中某处一列或若干列原子有规律的错排。
意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。
)人们很早就知道金属可以塑性变形,但对其机理不清楚。
在位错被提出之前,人们对晶体的塑性变形作了广泛的研究。
实验发现在塑性变形的晶体表面存在大量的台阶,因此,提出了塑性变形是通过晶体的滑移来实现的观点。
晶体的滑移过程如图1所示。
根据晶体塑性变形后台阶产生的方向,发现滑移总是沿着某些特定的晶面和晶体学方向进行的。
这些晶面被称为滑移面;晶体学方向被称为滑移方向。
一个滑移面和其面上的一个滑移方向组成一个滑移系。
当外界应力达到某一临界值时,滑移系才发生滑移,使晶体产生宏观的变形,将这个应力称之为临界切应力。
本世纪初到30年代,许多学者对晶体塑变做了不少实验工作。
1926年弗兰克尔利用理想晶体的模型,假定滑移时滑移面两侧晶体象刚体一样,所有原子τ=G/2π(G为切变模量),与实验结果相比相差3—4同步平移,并估算了理论切变强度mτ值也为G/30,仍与实测临个数量级,即使采用更完善一些的原子间作用力模型估算,m界切应力相差很大。
这一矛盾在很长一段时间难以解释。
1934年泰勒(G.I.Tayor),波朗依(M.Polanyi)和奥罗万(E.Orowan)三人几乎同时提出晶体中位错的概念。
泰勒把位错与晶体塑变的滑移联系起来,认为位错在切应力作用下发生运动,依靠位错的逐步传递完成了滑移过程,如图2。
与刚性滑移不同,位错的移动只需邻近原子作很小距离的弹性偏移就能实现,而晶体其他区域的原子仍处在正常位置,因此滑移所需的临界切应力大为减小。
第一章 位错理论(补充和扩展)刃位错应力场:22222)()3()1(2y x y x y Gb x ++--=νπσ22222)()()1(2y x y x y Gb y +--=νπσ)(y x z σσνσ+=22222)()()1(2y x y x x Gb yxxy +--==νπττ滑移面:xGb yx xy 1)1(2νπττ-==攀移面 y Gb x 1)1(2νπσ--=螺位错应力场:r Gb z z πττθθ2==单位长度位错线能量及张力221Gb T W ==单位长度位错线受力 滑移力:b f τ=攀移力: b f x σ=位错线的平衡曲率θθd 2d sin 2R f T =当θd 较小时2d 2d sin θθ≈,故τ2Gb f T R ==R Gb 2/=τ两个重要公式:Frank -Read 源开动应力l Gb /=τOrowan 应力λτ/Gb =位错与位错间的相互作用1. 不在同一滑移面上平行位错间的相互作用(1)平行刃型位错.)()()1(2222222y x y x x b Gb b f yx x +--'±='±=νπτ式中正号表示b 和b '同向;负号表示b 和b '反向。
沿y 轴的作用力y f 即攀移力.)()3()1(2222222y x y x y b Gb b f x y ++-'='=νπσ)-(b b ', 同号: 0>y f 正攀移 b b ', 反号: 0<y f 负攀移(2)平行螺位错r b Gb b f z r πτθ2'±='±=(3)平行混合型位错可以先将混合型位错分解成纯刃型和纯螺型的两个分量,分别计算刃-刃和螺-螺之间的作用力,最后叠加起来就得到总的作用力。
刃-螺之间无作用力2. 在同一滑移面上平行位错间的弹性相互作用位错的塞积群令第一个位错在0=x的地方,若此障碍只同领先的位错有交互作用,则每一位错所受的作用力j f 可写成01)1(2012=b x x Gb f n i ji i ij j τνπ∑=≠=---=平衡时j f 应为零,可得n -1个联立代数方程(不包括第一个位错)∑=≠=-=ni ji i ij x x D 10,1τ )1(2νπ-=GbD当n 很大时,求解联立方程的近似解,得到各位错的平衡位置202)1(8-=i n D x i τπ塞积群总长度0028τατπnDD n x L n ≈≈=单位长度上的位错数 0d d i L x D xτπ= 利用)1/4(≈π◆ 塞积群施加在障碍上的切应力设在外切应力0τ作用下,整个塞积群向前移动x δ的距离,外应力作功为x b n δτ0,而障碍对领先位错的作用力作功为x b δτ。