最优化潮流算法综述
- 格式:pdf
- 大小:354.72 KB
- 文档页数:5
最优潮流算法综述万黎,袁荣湘(武汉大学电气工程学院,湖北武汉430072)摘要:最优潮流是一个典型的非线性优化问题,且由于约束的复杂性使得其计算复杂,难度较大。
虽然人们已经提出了许多种方法,并且在部分场合有所应用,但是要大规模实用化,满足电力系统的运行要求还有不少问题要解决。
此文总结了现今有关最优潮流的几个方面,从优化方法和所遇到的新问题出发,对主要的优化方进行了介绍和简要的分析,以供从事无功优化的人员参考,同时还对最优潮流的进一步发展做了一些探讨。
关键词:最优潮流; 线性规划; 牛顿法; 内点法; 遗传算法; 并行算法中图分类号:T M71 文献标识码:A 文章编号:100324897(2005)11200802080 引言最优潮流OPF(Op ti m al Power Fl ow)是指从电力系统优化运行的角度来调整系统中各种控制设备的参数,在满足节点正常功率平衡及各种安全指标的约束下,实现目标函数最小化的优化过程。
通常优化潮流分为有功优化和无功优化两种,其中有功优化目标函数是发电费用或发电耗量,无功优化的目标函数是全网的网损。
由于最优潮流是同时考虑网络的安全性和经济性的分析方法,因此在电力系统的安全运行、经济调度、电网规划、复杂电力系统的可靠性分析、传输阻塞的经济控制等方面得到广泛的应用。
优化潮流的历史可以追溯到1920年出现的经济负荷调度。
20世纪20年代在电力系统功率调度开始使用等耗量微增率准则E I CC(Equal I ncre men2 tal Cost Criteria)。
至今等耗量微增率准则仍然在一些商用OPF软件中使用。
现代的经济调度可以视为OPF问题的简化,它们都是优化问题,使某一个目标函数最小。
经济调度一般关注发电机有功的分配,同时考虑的约束多仅为潮流功率方程等式约束。
1962年,J.Car pentier介绍了一种以非线性规划方法来解决经济分配问题的方法[1],首次引入了电压约束和其它运行约束,这种考虑更为周全的经济调度问题就是最优潮流(OPF)问题的最初模型。
电力系统最优潮流算法综述赵 爽 任建文华北电力大学河北省 保定市 071003摘 要 在电力系统中,实现系统的安全经济运行对国民经济发展具有重大的意义。
最优潮流是同时考虑网络的安全性和系统的经济性的一种实现电力系统优化的问题。
由于其安全约束条件众多、数学模型求解复杂,故难以实现经济性与安全性的统一,因此一直是研究的热点问题。
从理论出发论述了研究电力系统最优潮流问题的意义,回顾近20年来国内外关于最优潮流的逐步发展的过程,介绍求解最优潮流的线性方法、非线性方法和其他新型方法,并对主要的优化方法列出具有代表性的文献,指出其优缺点,提出最优潮流有待深入研究的方向。
关键词 电力系统 最优潮流 线性算法 非线性算法中国图书分类法分类号 TMThe Summarize of Optimal Power Flow Methods of the Power SystemZhao Shuang Ren JianwenNorth China of Electric Power UniversityBaoding Hebei 071003Abstract: In the power system, the realization of the safety and economic function is important to the national economic. Optimal power flow is a problem to realize the optimization of the system which the safety of the network and the economic of the system are considered at the same time. For many restricted safe conditions and the complex of the mathematic models, it is difficult to realize the unite of the economic and security, so this question is the hotspot all along. This paper discusses the meaning of making research on the optimal power flow problem of power system. The research history and actuality on optimal power flow problem home and abroad are also summarized. And it introduces the linear method、the non-linear method and other new methods to solve the optimal power flow. Furthermore, some research directions that need to study in depth are put forward.Key words power system optimal power flow linear method non-linear method1 引言电力系统最优潮流的发展可以回溯到60年代初基于协调方程式的经典经济调度方法。
含风电场的电力系统最优潮流算法综述
一、引言
随着风电场的快速发展,以风电为主体的电力系统最优潮流(OPF)分
析已经成为一个重要的研究热点和工程实践应用。
风电的调度问题的复杂
性主要取决于风力无法准确预测,这使得传统的OPF算法无法有效地解决
风电场调度问题,需要采用更为合适的最优潮流算法。
本文旨在概述和总
结风电场的最优潮流算法,以期能够加深对相关技术的理解,为提高风电
场最优潮流算法的性能和应用准备好一个参考框架。
二、基本原理
最优潮流算法是一种复杂的技术,它的基本原理是通过求解满足一定
约束条件下目标函数最优解的算法求解系统运行最优模式。
最优潮流算法
可以使电网的负荷得到最优的满足,而且在保证系统安全性前提下,尽可
能地使得水电、燃料等消耗资源的最小,实现最佳运行状态。
为了更好地
分析满足要求的最优模式,需要对模型进行优化,以求最小误差的负荷满
足条件及最小资源消耗的最优模式调度。
三、OPF算法类型
可以将OPF算法划分为有约束优化算法和受限优化算法,其中约束优
化算法又可分为具有线性等式约束条件和不具有线性等式约束条件的算法。
最优潮流算法概述摘要:最优潮流是一类典型的非线性规划问题, 在电力系统中求解最优潮流是一项基本而重要的工作。
本文论述了最优潮流算法问题, 对其中经典的简化梯度法、牛顿法、内点法、序列二次规划法、以及混合序列法做了详细介绍,并对智能化的潮流算法,如遗传算法、模拟退火法等进行了探讨,同时做了相应的比较。
然后结合最优潮流在电力市场下的应用进行了分析,最后指出最优潮流发展所面临的问题,并深入研究。
一引言最优潮流OPF (Optima l Power Flow)是指从电力系统优化运行的角度来调整系统中各种控制设备的参数,在满足节点正常功率平衡及各种安全指标的约束下,实现目标函数最小化的优化过程。
它将电网的经济调度、质量控制和安全运行统一协调起来,对电力系统的规划和运行有着重要意义。
最优潮流能够统一考虑电力系统在安全、经济和电压质量各方面的要求。
最优潮流问题,实质上是在满足一定的安全约束条件下,使目标函数达到最优的非线性规划问题。
具体地说,最优潮流是研究当系统的结构参数及负荷情况给定时,通过系统变量的优选,所能找到的能满足所有指定的约束条件,并使系统的一个或多个目标达到最优时的潮流分布。
1962年, J. Carpentier介绍了一种以非线性规划方法来解决经济分配问题的方法[1],首次引入了电压约束和其它运行约束。
电力系统最优潮流是经过优化的潮流分布, 其数学模型可以表示为:,min(,)..(,)0(,)0fs t gh⎧⎪⎪=⎨⎪≤⎪⎩u xu xu xu x(1.1)其中目标函数f 及等式、不等式约束g 及h中的大部分约束都是变量的非线性函数, 因此电力系统的最优潮流计算是一个典型的有约束非线性规划问题。
本文论述了最优潮流算问题, 对其中的简化梯度法、牛顿法、内点法、序列二次规划法、遗传算法模拟退火法等进行了详细的比较。
二经典的最优潮流计算方法电力系统最优潮流的经典解算方法主要是指以简化梯度法、牛顿法、内点法和解耦法为代表的基于线性规划和非线性规划以及解耦原则的解算方法,是研究最多的最优潮流算法,这类算法的特点是以一阶或二阶梯度作为寻找最优解的主要信息。
最优化潮流算法综述施建鸿【期刊名称】《中国科技信息》【年(卷),期】2016(000)001【总页数】3页(P59-61)【作者】施建鸿【作者单位】上海申通地铁集团有限公司【正文语种】中文目前针对潮流计算,提出了很多种方法,有些方法在有些场合已经得到使用,但要满足现有的电力系统还有许多问题需要研究和解决。
本文描述了目前的几种潮流计算,对这些算法进行了分析和比较,并针对如今潮流计算的方法对其未来发展趋势进行了预估。
在社会发展的同时,我国电力系统规模不断变大,对电力系统稳定性,可靠性,经济性的要求也越来越高,对电力系统的优化也越来越受到重视,最优潮流指的是从所有潮流计算的方法中在满足安全性前提下综合经济性选出相适应的潮流计算方法。
最优潮流是指在给定了各个结构参数和负荷的电力系统中,优化选择控制变量,在符合约束条件的前提下达到使目标函数最小化的目的的过程。
最优潮流在电力系统的电网规划、经济调度、安全运行方面发挥了重要作用,广泛运用在复杂电力系统的传输阻塞的经济控制,可靠性分析中。
目前的最优潮流算法主要分为最优潮流的经典算法和经典潮流的现代算法,经典算法包括简化梯度法,牛顿法,内点法,解耦法,现代算法有遗传算法,模拟退火算法等。
根据潮流计算优化方法的不同,可将其分为经典算法和现代优化算法两个种类。
经典算法包含简化梯度法,牛顿法,内点法,解耦法等等,这几种算法是目前用得最广的。
最优潮流的一般数学模型:在此模型中,f是所需要的目标函数,u是系统中的控制变量,x是状态变量。
等式g是等式约束条件。
在最优潮流计算过程中,要满足基本的潮流方程,这些所要满足的基本潮流方程就是等式约束条件。
式子h是不等式约束条件,同样在最优潮流中,可控控制变量并不是任意变化的,有他本身的取值范围,不等式约束条件是用来约束控制变量以及潮流计算中得到的其他量。
f,g是非线性函数,h中的大多数约束也是非线性的,可以看出求解最优潮流计算就求解是一个有约束的非线性规划问题。
最优潮流计算的基本特点
最优潮流计算是电力系统中重要的分析方法。
它是分析电力系统的方法之一,主要用于发电机运行状态的设计优化和设备或系统的安全运行状态明确。
在电力系统中,它利用数学模型和算法以最小代价来完成负荷等任务。
最优潮流计算具有三个基本特点。
首先,它是电力系统的无功优化分析和运行调整算法。
因为它使得数学模型和算法被用来解决电力系统中的无功功率平衡和电压调整问题,这样有利于将电力系统最优化。
其次,最优潮流调度可以有效地优化电力系统的可靠性和稳定性以及负荷量。
最优潮流调度可以改善电力系统的可靠性,使电力系统可以更加稳定。
同时,它还可以有效地控制电力系统中的负荷,合理地分配负荷,从而提高电力系统的效率和稳定性。
最后,最优潮流计算可以为节能提供有效的支持。
它不仅可以提高电力系统的效率,而且还可以降低电力消耗,降低操作成本和维护成本。
另外,最优潮流调度也可以有效地减少电力系统中产生的污染物,从而实现节能减排。
总之,最优潮流计算是电力系统中重要的分析方法,具有无功优化分析、可靠性和稳定性的优化以及节能减排的优势。
它是电力系统优化运行和节能减排的重要手段,有赖于它电力系统能获得更加稳定可靠的运行,实现节能减排的目的。
第1章绪论1.1电力系统最优潮流分布的概述最优化(Optimization ),指的是人们在生产过程或生活中为某个目的而选择的一个“最好”方案或一组“得力”措施以取得“最佳”效果这样一个宏观过程[1]。
过去,这种对最佳效果的追求只是凭借个人的经验或直觉进行的,有时也可能是列出不多的几个方案进行比较,从中选择一个。
但是,不难理解,按这种方式作出的决定一般只能说是比较好的方案,并不能保证取得最好的效果。
自从第二次世界大战以来,特别是近几十年来,随着科学技术的迅速进步和社会生产的大规模发展,管理和决策的内容变得异常庞杂,这就要求把对最佳效果的追求置于严格的数学理论基础和一整套系统化计算方法之上;另一方面,电子计算机的出现和发展,为严格、系统地完成对最佳效果的追求提供了快速高效的计算工具。
因此,最优化理论和最优化算法得到了全面的开发和广泛的应用,成为应用数学中一个重要的分支和各行各业生产及日常管理中一门不可缺少的工具。
电力系统是现代社会中最重要、最庞杂的工程系统之一,是由发电厂、输电线、配电系统及负荷组成的[2]。
由于其产品——电能在生产、输送、分配及使用等方面的明显优越性,电力系统实际供应着现代化社会生产和生活所需的绝大部分能量,相应地,也带来了其原材料——煤、石油等矿物燃料的大量耗费。
对于这样一个大额输入、大额输出的生产系统,提高其运行效率、争取其运行优化的必要性是毋庸置疑的。
事实证明,若能在保证供电的条件下减少燃料消耗,哪怕是0.1%,也将意味着全国每年能节约数以千万吨计的燃料。
[1]因此,电力系统的优化运行问题长期以来一直受到电力系统工程技术人员和学者的重视,尤其是近20多年来这方面的研究成果很多,并在实践上不断取得进展。
电力系统最优运行是电力系统分析的一个重要分支,它所研究的问题主要是在保证满足用户用电需求(即负荷需求)的前提下,如何优化地调度系统中各发电机组或发电厂的运行工况,从而使系统发电所需的总费用或所消耗的总燃料耗量达到最小,这样一个运筹决策最优的问题。