无线局域网拓扑结构
- 格式:ppt
- 大小:1.35 MB
- 文档页数:3
无线局域网技术浅析内容摘要:无线局域网是随着无线通信技术的快速发展而出现的一种新型网络。
本文介绍了无线局域网的基本组成、拓扑结构、优缺点,详述了几种无线局域网标准,并列出无线局域网的安全问题和详细解决方案。
无线局域网是随着无线通信技术的快速发展而出现的一种新型网络。
本文介绍了无线局域网的基本组成、拓扑结构、优缺点,详述了几种无线局域网标准,并列出无线局域网的安全问题和详细解决方案。
无线局域网IEEE802.11安全1无线局域网技术简介无线局域网(WLAN)与有线局域网通过铜线或光纤等导体传输不同的是,无线局域网使用电磁频谱来传递信息。
它是计算机网络与无线通信技术相结合的产物。
无线网络用于一些布线困难、上网设备经常移动的环境,及搭建临时性的网络。
无线网络因其自身的优越特性被作为有线网络的补充技术被广泛的应用。
1.1无线局域网的组成无线局域网由无线网卡、无线接入点(AP)、计算机和有关设备组成,常见的组成方式有3种:点对点型、点对多点型、和混合型。
点对点型常用于固定的要联网的两个位置之间,是无线联网的常用方式,使用这种联网方式建成的网络,优点是传输距离远,传输速率高,受外界环境影响较小。
点对多点型常用于有一个中心点,多个远端点的情况下。
其最大优点是组建网络成本低、维护简单;其次,由于中心使用了全向天线,设备调试相对容易。
该种网络的缺点也是因为使用了全向天线,波束的全向扩散使得功率大大衰减,网络传输速率低,对于较远距离的远端点,网络的可靠性不能得到保证。
混合型用于所建网络中有远距离的点、近距离的点,还有建筑物或山脉阻挡的点。
在组建这种网络时,综合使用上述几种类型的网络方式,对于远距离的点使用点对点方式,近距离的多个点采用点对多点方式,有阻挡的点采用中继方式。
1.2无线局域网的拓扑结构WLAN有2种主要的拓扑结构,即自组织网络(对等网络,即人们常称的AdHoc网络)和基础结构网络(infrastructurenetwork)。
建立局域网的方法步骤详解局域网(Local Area Network,LAN)是指在某个特定地点范围内,由一组互联的计算机和设备构成的网络。
建立局域网可以帮助用户在同一地点内共享文件、打印机、互联网连接等资源。
下面将详细介绍建立局域网的方法步骤。
1. 确定网络拓扑结构在建立局域网之前,需要确定网络的拓扑结构。
常见的局域网拓扑结构有星型、总线型和环型。
星型拓扑结构是将所有的计算机和设备连接到一个中央设备上,如交换机或路由器。
总线型拓扑结构则是将所有的计算机和设备连接到一根共享电缆上,而环型拓扑结构则是将计算机和设备连接成一个环形。
根据实际需求和可行性,选择合适的拓扑结构。
2. 购买并安装网络设备建立局域网需要购买合适的网络设备,如交换机、路由器、网络线缆等。
交换机是局域网的核心设备,负责将网络数据包转发到正确的目标设备。
路由器则负责将数据包转发到不同的局域网之间。
根据网络拓扑结构,选择合适的设备,并按照说明书进行安装。
3. 连接计算机和设备首先,将网络线缆连接到交换机的端口上。
然后,将其他计算机和设备连接到网络线缆的另一端。
确保每个计算机和设备都与交换机或者路由器相连。
对于无线局域网,需要配置无线路由器,并连接到每台计算机和设备。
4. 配置网络设备连接计算机和设备后,需要对网络设备进行配置。
首先,访问交换机或路由器的管理界面,在其中设置网络名称(SSID)和密码。
这样,用户可以在局域网范围内连接到无线网络。
此外,还可以配置IP地址、子网掩码、网关和DNS服务器等网络参数,以确保正常的网络通信。
5. 设置共享资源建立局域网后,可以设置共享资源,如文件夹、打印机和互联网连接等。
在每台计算机上,设置共享文件夹,并授权其他计算机可以访问。
对于打印机,可以将其连接到一台计算机上,并设置共享,其他计算机可以通过局域网访问和使用该打印机。
如果有一台计算机连接了互联网,可以设置网络连接共享,使其他计算机通过局域网共享该互联网连接。
局域网的特点及常见的局域网拓扑结构的特点上机检索相关信息,试着完成以下题目,并将建立的文件以附件的形式,发送至邮箱***************,要求邮件以自己的班级和姓名作为主题,如:计算机061张三丰1、简述局域网的特点及常见的局域网拓扑结构的特点网络中的计算机等设备要实现互联,就需要以一定的结构方式进行连接,这种连接方式就叫做拓扑结构,通俗地讲这些网络设备如何连接在一起的。
目前常见的网络拓扑结构主要有以下四大类:(1)星型结构(2)环型结构(3)总线型结构(4)星型和总线型结合的复合型结构下面我们分别对这几种网络拓朴结构进行一一介绍。
1.星型结构这种结构是目前在局域网中应用得最为普遍的一种,在企业网络中几乎都是采用这一方式。
星型网络几乎是Ethernet(以太网)网络专用,它是因网络中的各工作站节点设备通过一个网络集中设备(如集线器或者交换机)连接在一起,各节点呈星状分布而得名。
这类网络目前用的最多的传输介质是双绞线,如常见的五类线、超五类双绞线等。
这种拓扑结构网络的基本特点主要有如下几点:(1)容易实现:它所采用的传输介质一般都是采用通用的双绞线,这种传输介质相对来说比较便宜,如目前正品五类双绞线每米也仅1.5元左右,而同轴电缆最便宜的也要2.00元左右一米,光缆那更不用说了。
这种拓扑结构主要应用于IEEE802.2、IEEE802.3标准的以太局域网中;(2)节点扩展、移动方便:节点扩展时只需要从集线器或交换机等集中设备中拉一条线即可,而要移动一个节点只需要把相应节点设备移到新节点即可,而不会像环型网络那样牵其一而动全局;(3)维护容易;一个节点出现故障不会影响其它节点的连接,可任意拆走故障节点;(4)采用广播信息传送方式:任何一个节点发送信息在整个网中的节点都可以收到,这在网络方面存在一定的隐患,但这在局域网中使用影响不大;(5)网络传输数据快:这一点可以从目前最新的1000Mbps到10G以太网接入速度可以看出。
局域网的含义及其拓扑结构有哪些近几年来,局域网在技术上已经日渐成熟,应用日趋广泛,下面是店铺整理的一些关于局域网的相关资料,供你参考。
局域网是什么?局域网(Local Area Network,LAN)也就是局域网lan是指在某一区域内由多台计算机互联成的计算机组。
一般是方圆几千米以内。
局域网可以实现文件管理、应用软件共享、打印机共享、工作组内的日程安排、电子邮件和传真通信服务等功能。
局域网是封闭型的,可以由办公室内的两台计算机组成,也可以由一个公司内的上千台计算机组成。
局域网通常是分布在一个有限地理范围内的网络系统,一般所涉及的地理范围只有几公里。
局域网专用性非常强,具有比较稳定和规范的拓扑结构。
常见的局域网拓朴结构如下:星形结构这种结构的网络是各工作站以星形方式连接起来的,网中的每一个节点设备都以中防节为中心,通过连接线与中心节点相连,如果一个工作站需要传输数据,它首先必须通过中心节点。
树形结构树形结构网络是天然的分级结构,又被称为分级的集中式网络。
其特点是网络成本低,结构比较简单。
总线形结构总线形结构网络是将各个节点设备和一根总线相连。
网络中所有的节点工作站都是通过总线进行信息传输的。
环形结构环形结构是网络中各节点通过一条首尾相连的通信链路连接起来的一个闭合一闭合环形结构网。
环形结构网络的结构也比较简单,系统中各工作站地位相等。
局域网定义为了完整地给出LAN的定义,必须使用两种方式:一种是功能性定义,另一种是技术性定义。
前一种将LAN定义为一组台式计算机和其他设备,在物理地址上彼此相隔不远,以允许用户相互通信和共享诸如打印机和存储设备之类的计算资源的方式互连在一起的系统。
这种定义适用于办公环境下的LAN、工厂和研究机构中使用的LAN。
就LAN的技术性定义而言,它定义为由特定类型的传输媒体(如电缆、光缆和无线媒体)和网络适配器(亦称为网卡)互连在一起的计算机,并受网络操作系统监控的网络系统。
常见的网络拓扑结构常见的分为星型网,环形网,总线网,以及他们的混合型1总线拓扑结构总线拓扑结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。
优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。
缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。
另外,由于信道共享,连接的节点不宜过多,总线自身的故障可以导致系统的崩溃。
最著名的总线拓扑结构是以太网(Ethern et)。
2. 星型拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。
这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。
这种连接方式以双绞线或同轴电缆作连接线路。
优点:结构简单、容易实现、便于管理,通常以集线器(Hub)作为中央节点,便于维护和管理。
缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。
3. 环形拓扑结构各结点通过通信线路组成闭合回路,环中数据只能单向传输,信息在每台设备上的延时时间是固定的。
特别适合实时控制的局域网系统。
优点:结构简单,适合使用光纤,传输距离远,传输延迟确定。
缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。
最著名的环形拓扑结构网络是令牌环网(TokenRing)4. 树型拓扑结构是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。
优点:连结简单,维护方便,适用于汇集信息的应用要求。
缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。
几种网络拓扑结构及对比局域网的实验一内容:几种网络拓扑结构及对比1星型2树型3总线型4环型计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。
计算机网络的拓扑结构是把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。
网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。
总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。
总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。
环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。
树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。
星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。
星型拓扑结构在网络布线中较为常见。
编辑本段计算机网络拓扑计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。
把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。
网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。
最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。
网络拓扑知识:无线局域网的逻辑拓扑结构随着信息技术的不断发展,无线局域网已经成为了人们日常生活、工作中的必要工具。
无线局域网依靠无线电波进行通信,避免了传统的电缆或光纤的限制,实现了无线传输。
在无线局域网中,网络拓扑是无线通信的基础和核心,它能够决定无线局域网的工作效率以及网络的可靠性。
本文将为大家介绍无线局域网的逻辑拓扑结构及其应用。
一、无线局域网的逻辑拓扑结构无线局域网的逻辑拓扑结构主要有三种:基础设施模式、自组织网络模式和混合模式。
其中,基础设施模式和自组织网络模式是较为常见的两种模式。
1.基础设施模式基础设施模式是一种基于中心节点的无线局域网拓扑结构。
在该模式下,无线接入点充当中心节点的角色,连接所有的无线终端。
无线接入点可以是有线网络的路由器、交换机、服务器等设备,也可以是专门用于无线局域网的无线路由器。
基础设施模式下,所有无线终端必须能够连接到无线接入点,才能通过网络进行数据传输。
基础设施模式的优点在于其稳定性和可靠性。
由于存在中心节点的控制,网络管理和维护较为简单。
同时,基础设施模式可提供高速稳定的网络传输,适合应用于需要大容量数据传输和视频流媒体等高带宽的场合。
2.自组织网络模式自组织网络模式是一种去中心化的无线局域网拓扑结构。
在该模式下,所有的无线设备都是平等的,并通过自组织的方式建立起网络连接。
无线终端之间通过彼此连接,形成一个不规则的网状结构。
这种模式下,每个无线终端之间都可以进行通信,并可以相互转发数据包。
自组织网络模式的优点在于其灵活性和自适应性。
这种模式下,网络连接随着设备的移动和增减而动态地改变,不需要中心节点对其进行管理和维护。
3.混合模式混合模式是一种综合了基础设施模式和自组织网络模式的拓扑结构。
在混合模式下,某些无线设备可以通过无线接入点连接至有线网络,而另外一些无线设备则可以通过自组织的方式相互连接。
这种模式下,各个无线设备之间可以进行点对点的通信,也可以通过无线接入点访问互联网。
无线局域网(WLAN)拓扑结构——基于AP的Infrastructure结构这种基于无线AP的Infrastructure(基础)结构模式其实与有线网络中的星型交换模式差不多,也属于集中式结构类型,其中的无线AP相当于有线网络中的交换机,起着集中连接和数据交换的作用。
在这种无线网络结构中,除了需要像Ad-Hoc对等结构中在每台主机上安装无线网卡,还需要一个AP 接入设备,俗称“访问点"或“接入点"。
这个AP设备就是用于集中连接所有无线节点,并进行集中管理的。
当然一般的无线AP还提供了一个有线以太网接口,用于与有线网络、工作站和路由设备的连接。
基础结构网络如图3—1 4所示。
这种网络结构模式的特点主要表现在网络易于扩展、便于集中管理、能提供用户身份验证等优势,另外数据传输性能也明显高于Ad-Hoc对等结构。
在这种AP网络中,AP和无线网卡还可针对具体的网络环境调整网络连接速率,如1 1 Mbps的可使用速率可以调整为1 Mbps、2Mbps、5.5Mbps和1 1 Mbps 4档;54Mbps的IEEE 802.1 1 a和IEEE 802.1 1 g的则更是方54Mbps、48Mbps、3 6Mbps、24Mbps、1 8Mbps、1 2Mbps、1 1 Mbps、9Mbps、6Mbps、5.5Mbps、2Mbps、1 Mbps共1 2个不同速率可动态转换,以发挥相应网络环境下的最佳连接性能。
理论上一个IEEE 802.1 1b的AP最大可连接72个无线节点,实际应用中考虑到更高的连接需求,我们建议为1 O个节点以内。
其实在实际的应用环境中,连接性能往往受到许多方面因素的影响,所以实际连接速率要远低于理论速率,如上面所介绍的AP和无线网卡可针对特定的网络环境动态调整速率,原因就在于此。
当然还要看具体应用,对于带宽要求较高(如学校的多媒体教学、电话会议和视频点播等)的应用,最好单个AP所连接的用户数少些;对于简单的网络应用可适当多些。