matlab遗传算法求函数最小值
- 格式:docx
- 大小:37.59 KB
- 文档页数:5
1 遗传算法步骤1 根据具体问题选择编码方式,随机产生初始种群,个体数目一定,每个个体表现为染色体的基因编码2 选择合适的适应度函数,计算并评价群体中各个体的适应。
3 选择(selection)。
根据各个个体的适应度,按照一定的规则或方法,从当前群体中选择出一些优良的个体遗传到下一代群体4 交叉(crossover)。
将选择过后的群体内的各个个体随机搭配成对,对每一对个体,以一定概率(交叉概率)交换它们中的部分基因。
5 变异(mutation)。
对交叉过后的群体中的每一个个体,以某个概率(称为变异概率)改n 变某一个或某一些基因位上的基因值为其他的等位基因6 终止条件判断。
若满足终止条件,则以进化过程中得到的具有最大适应度的个体作为最优解输出,终止运算。
否则,迭代执行Step2 至Step5。
适应度是评价群体中染色体个体好坏的标准,是算法进化的驱动力,是自然选择的唯一依据,改变种群结构的操作皆通过适应度函数来控制。
在遗传算法中,以个体适应度的大小来确定该个体被遗传到下一代群体中的概率。
个体的适应度越大,被遗传到下一代的概率就越大,相反,被遗传到下一代的概率就越小。
1 [a,b,c]=gaopt(bound,fun)其中,bound=[xm,xM]为求解区间上届和下届构成的矩阵。
Fun 为用户编写的函数。
a为搜索的结果向量,由搜索的出的最优x向量与目标函数构成,b为最终搜索种群,c为中间搜索过程变参数,其第一列为代数,后边列分别为该代最好的的个体与目标函数的值,可以认为寻优的中间结果。
2 ga函数。
[X,F, FLAG,OUTPUT] = GA(fun, n,opts).n为自变量个数,opts为遗传算法控制选项,用gaoptimset()函数设置各种选项,InitialPopulation可以设置初始种群,用PopulationSize 可以设置种群规模,SelectionFcn可以定义选择函数,3 gatool 函数用于打开,GATOOL is now included in OPTIMTOOL。
硕士生考查课程考试试卷考试科目:考生姓名:考生学号:学院:专业:考生成绩:任课老师(签名)考试日期:年月日午时至时《MATLAB 教程》试题:A 、利用MATLAB 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。
要求设计遗传算法对该问题求解。
ae h kB 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。
C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河?D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。
以上四题任选一题进行实验,并写出实验报告。
选择题目:B 、设计遗传算法求解f (x)极小值,具体表达式如下:321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =⎧=⎪⎨⎪-≤≤=⎩∑ 要求必须使用m 函数方式设计程序。
一、问题分析(10分)这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。
实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。
在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。
二、实验原理与数学模型(20分)(1)试验原理:用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。
其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。
每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。
用MATLAB实现遗传算法程序一、本文概述遗传算法(Genetic Algorithms,GA)是一种模拟自然界生物进化过程的优化搜索算法,它通过模拟自然选择和遗传学机制,如选择、交叉、变异等,来寻找问题的最优解。
由于其全局搜索能力强、鲁棒性好以及易于实现并行化等优点,遗传算法在多个领域得到了广泛的应用,包括函数优化、机器学习、神经网络训练、组合优化等。
本文旨在介绍如何使用MATLAB实现遗传算法程序。
MATLAB作为一种强大的数学计算和编程工具,具有直观易用的图形界面和丰富的函数库,非常适合用于遗传算法的实现。
我们将从基本的遗传算法原理出发,逐步介绍如何在MATLAB中编写遗传算法程序,包括如何定义问题、编码、初始化种群、选择操作、交叉操作和变异操作等。
通过本文的学习,读者将能够掌握遗传算法的基本原理和MATLAB编程技巧,学会如何使用MATLAB实现遗传算法程序,并能够在实际问题中应用遗传算法求解最优解。
二、遗传算法基础遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传学机制的优化搜索算法。
它借鉴了生物进化中的遗传、交叉、变异等机制,通过模拟这些自然过程来寻找问题的最优解。
遗传算法的核心思想是将问题的解表示为“染色体”,即一组编码,然后通过模拟自然选择、交叉和变异等过程,逐步迭代搜索出最优解。
在遗传算法中,通常将问题的解表示为一个二进制字符串,每个字符串代表一个个体(Individual)。
每个个体都有一定的适应度(Fitness),适应度越高的个体在下一代中生存下来的概率越大。
通过选择(Selection)、交叉(Crossover)和变异(Mutation)等操作,生成新一代的个体,并重复这一过程,直到找到满足条件的最优解或达到预定的迭代次数。
选择操作是根据个体的适应度,选择出适应度较高的个体作为父母,参与下一代的生成。
常见的选择算法有轮盘赌选择(Roulette Wheel Selection)、锦标赛选择(Tournament Selection)等。
遗传算法求函数最小值遗传算法是一种模拟自然界中生物进化过程的计算方法,其基本原理是模拟类比生物的自然选择、交叉和变异过程,以达到求解非线性优化问题的目的。
在本文中,我们将介绍如何使用遗传算法来求解一个简单但典型的非线性函数优化问题。
该函数是 Rosenbrock 函数,它是一个多峰函数,一般用来测试其他优化算法的性能。
Rosenbrock 函数的公式如下:$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$该函数有一个明显的最小值点 $(1, 1)$,函数值为 0。
我们的目标是使用遗传算法来找到这个最小值点。
以下是遗传算法的基本流程:1. 初始化种群:随机生成一组初始解。
2. 评估适应度:计算种群中每个解的适应度,即 Rosenbrock 函数的值。
适应度越高,表示该解越接近最小值点。
3. 选择育种个体:采用轮盘赌算法从种群中选择一些个体,用于后续的交叉和变异。
4. 交叉:对选择出来的个体进行交叉操作,生成一定数量的新个体。
交叉操作的目的是将两个个体的优良特征互相交换,以产生更好的后代。
5. 变异:对上一步生成的新个体进行变异操作,产生进一步的多样性和探索性。
6. 评估适应度:对新生成的个体进行适应度评估,即 Rosenbrock 函数的值。
7. 替换:选择一部分新生成的个体,替代原来种群中适应度低的个体。
8. 检查停止条件:判断是否满足停止条件,如果是,则输出最优解;否则回到第 3 步。
根据以上基本流程,我们可以逐步开发程序实现。
首先,我们定义一个 Rosenbrock 函数的计算函数:```pythondef rosenbrock(x, y):return (1 - x)**2 + 100*(y - x**2)**2```然后,我们随机生成一组初始解,使用 numpy 库生成随机数,x、y 取值范围在 [-3,3]:```pythonimport numpy as npPOPULATION_SIZE = 100 # 种群大小BOUND_LOW, BOUND_HIGH = -3.0, 3.0 # 取值范围populations = np.random.uniform(low=BOUND_LOW, high=BOUND_HIGH,size=(POPULATION_SIZE, 2))```fitness = [rosenbrock(x, y) for x, y in populations]df = pd.DataFrame({'x': populations[:, 0], 'y': populations[:, 1],'fitness': fitness})```然后,我们编写轮盘赌算法选择育种个体的代码。
下面是一个使用MATLAB实现的基本遗传算法算例。
本例用于解决简单的优化问题:寻找函数f(x) = x^2在[-10,10]范围内的最小值。
```matlab定义问题参数PopSize = 100; 种群数量Genes = -10:0.1:10; 基因范围FitnessFunc = @(x) -x.^2; 适应度函数(这里为了方便,使用了-x^2,即求最大值,实际应用中应改为-f(x))MaxGen = 50; 最大迭代次数初始化种群Pop = zeros(PopSize, length(Genes));for i = 1:PopSizePop(i,:) = rand(1,length(Genes))*2*Genes - Genes; 随机产生初始种群end开始迭代for gen = 1:MaxGen计算当前种群适应度Fitness = FitnessFunc(Pop);[BestFit, Index] = max(Fitness); 找到最佳适应度BestFitPos = Pop(Index,:); 找到最佳适应度对应的基因选择(轮盘赌选择)NewPop = zeros(PopSize, length(Genes));SumFitness = sum(Fitness);RandomFitness = rand(PopSize,1)*SumFitness; 随机生成每个个体的"随机适应度"for i = 1:PopSize[~, Index] = min(RandomFitness); 用随机适应度进行选择(越小被选中概率越大)NewPop(i,:) = Pop(Index,:); 将选择出的个体放入新种群RandomFitness(Index) = SumFitness; 将已选择的个体的随机适应度设为最大值,避免重复选择end交叉(杂交)for i = 1:PopSize/2随机选择两个父代个体Parent1 = NewPop(randi([1 PopSize]),:);Parent2 = NewPop(randi([1 PopSize]),:);生成新个体Child1 = (Parent1 + Parent2)/2; 中间值交叉Child2 = Parent1 + (Parent2 - Parent1)*rand; 一点交叉将新个体加入新种群NewPop((i-1)*2+1,:) = Child1;NewPop((i-1)*2+2,:) = Child2;end变异for i = 1:PopSizeif rand < 0.01 变异概率为0.01随机选择一个基因进行变异(取反)GeneIdx = randi(length(Genes));NewPop(i,GeneIdx) = ~NewPop(i,GeneIdx);endend更新种群Pop = NewPop;end输出结果BestFit = FitnessFunc(BestFitPos);fprintf('Best fitness: f\n', BestFit);fprintf('Best position: s\n', num2str(BestFitPos));```这个例子比较简单,只用了基本的遗传算法操作:选择、交叉和变异。
matlab遗传算法计算函数区间最大值和最小值下面是用matlab实现遗传算法计算函数区间最大值和最小值的示例代码:首先定义函数(此处以f(x)=x*sin(10*pi*x)+1为例):matlabfunction y = myfun(x)y = x*sin(10*pi*x)+1;end然后设置遗传算法参数:matlaboptions = gaoptimset('Generations', 1000, 'PopulationSize', 50,'StallGenLimit', 200, 'TolCon', 1e-10);其中,Generations表示遗传算法的迭代次数,PopulationSize表示种群大小,StallGenLimit表示在连续多少代没有改变时停止迭代,TolCon表示收敛精度。
接着,编写遗传算法主函数:matlab[x, fval] = ga(@myfun, 1, [], [], [], [], -1, 2, [], [], options);其中,第一个参数为要优化的函数,第二个参数为变量维度,后面的参数为变量的取值范围。
最后,输出结果:matlabfprintf('Function maximum is %f\n',-fval);fprintf('Function minimum is %f\n',fval);其中,-fval表示函数最大值,fval表示函数最小值。
完整代码如下:matlabfunction y = myfun(x)y = x*sin(10*pi*x)+1;endoptions = gaoptimset('Generations', 1000, 'PopulationSize', 50, 'StallGenLimit', 200, 'TolCon', 1e-10);[x, fval] = ga(@myfun, 1, [], [], [], [], -1, 2, [], [], options);fprintf('Function maximum is %f\n',-fval);fprintf('Function minimum is %f\n',fval);参考资料:[1][2]。
一、实验目的和意义用遗传算法解决下面函数的极小值问题:遗传算法的具体实施策略不限,最好用MATLAB,上交内容包括源程序和运行结果二、实验原理目标函数是一个含有30维变量的复杂型超越函数,决定使用MA TLAB下的遗传函数工具箱来寻找函数最小值。
三、详细设计步骤1、函数编辑在m文件下编辑目标函数:function y =fun(x);y = zeros(size(x,1),1); %产生一个列向量,(种群数)*1,作为预留解空间[xSize, Dim] = size(x); %xSize:种群数; Dim:变量x的维数indices = repmat(1:Dim, xSize, 1); %生成函数中i的空间矩阵,(种群数)*(变量维数)y = sum(((x.^2) / 4000)')' - prod(cos(x ./sqrt(indices))')' + 1; %函数表达式,此处均采用矩阵点乘的形式2、遗传算法参数设置通过gatool(遗传算法工具箱)设置参数,运行程序,选择合适参数。
Number of variables(变量维数):30Population size:100Initial range:[-600;600]Selection function (选择函数): tournament(锦标赛); tournament size:2Mutation function (变异函数): Uniform(); Rate:0.05Crossover function: Intermediate; Ratio: 0.05Generrations: 5000; Stall generations: Inf; Stall time limite: InfFitness function is vectorized: on其余均为工具箱默认参数。
3、运行程序将设置好参数的算法程序运行30次运行,最佳运行结果为:3.4937e-010x1~x30取值:1.0e-004 *-0.0097 0.0017 0.0587 -0.0250 0.0765 0.0391 -0.0824 0.0653-0.0539 -0.3470 -0.1078 0.4388 0.0223 0.0363 0.0003 0.0228-0.0481 -0.4491 -0.5006 -0.2514 0.0608 -0.1022 0.3454 0.11460.0768 -0.0203 0.0910 -0.0571 0.0065 -0.13844、保存遗传算法程序将在工具箱中编辑好的算法导出为m函数并保存:function [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = untitled%% This is an auto generated M file to do optimization with the Genetic Algorithm and % Direct Search Toolbox. Use GAOPTIMSET for default GA options structure.%%Fitness functionfitnessFunction = @fun;%%Number of Variablesnvars = 30;%Start with default optionsoptions = gaoptimset;%%Modify some parametersoptions = gaoptimset(options,'PopInitRange' ,[-600 ; 600 ]);options = gaoptimset(options,'PopulationSize' ,100);options = gaoptimset(options,'Generations' ,5000);options = gaoptimset(options,'StallGenLimit' ,Inf);options = gaoptimset(options,'StallTimeLimit' ,Inf);options = gaoptimset(options,'PlotInterval' ,30);options = gaoptimset(options,'SelectionFcn' ,{ @selectiontournament 2 });options = gaoptimset(options,'CrossoverFcn' ,{ @crossoverintermediate 0.05 });options = gaoptimset(options,'MutationFcn' ,{ @mutationuniform 0.05 });options = gaoptimset(options,'Display' ,'off');options = gaoptimset(options,'PlotFcns' ,{ @gaplotbestf });options = gaoptimset(options,'Vectorized' ,'on');%%Run GA[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = ga(fitnessFunction,nvars,options);以上结果亦可在m文件中直接运行获得。
用GA找到函数最小值x = ga(fitnessfcn,nvars)局部无约束最小值,x是目标函数的适应度函数,nvars是适应度函数的尺寸(设计变量的数量)。
目标函数和适应度函数接受了1×N大小的x矢量,在x返回一个标量的计算值。
x = ga(fitnessfcn,nvars,A,b)在线性不等式约束下,适应度函数的局部最小值。
如果这个问题有m个线性不等式和n个变量,则A是m×n矩阵,b是m×1矩阵。
注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。
x = ga(fitnessfcn,nvars,A,b,Aeq,beq)存在线性等式约束下,适应度函数的局部最小值。
如果没有不等式存在,设置A=[] 和 b=[]。
如果问题存在r个线性等式约束和n个变量,那么Aeq 是r ×n矩阵的大小,beq是r大小的矢量。
注意:当人口类型选项设置为“位串”或者“自定义”,线性约束不满足。
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB)定义了一系列设计变量x的最小和最大边界。
以至于在范围内找到一个解。
如果没有边界存在,LB 和 UB设置为空矩阵。
如果x(i)无下界,设置LB(i) = -Inf;如果x(i)无上界,设置UB(i) = Inf。
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)服从在非线性约束条件下的最小值,非线性函数接收x,返回C和Ceq向量,分别代表非线性的不等式和等式。
GA最小化适应度函数,在C(x)≤0和Ceq(x)=0的条件下。
如果无边界存在,设置 LB=[] 和 UB=[]。
注意:当人口类型选项设置为“位串”或者“自定义”,非线性约束不满足。
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)用在结构选项中的值代替默认的优化参数来进行最小化,它也可以用gaoptimset函数来创建,具体参考gaoptimset的用法。
遗传算法求函数最⼩值利⽤遗传算法寻找函数f(x)=sin(10πx)/x x=[1,2]解题思路将⾃变量在给定范围进⾏编码,得到种群编码,按照所选择的适应度函数并通过遗传算法中的选择,交叉和变异对个体进⾏筛选和进化,使适应度值⼤的个体被保留,⼩的个体被淘汰,新的种群继承上⼀代的信息,⼜优于下⼀代,这样反复循环,最后得出最终结果注:程序参考<<MATLAB智能智能算法30个案例>>, 依照matlab程序,⽤python进⾏了重写# -*- coding: utf-8 -*-import matplotlib.pyplot as pltimport numpy as npfrom pylab import *import randomimport mathmpl.rcParams['font.sans-serif'] = ['SimHei']mpl.rcParams['axes.unicode_minus'] = False#定义遗传算法参数pop_size=40generation=20length=30pc=0.65pm=0.01#编码def genEncoding(pop_size,length):pop=[[]]for i in range(pop_size):temp=[]for j in range(length):temp.append(random.randint(0,1))pop.append(temp)return pop[1:]#解码def genDecoding(pop,length):temp=[]for i in range(len(pop)):t=0for j in range(length):t+=pop[i][j]*math.pow(2,j)temp.append(t)return temp#计算⽬标值def calobjValue(pop,length,lb,ub):temp1=[]obj_value=[]x_value=[]temp1=genDecoding(pop,length)for i in range(len(temp1)):x=lb+(ub-lb)*temp1[i]/((math.pow(2,length))-1)x_value.append(x)obj_value.append(np.sin(10*pi*x)/x)return obj_value#计算适应度def fitness(pop,length,lb,ub):obj_value=[]fitness_value=[]obj_value=calobjValue(pop,length,lb,ub)for i in range(len(obj_value)):fitness_value.append(obj_value[i]-1)fitness_value=list(map(abs,fitness_value))return fitness_value#累积适应度def cumsum(newfitness_value):accumulation_value=[]t=0for i in range(len(newfitness_value)):t+=newfitness_value[i]accumulation_value.append(t)return accumulation_value#选择函数def selection(pop,fitness_value):newfitness_value=[]accumulation_value=[]total_fit=np.sum(fitness_value)for i in range(len(fitness_value)):newfitness_value.append(fitness_value[i]/total_fit) accumulation_value=cumsum(newfitness_value)ms=[]for i in range(len(pop)):ms.append(random.random())newin=0newpop=[]for i in range(len(ms)):j=0for j in range(len(accumulation_value)):if ms[i]<accumulation_value[j]:t=pop[j]newpop.append(t)breakreturn newpop#交叉函数def crossover(pop,fitness_value,pc):newpop=[]newpop=selection(pop,fitness_value)for i in range(len(newpop)-1):if random.random()<pc:temp1=[]temp2=[]temp1=newpop[i][3:15]temp2=newpop[i+1][3:15]newpop[i][3:15]=temp2newpop[i+1][3:15]=temp1return newpopdef mutation(pop,fitness_value,pc,pm,length):newpop=[]newpop=crossover(pop,fitness_value,pc)for i in range(len(newpop)):if random.random()<pm:m1=random.randint(0,length-1)m2=random.randint(0,length-1)m3=random.randint(0,length-1)if newpop[i][m1]==1:newpop[i][m1]=0else:newpop[i][m1]=1if newpop[i][m2]==1:newpop[i][m2]=0else:newpop[i][m2]=1if newpop[i][m3]==1:newpop[i][m3]=0else:newpop[i][m3]=1i=0return newpopif __name__ =='__main__':#画出函数图plt.figure(1)lb=1ub=2x=np.arange(lb,ub,0.01)y=sin(10*pi*x)/xplt.plot(x,y)plt.xlabel("⾃变量x")plt.ylabel("⾃变量y")plt.title('sin(10*pi*x)/x')pop=genEncoding(pop_size,length)obj_value=calobjValue(pop,length,lb,ub)fitness_value=fitness(pop,length,lb,ub)gen=0x_value=[]best_x=[]best_individual=[]Generation=[]while gen<generation:newpop=mutation(pop,fitness_value,pc,pm,length) temp=genDecoding(newpop,length)for i in range(len(temp)):x=lb+(ub-lb)*temp[i]/((math.pow(2,length))-1)x_value.append(x)obj_value=calobjValue(newpop,length,lb,ub)k=0j=0for i in range(len(obj_value)):if k>obj_value[i]:k=obj_value[i]j=ibest_individual.append(k)best_x.append(x_value[j])fitness_value=fitness(newpop,length,lb,ub)Generation.append(gen)gen=gen+1k=0j=0for i in range(len(best_individual)):if k>best_individual[i]:k=best_individual[i]j=iprint(best_individual[j])print(best_x[j])best_individual.sort(reverse=True)plt.figure(2)plt.plot(Generation,best_individual)plt.xlabel("遗传代数")plt.ylabel("解的变化") plt.title("进化过程") plt.show()。
遗传算法matlab程序代码遗传算法是一种优化算法,用于在给定的搜索空间中寻找最优解。
在Matlab中,可以通过以下代码编写一个基本的遗传算法:% 初始种群大小Npop = 100;% 搜索空间维度ndim = 2;% 最大迭代次数imax = 100;% 初始化种群pop = rand(Npop, ndim);% 最小化目标函数fun = @(x) sum(x.^2);for i = 1:imax% 计算适应度函数fit = 1./fun(pop);% 选择操作[fitSort, fitIndex] = sort(fit, 'descend');pop = pop(fitIndex(1:Npop), :);% 染色体交叉操作popNew = zeros(Npop, ndim);for j = 1:Npopparent1Index = randi([1, Npop]);parent2Index = randi([1, Npop]);parent1 = pop(parent1Index, :);parent2 = pop(parent2Index, :);crossIndex = randi([1, ndim-1]);popNew(j,:) = [parent1(1:crossIndex),parent2(crossIndex+1:end)];end% 染色体突变操作for j = 1:NpopmutIndex = randi([1, ndim]);mutScale = randn();popNew(j, mutIndex) = popNew(j, mutIndex) + mutScale;end% 更新种群pop = [pop; popNew];end% 返回最优解[resultFit, resultIndex] = max(fit);result = pop(resultIndex, :);以上代码实现了一个简单的遗传算法,用于最小化目标函数x1^2 + x2^2。
遗传算法是一种模拟自然选择与遗传机制的优化算法,它模拟了生物进化的过程,通过优化个体的基因型来达到解决问题的目的。
在工程和科学领域,遗传算法被广泛应用于求解优化问题、寻找最优解、参数优化等领域。
而MATLAB作为一款强大的科学计算软件,拥有丰富的工具箱和编程接口,为实现遗传算法提供了便利。
下面将通过以下步骤介绍如何在MATLAB中实现遗传算法:1. 引入遗传算法工具箱需要在MATLAB环境中引入遗传算法工具箱。
在MATLAB命令窗口输入"ver",可以查看当前已安装的工具箱。
如果遗传算法工具箱未安装,可以使用MATLAB提供的工具箱管理界面进行安装。
2. 定义优化问题在实现遗传算法前,需要清楚地定义优化问题:包括问题的目标函数、约束条件等。
在MATLAB中,可以通过定义一个函数来表示目标函数,并且可以采用匿名函数的形式来灵活定义。
对于约束条件,也需要进行明确定义,以便在遗传算法中进行约束处理。
3. 设置遗传算法参数在实现遗传算法时,需要对遗传算法的参数进行设置,包括种群大小、交叉概率、变异概率、迭代次数等。
这些参数的设置将会直接影响遗传算法的收敛速度和优化效果。
在MATLAB中,可以通过设置遗传算法工具箱中的相关函数来完成参数的设置。
4. 编写遗传算法主程序编写遗传算法的主程序,主要包括对适应度函数的计算、选择、交叉、变异等操作。
在MATLAB中,可以利用遗传算法工具箱提供的相关函数来实现这些操作,简化了遗传算法的实现过程。
5. 运行遗传算法将编写好的遗传算法主程序在MATLAB环境中运行,并观察优化结果。
在运行过程中,可以对结果进行实时监测和分析,以便对遗传算法的参数进行调整和优化。
通过以上步骤,可以在MATLAB中实现遗传算法,并应用于实际的优化问题与工程应用中。
遗传算法的实现将大大提高问题的求解效率与精度,为工程领域带来更多的便利与可能性。
总结:遗传算法在MATLAB中的实现涉及到了引入遗传算法工具箱、定义优化问题、设置算法参数、编写主程序和运行算法等步骤。
工程最优化即最大(小)问题关于工程最优化的求解,之前已有基因遗传算法、蚁群算法、凸优化。
今天来介绍一种方法,是基于matlab 自带函数fminunc 、fmaxunc 来计算的,它的计算方式更加简洁高效,只需解一个目标函数。
一、无约束(无条件)的最优化使用fminunc 函数 (un-condition)1) 可用于任意函数求最小值问题( 即只能求最小值 )。
如求最大值:()()1ˆˆarg max H u w w w w -=d R d (1)取反,则等效为求最小值:()()()1ˆˆarg min H u w w w w -=-d R d (2)这个过程不影响自变量w.2) 代码格式x = fminunc(@func, x0);[x,fval] = fminunc(@func, x0);[x,fval,exitflag] = fminunc(@func, x0);必须预先把函数存入到一个程序中 ,(所编的程序一定是只有个参数,则 当为多元函数时,则x(1),x(2), x(3) … 分别代表每个自变)。
其中:fval 为函数的最小值;x0为自变量初始向量,一般不影响结果;exitflag 为退出标志,当它大于0时表示函数收敛于x,当它 0x 100exitflag > 0exitflag >⎧⎪⇒=⎨⎪<⎩,函数收敛于,一般等于,函数不收敛,函数不收敛 (所以解完题后还必须判断的值是否 ,以决定结果的正误/有效性)最好返回三个结果 (3) 函数存在最值的条件:在闭区间连续,存在导数等(说明有很多函数不存在最值:有大、有小、有大小、都无)*^exitflag -- 可以是任意函数、任意n 元函数求最小值最后一定要看看的值(判断结果是否有效 所以结果最好返回三个结果函数可以用内联函数inline('expression')(程序中的...可要可不要,一般还是不要吧)二、f minbnd(‘@func’, x1, xn) 求函数在区间[x1, xn]的最小值三、有约束条件的最优化问题使用fmincon 函数 (condition)1) 可用于任意函数求最小值问题( 即只能求最小值 )。
Matlab实现遗传算法的⽰例详解⽬录1算法讲解1.1何为遗传算法1.2遗传算法流程描述1.3关于为什么要⽤⼆进制码表⽰个体信息1.4⽬标函数值与适应值区别1.5关于如何将⼆进制码转化为变量数值1.6关于代码改进2MATLAB⾃带ga函数2.1问题描述2.2⾃带函数使⽤3⾃编遗传算法各部分代码及使⽤3.1代码使⽤3.2Genetic1--主函数3.3PI(PopulationInitialize)--产⽣初始种群3.4Fitness--计算⽬标函数值3.5FitnessF--计算适应值3.6Translate--将⼆进制码转换3.7Probability--染⾊体⼊选概率3.8Select--个体选择3.9Crossing--交叉互换3.10Mutation--基因突变3.11Elitist--最优个体记录与最劣个体淘汰3.12完整代码这篇⽂章⽤了⼤量篇幅讲解了如何从零开始⾃⼰写⼀个遗传算法函数,主要是为了应对学⽣作业等情况,或者让⼤家对遗传算法有更充分的理解,如果要⽤于学术研究,最好还是使⽤⾃带遗传算法,之后可能会推出更多⾃带遗传算法⼯具箱的使⽤。
1 算法讲解1.1 何为遗传算法遗传、突变、⾃然选择、杂交,遗传算法是⼀种借鉴了进化⽣物学各类现象的进化算法。
看到⼀个很形象的⽐喻来描述各类进化算法的区别:爬⼭算法:⼀只袋⿏朝着⽐现在⾼的地⽅跳去。
它找到了不远处的最⾼的⼭峰。
但是这座⼭不⼀定是最⾼峰。
这就是爬⼭算法,它不能保证局部最优值就是全局最优值。
模拟退⽕:袋⿏喝醉了。
它随机地跳了很长时间。
这期间,它可能⾛向⾼处,也可能踏⼊平地。
但是,它渐渐清醒了并朝最⾼峰跳去。
这就是模拟退⽕算法。
遗传算法:有很多袋⿏,它们降落到喜玛拉雅⼭脉的任意地⽅。
这些袋⿏并不知道它们的任务是寻找珠穆朗玛峰。
但每过⼏年,就在⼀些海拔⾼度较低的地⽅射杀⼀些袋⿏。
于是,不断有袋⿏死于海拔较低的地⽅,⽽越是在海拔⾼的袋⿏越是能活得更久,也越有机会⽣⼉育⼥。
曲靖师范学院学生毕业论文(设计)题目:基于Matlab的遗传算法程序设计及优化问题求解院(系):数学与信息科学学院专业:信息与计算科学班级:20051121班学号:2005112104论文作者:沈秀娟指导教师:刘俊指导教师职称:教授2009年 5月基于Matlab的遗传算法程序设计及优化问题求解摘要遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用. 本文介绍了遗传算法的发展、原理、特点、应用和改进方法,以及基本操作和求解步骤,再基于Matlab编写程序实现遗传算法并求解函数的优化问题. 程序设计过程表明,用Matlab语言进行优化计算,具有编程语句简单,用法灵活,编程效率高等优点. 经仿真验证,该算法是正确可行的.关键词:遗传算法;Matlab;优化Matlab-based genetic algorithm design and optimization of procedures forproblem solvingAbstract:As a new optimizated method,genetic algorithm is widely used in co mputational science,pattern recognition,intelligent fault diagnosisandsoon. It is suitable to solve complex non-linear and multi-dimensionaloptimizatio n problem.And it has been more widely used in recentyears.This paper descri bes the development of genetic algorithms,principle,features,application an d improvement of methods.At the same time,it in-troduces basic operation and solution steps.And then,it achievesgeneticalgorithm on the matlab programmi ng andsolves the function optimization problem.The program design process sh ows that this optimization calculation has advantages of simple programming language,flexible usage and high efficiency in Matlab language.The algorith m iscorrect and feasible by simulated authentication.Keywords: Genetic algorithm; Matlab;Optimization目录1 引言 (1)2 文献综述 (1)2.1国内外研究现状及评价 (1)2.2提出问题 (2)3 遗传算法的理论研究 (2)3.1遗传算法的产生背景 (2)3.2遗传算法的起源与发展 (3)3.2.1 遗传算法的起源 (3)3.2.2 遗传算法的发展 (3)3.3遗传算法的数学基础研究 (4)3.4遗传算法的组成要素 (6)3.5遗传算法的基本原理 (7)3.6遗传算法在实际应用时采取的一般步骤 (8)3.7遗传算法的基本流程描述 (9)3.8遗传算法的特点 (10)3.9遗传算法的改进 (11)3.10遗传算法的应用领域 (12)4 基于MATLAB的遗传算法实现 (14)5 遗传算法的函数优化的应用举例 (17)6 结论 (18)6.1主要发现 (18)6.2启示 (18)6.3局限性 (19)6.4努力的方向 (19)参考文献 (20)致谢 (21)附录 (22)1引言遗传算法(Genetic Algorithm)是模拟自然界生物进化机制的一种算法即遵循适者生存、优胜劣汰的法则也就是寻优过程中有用的保留无用的则去除. 在科学和生产实践中表现为在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法即找出一个最优解. 这种算法是1960年由Holland提出来的其最初的目的是研究自然系统的自适应行为并设计具有自适应功能的软件系统. 它的特点是对参数进行编码运算不需要有关体系的任何先验知识沿多种路线进行平行搜索不会落入局部较优的陷阱,能在许多局部较优中找到全局最优点是一种全局最优化方法[1-3]. 近年来,遗传算法已经在国际上许多领域得到了应用. 该文将从遗传算法的理论和技术两方面概述目前的研究现状描述遗传算法的主要特点、基本原理以及改进算法,介绍遗传算法的应用领域,并用MATLAB 实现了遗传算法及最优解的求解.2文献综述2.1国内外研究现状及评价国内外有不少的专家和学者对遗传算法的进行研究与改进. 比如:1991年D.WHITEY 在他的论文中提出了基于领域交叉的交叉算子(ADJACENCY BASED CROSSOVER),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证. 2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题. 国内外很多文献都对遗传算法进行了研究. 现查阅到的国内参考文献[1-19]中, 周勇、周明分别在文献[1]、[2]中介绍了遗传算法的基本原理;徐宗本在文献[3]中探讨了包括遗传算法在内的解全局优化问题的各类算法,文本次论文写作提出了明确的思路;张文修、王小平、张铃分别在文献[4]、[5]、[6]从遗传算法的理论和技术两方面概述目前的研究现状;李敏强、吉根林、玄光南分别在文献[7]、[8]、[9]中都不同程度的介绍了遗传算法的特点以及改进算法但未进行深入研究;马玉明、张丽萍、戴晓辉、柴天佑分别在文献[10]、[11]、[12]、[13]中探讨了遗传算法产生的背景、起源和发展;李敏强、徐小龙、林丹、张文修分别在文献[14]、[15]、[16]、[17]探讨了遗传算法的发展现状及以后的发展动向;李敏强,寇纪凇,林丹,李书全在文献[18]中主要论述了遗传算法的具体的实施步1骤、应用领域及特点;孙祥,徐流美在文献[19]中主要介绍了Matlab的编程语句及基本用法.所有的参考文献都从不同角度不同程度的介绍了遗传算法但都不够系统化不够详细和深入.2.2提出问题随着研究的深入,人们逐渐认识到在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 很多人构造出了各种各样的复杂形式的测试函数,有连续函数,有离散函数,有凸函数,也有凹函数,人们用这些几何特性各异的函数来评价遗传算法的性能. 而对于一些非线性、多模型、多目标的函数优化问题用其他优化方法较难求解遗传算法却可以方便地得到较好的结果. 鉴于遗传算法在函数优化方面的重要性,该文在参考文献[1-19]的基础上,用Matlab语言编写了遗传算法程序, 并通过了调试用一个实际例子来对问题进行了验证,这对在Matlab环境下用遗传算法来解决优化问题有一定的意义.3遗传算法的理论研究3.1遗传算法的产生背景科学研究、工程实际与国民经济发展中的众多问题可归结作“极大化效益、极小化代价”这类典型模型. 求解这类模型导致寻求某个目标函数(有解析表达式或无解析表达式)在特定区域上的最优解. 而为解决最优化问题目标函数和约束条件种类繁多,有的是线性的,有的是非线性的;有的是连续的,有的是离散的;有的是单峰值的,有的是多峰值的. 随着研究的深入,人们逐渐认识到:在很多复杂情况下要想完全精确地求出其最优解既不可能,也不现实,因而求出近似最优解或满意解是人们的主要着眼点之一. 总的来说,求最优解或近似最优解的方法有三种: 枚举法、启发式算法和搜索算法.(1)枚举法. 枚举出可行解集合内的所有可行解以求出精确最优解. 对于连续函数,该方法要求先对其进行离散化处理,这样就有可能产生离散误差而永远达不到最优解. 另外,当枚举空间比较大时该方法的求解效率比较低,有时甚至在目前最先进的计算工具上都无法求解.(2)启发式算法. 寻求一种能产生可行解的启发式规则以找到一个最优解或近似最优解. 该方法的求解效率虽然比较高,但对每一个需要求解的问题都必须找出其特有的2启发式规则,这个启发式规则无通用性不适合于其它问题.(3)搜索算法. 寻求一种搜索算法,该算法在可行解集合的一个子集内进行搜索操作以找到问题的最优解或近似最优解. 该方法虽然保证了一定能够得到问题的最优解,但若适当地利用一些启发知识就可在近似解的质量和求解效率上达到一种较好的平衡.随着问题种类的不同以及问题规模的扩大,要寻求一种能以有限的代价来解决上述最优化问题的通用方法仍是一个难题. 而遗传算法却为我们解决这类问题提供了一个有效的途径和通用框架开创了一种新的全局优化搜索算法.3.2遗传算法的起源与发展3.2.1 遗传算法的起源50年代末到60年代初,自然界生物进化的理论被广泛接受生物学家Fraser,试图通过计算的方法来模拟生物界“遗传与选择”的进化过程,这是遗传算法的最早雏形. 受一些生物学家用计算机对生物系统进行模拟的启发,Holland开始应用模拟遗传算子研究适应性. 在1967年,Bagley关于自适应下棋程序的论文中,他应用遗传算法搜索下棋游戏评价函数的参数集并首次提出了遗传算法这一术语. 1975年,Holland出版了遗传算法历史上的经典著作《自然和人工系统中的适应性》,首次明确提出遗传算法的概念. 该著作中系统阐述了遗传算法的基本理论和方法,并提出了模式(schemat atheorem)[4],证明在遗传算子选择、交叉和变异的作用下具有低阶、短定义距以及平均适应度高于群体平均适应度的模式在子代中将以指数级增长. Holand创建的遗传算法,是基于二进制表达的概率搜索方法. 在种群中通过信息交换重新组合新串;根据评价条件概率选择适应性好的串进入下一代;经过多代进化种群最后稳定在适应性好的串上. Holand最初提出的遗传算法被认为是简单遗传算法的基础,也称为标准遗传算法.3.2.2 遗传算法的发展(1)20世纪60年代,John Holland教授和他的数位博士受到生物模拟技术的启发,认识到自然遗传可以转化为人工遗传算法. 1962年,John Holland提出了利用群体进化模拟适应性系统的思想,引进了群体、适应值、选择、变异、交叉等基本概念.(2)1967年,J.D.Bagely在其博士论文中首次提出了“遗传算法”的概念.(3)1975年,Holland出版了《自然与人工系统中的适应性行为》(Adaptation in Natural and Artificial System).该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础. 同年De Jong3在其博士论文中,首次把遗传算法应用于函数优化问题对遗传算法的机理与参数进行了较为系统地研究并建立了著名的五函数测试平台.(4)20世纪80年代初,Holland教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier System简称CS),开创了基于遗传算法的机器学习的新概念.(5)1989年,David Goldberg出版了《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search Optimization and Machine Learning).该书全面系统地总结了当时关于遗传算法的研究成果,结合大量的实例完整的论述了遗传算法的基本原理及应用,奠定了现代遗传算法的基础.(6)1992年,John R.Koza出版了专著《遗传编程》(Genetic Programming)提出了遗传编程的概念,并成功地把遗传编程的方法应用于人工智能、机器学习、符号处理等方面. 随着遗传算法的不断深入和发展,关于遗传算法的国际学术活动越来越多,遗传算法已成为一个多学科、多领域的重要研究方向.今天遗传算法的研究已经成为国际学术界跨学科的热门话题之一. 遗传算法是一种有广泛应用前景的算法,但是它的研究和应用在国内尚处于起步阶段. 近年来遗传算法已被成功地应用于工业、经济管理、交通运输、工业设计等不同领域解决了许多问题.例如可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等.3.3 遗传算法的数学基础研究模式定理及隐含并行性原理被看作遗传算法的两大基石,后来又提出了建筑块假设,但是模式定理无法解释遗传算法实际操作中的许多现象,隐性并行性的论证存在严重漏洞,而建筑块假设却从未得到过证明. 对遗传算法的基础理论的研究主要分三个方面:模式定理的拓广和深入、遗传算法的新模型、遗传算法的收敛性理论.(1)模式定理的拓广和深入. Holland给出模式定理:具有短的定义长度、低阶、并且模式采样的平均适应值在种群平均适应值以上的模式在遗传迭代过程中将按指数增长率被采样模式定理可表达为:m(H,t+1)≥m(H,t).()fHf.()⎪⎭⎫⎝⎛---PHOlP mHc.1.1δ(1)其中m(Ht):在t代群体中存在模式H 的串的个数.4()Hf:在t 代群体中包含模式H 的串的平均适应值. f:t代群体中所有串的平均适应值.l表示串的长度pc 表示交换概率pm表示变异概率.Holland的模式定理奠定了遗传算法的数学基础根据隐性并行性得出每一代处理有效模式的下限值是()l c n2113.其中n是种群的大小c1是小整数. Bertoui和Dorigo进行了深入的研究获得当2βln=,β为任意值时处理多少有效模式的表达式. 上海交通大学的恽为民等获得每次至少产生()21-no数量级的结果. 模式定理中模式适应度难以计算和分析A.D.Berthke首次提出应用Walsh函数进行遗传算法的模式处理并引入模式变换的概念采用Walsh函数的离散形式有效地计算出模式的平均适应度并对遗传算法进行了有效的分析. 1972年Frantz首先发现一种常使GA从全局最优解发散出去的问题,称为GA-欺骗题[5]. Goldberg最早运用Walsh模式转换设计出最小的GA-欺骗问题并进行了详细分析.(2)遗传算法的新模型. 由于遗传算法中的模式定理和隐性并行性存在不足之处,为了搞清楚遗传算法的机理,近几年来人们建立了各种形式的新模型最为典型的是马氏链模型遗传算法的马氏链模型[6-7],主要由三种分别是种群马氏链模型、Vose模型和Cerf 扰动马氏链模型. 种群马氏链模型将遗传算法的种群迭代序列视为一个有限状态马氏链来加以研究,运用种群马氏链模型转移概率矩阵的某些一般性质分析遗传算法的极限行为,但转移概率的具体形式难以表达妨碍了对遗传算法的有限时间行为的研究;Vose 模型是在无限种群假设下利用相对频率导出,表示种群的概率的向量的迭代方程,通过这一迭代方程的研究,可以讨论种群概率的不动点及其稳定性,从而导致对遗传算法的极限行为的刻画,但对解释有限种群遗传算法的行为的能力相对差一些. Cerf扰动模型是法国学者Cerf将遗传算法看成一种特殊形式的广义模拟退火模型,利用了动力系统的随机扰动理论,对遗传算法的极限行为及收敛速度进行了研究. 还有其它改进模型,例如张铃、张钹等人提出的理想浓度模型,它首先引入浓度和家族的概念,通过浓度计算建立理想浓度模型[8-10],其浓度变化的规律为:5c(Hi,t +1)=c(H,t).()()()t ftOHfi,(2)c(Hi,t+1)表示模式Hi在t时刻的浓度,并对其进行分析,得出结论:遗传算法本质上是一个具有定向制导的随机搜索技术,其定向制导原则是导向适应度高的模式为祖先的染色体“家族”方向.(3)遗传算法的收敛性理论. 对于遗传算法的马氏链分析本身就是建立遗传算法的收敛性理论[11-12], Eiben等用马尔可夫链证明了保留最优个体的遗传算法的概率性全局收敛,Rudolph用齐次有限马尔可夫链证明了具有复制、交换、突变操作的标准遗传算法收敛不到全局最优解,不适合于静态函数的优化问题,建议改变复制策略以达到全局收敛,Back和Muhlenbein研究了达到全局最优解的算法的时间复杂性问题,近几年,徐宗本等人建立起鞅序列模型,利用鞅序列收敛定理证明了遗传算法的收敛性.3.4遗传算法的组成要素遗传算法所涉及的五大要素:参数编码、初始群体的设定、适应度函数的设计、遗传操作的设计和控制参数的设定,其具体内容如下:(1)参数编码. 遗传算法中常用的编码方法是二进制编码,它将问题空间的参数用字符集{0,1}构成染色体位串,符合最小字符集原则,操作简单,便于用模式定理分析.(2)适应度函数的设计. 适应度函数是评价个体适应环境的能力,使选择操作的依据,是由目标函数变换而成. 对适应度函数唯一的要求是其结果为非负值. 适应度的尺度变换是对目标函数值域的某种映射变换,可克服未成熟收敛和随机漫游现象. 常用的适应度函数尺度变化方法主要有线性变换、幂函数变换和指数变换.[13](3)遗传操作的设计. 包括选择、交叉、变异.①选择(Selection). 选择是用来确定交叉个体,以及被选个体将产生多少个子代个体. 其主要思想是个体的复制概率正比于其适应值,但按比例选择不一定能达到好的效果. 选择操作从早期的轮盘赌选择发展到现在最佳个体保存法、排序选择法、联赛选择法、随机遍历抽样法、局部选择法、柔性分段复制、稳态复制、最优串复制、最优串保留等.②交叉(Crossover). 交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作,其作用是组合出新的个体,在串空间进行有效搜索,同时降低对有效模式的破坏概率. 各种交叉算子均包含两个基本内容:确定交叉点的位置和进行部分基因的6交换. 常用的交叉操作方法有单点交叉、双点交叉、一致交叉、均匀交叉、算术交叉、二维交叉、树结构交叉、部分匹配交叉、顺序交叉和周期交叉等等.③变异(Mutation). 变异是指将个体编码串中的某些基因值用其它基因值来替换,形成一个新的个体. 遗传算法中的变异运算是产生新个体的辅助方法,其目的是使遗传算法具有局部的随机搜索能力和保持群体的多样性. 变异算法包括确定变异点的位置和进行基因值替换. 常见的变异算子有基本位变异、均匀变异、高斯变异、二元变异、逆转变异、自适应变异等.(4) 控制参数设定. 遗传算法中需要确定一些参数取值,主要有串长l,群体大小n,交叉概率pc、变异概率pm等,对遗传算法性能影响很大. 目前对参数根据情况进行调整变化研究比较多,而一般确定的参数范围是:n=20~200,pc = 015 ~110,pm =0~0105.3.5遗传算法的基本原理在自然界,由于组成生物群体中各个体之间的差异,对所处环境有不同的适应和生存能力,遵照自然界生物进化的基本原则,适者生存、优胜劣汰,将要淘汰那些最差个体,通过交配将父本优秀的染色体和基因遗传给子代,通过染色体核基因的重新组合产生生命力更强的新的个体与由它们组成的新群体. 在特定的条件下,基因会发生突变,产生新基因和生命力更强的新个体;但突变是非遗传的,随着个体不断更新,群体不断朝着最优方向进化,遗传算法是真实模拟自然界生物进化机制进行寻优的. 在此算法中,被研究的体系的响应曲面看作为一个群体,相应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵和向量的参数相应于生物种组成染色体的基因,染色体用固定长度的二进制串表述,通过交换、突变等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究的不同的解,目标函数值较优的点被保留,目标函数值较差的点被淘汰.[14]由于遗传操作可以越过位垒,能跳出局部较优点,到达全局最优点.遗传算法是一种迭代算法,它在每一次迭代时都拥有一组解,这组解最初是随机生成的,在每次迭代时又有一组新的解由模拟进化和继承的遗传操作生成,每个解都有一目标函数给与评判,一次迭代成为一代. 经典的遗传算法结构图如下:图1 遗传算法的结构图3.6遗传算法在实际应用时采取的一般步骤(1)根据求解精度的要求,确定使用二进制的长度. 设值域的取值范围为[a i ,b i ],若要求精确到小数点后6位,则由(b i -a i )×106<2m i -1求得m i 的最小长度,进而可求出位于区间的任一数:x i =a i +decimal(1001...0012)×12--m i a b i i [15] (3)其中,i=1,2, ..., Popsize ;Popsize 为种群中染色体的个数;(2)利用随机数发生器产生种群;(3)对种群中每一染色体v i ,计算其对应适应度eval(v i ),i=1,2,… ,Popsize ;(4)计算种群适应度之和F :F=()v eval iPopsizei ∑=1(4) (5)计算每个染色体选择概率Pi :()F v eval p i i =(5) i=1,2, ... ,Popsize ;(6)计算每个染色体的累加概率qi:q i =∑=ijjp1(6)i=1, 2, ...,Popsize ;(7)产生一个位于[0,1]区间的随机数序列,其长度为N,如果其中任意一数r<q1,则选择第一个染色体,若qi1-<r<qi,则选择第i个染色体,i=1,2, ... Popsize,这样可以获得新一代种群;(8)对新一代种群进行交叉运算:设交叉概率为pc,首先产生一个位于区间[0,1]内的随机数序列,其长度为N,如果其中任意一数r<pc,则对应染色体被选中(如果选中奇数个,则可以去掉一个),然后在[1,m-1]区间中产生随机数,个数为选中的染色体数的一半,然后根据随机数在对应位置进行交换操作,从而构成新的染色体;(9)变异操作:设变异概率为pm,产生m×N个位于区间[0,1]上的随机数.如果某一随机数r<pm,则选中对应位变异,构成新的种群;(10)第一代计算完毕,返回③继续计算,直到达到满意的结果为止.3.7遗传算法的基本流程描述随机初始化种群p(0)={x1,x2,...,xn};t=0;计算p(0)中个体的适应值;while(不满足终止条件){ 根据个体的适应值及选择策略从p(t)中选择下一代生成的父体p(t);执行交叉,变异和再生成新的种群p(t+1) ;计算p(t+1)中个体的适应值;t=t+1;}伪代码为:BEGIN:I=0;Initialize P(I);Fitness P(I);While (not Terminate2Condition){I++;GA2Operation P(I);Fitness P(I);}END.3.8遗传算法的特点遗传算法不同于传统的搜索和优化方法. 主要区别在于:(1)自组织、自适应和自学习性(智能性). 应用遗传算法求解问题时,在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自行组织搜索. 由于基于自然的选择策略“适者生存、不适者被淘汰”,因而适应度大的个体具有较高的生存概率. 通常适应度大的个体具有更适应环境的基因结构,再通过基因重组和基因突变等遗传操作,就可能产生更适应环境的后代. 进化算法的这种自组织、自适应特征,使它同时具有能根据环境变化来自动发现环境的特性和规律的能力. 自然选择消除了算法设计过程中的一个最大障碍,即需要事先描述问题的全部特点,并要说明针对问题的不同特点算法应采取的措施.因此,利用遗传算法,我们可以解决那些复杂的非结构化问题.(2)遗传算法的本质并行性. 遗传算法按并行方式搜索一个种群数目的点,而不是单点. 它的并行性表现在两个方面,一是遗传算法是内在并行的( inherent paralleli sm),即遗传算法本身非常适合大规模并行. 最简单的并行方式是让几百甚至数千台计算机各自进行独立种群的演化计算,运行过程中甚至不进行任何通信(独立的种群之间若有少量的通信一般会带来更好的结果),等到运算结束时才通信比较,选取最佳个体.这种并行处理方式对并行系统结构没有什么限制和要求,可以说,遗传算法适合在目前所有的并行机或分布式系统上进行并行处理,而且对并行效率没有太大影响. 二是遗传算法的内含并行性. 由于遗传算法采用种群的方式组织搜索,因而可同时搜索解空间内的多个区域,并相互交流信息. 使用这种搜索方式,虽然每次只执行与种群规模N成比例的计算,但实质上已进行了大约O(N3)次有效搜索,这就使遗传算法能以较少的计算。
MATLAB中的遗传算法及其应用示例引言:遗传算法是一种基于自然进化规律的优化方法,适用于求解复杂的问题。
作为MATLAB的重要工具之一,遗传算法在各个领域的优化问题中被广泛应用。
本文将介绍MATLAB中的遗传算法的原理及其应用示例。
一、遗传算法的原理遗传算法(Genetic Algorithm, GA)是一种基于进化的搜索算法,源于对达尔文进化论的模拟。
它模拟了自然界中生物个体基因遗传和自然选择的过程,通过优胜劣汰和进化操作寻找问题的最优解。
遗传算法的基本步骤包括:初始化种群、适应度评估、选择、交叉、变异和进化终止准则。
在初始化阶段,种群中的个体由一组基因表示,基因可以是二进制、实数或其他形式。
适应度评估阶段根据问题的特定要求对每个个体进行评估。
选择操作通过适应度大小选择出较优的个体,形成下一代种群。
交叉操作模拟自然界中的基因交换过程,将不同个体的基因进行组合。
变异操作引入新的基因,增加种群的多样性。
经过多次迭代后,算法会逐渐收敛,并得到一个近似的最优解。
二、遗传算法的应用示例:函数优化遗传算法在函数优化问题中有广泛应用。
以一个简单的函数优化问题为例,假设我们要求解以下函数的最小值:f(x) = x^2 + 5sin(x)首先,我们需要定义适应度函数,即f(x)在给定范围内的取值。
接下来,我们需要设置参数,例如种群数量、交叉概率和变异概率等。
然后,我们可以利用MATLAB中的遗传算法工具箱,通过以下步骤实现函数的最小化求解:1. 初始化种群:随机生成一组个体,每个个体表示参数x的一个取值。
2. 适应度评估:计算每个个体在函数中的取值,得到适应度。
3. 选择:根据适应度大小选择优秀的个体。
4. 交叉:随机选择两个个体进行基因交叉。
5. 变异:对个体的基因进行变异操作,引入新的基因。
6. 迭代:重复步骤2至步骤5,直到达到迭代终止条件。
通过上述步骤,我们可以较快地找到给定函数的最小值。
在MATLAB中,我们可以使用遗传算法工具箱的相关函数来实现遗传算法的迭代过程,如'ga'函数。
matlab实用教程实验十遗传算法与优化问题matlab实用教程实验十遗传算法与优化问题一、问题背景与实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景与实验目的遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位.本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).(1)遗传算法中的生物遗传学概念由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下:序号遗传学概念遗传算法概念数学概念1个体要处理的基本对象、结构也就是可行解2群体个体的集合被选定的一组可行解3染色体个体的表现形式可行解的编码4基因染色体中的元素编码中的元素5基因位某一基因在染色体中的位置元素在编码中的位置6适应值个体对于环境的适应程度,或在环境压力下的生存能力可行解所对应的适应函数值7种群被选定的一组染色体或个体根据入选概率定出的一组可行解8选择从群体中选择优胜的个体,淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解9交叉一组染色体上对应基因段的交换根据交叉原则产生的一组新解10交叉概率染色体对应基因段交换的概率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.9011变异染色体水平上基因变化编码的某些元素被改变12变异概率染色体上基因变化的概率(可能性大小)开区间(0,1)内的一个值, 一般为0.001~0.0113进化、适者生存个体进行优胜劣汰的进化,一代又一代地优化目标函数取到最大值,最优的可行解(2)遗传算法的步骤遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.下面给出遗传算法的具体步骤,流程图参见图1:第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;第二步:定义适应函数,便于计算适应值;第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;第四步:随机产生初始化群体;第五步:计算群体中的个体或染色体解码后的适应值;第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.图1 一个遗传算法的具体步骤遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.2.遗传算法的实际应用例1:设,求.注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.在此将细化地给出遗传算法的整个过程.(1)编码和产生初始群体首先第一步要确定编码的策略,也就是说如何把到2这个区间内的数用计算机语言表示出来.编码就是表现型到基因型的映射,编码时要注意以下三个原则:完备性:问题空间中所有点(潜在解)都能成为GA编码空间中的点(染色体位串)的表现型;健全性:GA编码空间中的染色体位串必须对应问题空间中的某一潜在解;非冗余性:染色体和潜在解必须一一对应.这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为,则必须将闭区间分为等分.因为所以编码的二进制串至少需要22位.将一个二进制串(b21b20b19…b1b0)转化为区间内对应的实数值很简单,只需采取以下两步(Matlab程序参见附录4):1)将一个二进制串(b21b20b19…b1b0)代表的二进制数化为10进制数:2)对应的区间内的实数:例如,一个二进制串a=<0111>表示实数0.637197.=(0111)2=2288967二进制串<0000>,<1111>,则分别表示区间的两个端点值-1和2.利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.首先我们来随机的产生一个个体数为4个的初始群体如下:pop(1)={<1110>, %% a1<0010>, %% a2<0000>, %% a3<0101>} %% a4(Matlab程序参见附录2)化成十进制的数分别为:pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 }接下来我们就要解决每个染色体个体的适应值问题了.(2)定义适应函数和适应值由于给定的目标函数在内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.对于本题中的最大化问题,定义适应函数,采用下述方法:式中既可以是特定的输入值,也可以是当前所有代或最近K代中的最小值,这里为了便于计算,将采用了一个特定的输入值.若取,则当时适应函数;当时适应函数.由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab程序参见附录3):f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 }然后通过适应函数计算出适应值分别如下(Matlab程序参见附录5、附录6):取,g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 }(3)确定选择标准这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:对于给定的规模为n的群体pop={},个体的适应值为,则其入选概率为由上述给出的群体,我们可以计算出各个个体的入选概率.首先可得,然后分别用四个个体的适应值去除以,得:P(a1)=2.226437 / 6.478330 = 0.343675 %% a1P(a2)=2.318543 / 6.478330 = 0.357892 %% a2P(a3)= 0 / 6.478330 = 0 %% a3P(a4)=1.933350 / 6.478330 = 0.298433 %% a4(Matlab程序参见附录7)(4)产生种群计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab 程序参见附录8、附录11).要说明的是:附录11的算法与这里不完全相同.为保证收敛性,附录11的算法作了修正,采用了最佳个体保存方法(elitist model),具体内容将在后面给出介绍.由初始群体的入选概率我们淘汰掉a3,再加入a2补足成与群体同样大小的种群得到newpop(1)如下:newpop(1)={<1110>, %% a1<0010>, %% a2<0010>, %% a2<0101>} %% a4(5)交叉交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体组,组成新的群体(Matlab程序参见附录9).我们把之前得到的newpop(1)的四个个体两两组成一对,重复的不配对,进行交叉.(可以在任一位进行交叉)<110101110 1001100011110>, <0010>交叉得:<100001100 1010001000010>, <1110><10000110010100 01000010>, <0101>交叉得:<01101010011011 10010101>, <0010>通过交叉得到了四个新个体,得到新的群体jchpop (1)如下:jchpop(1)={<0010>,<1110>,<0101>,<0010>}这里采用的是单点交叉的方法,当然还有多点交叉的方法,不过有些烦琐,这里就不着重介绍了.(6)变异变异也就是通过一个小概率改变染色体位串上的某个基因(Matlab程序参见附录10).现把刚得到的jchpop(1)中第3个个体中的第9位改变,就产生了变异,得到了新的群体pop(2)如下:pop(2)= {<0010>,<1110>,<0101>,<0010> }然后重复上述的选择、交叉、变异直到满足终止条件为止.(7)终止条件遗传算法的终止条件有两类常见条件:(1)采用设定最大(遗传)代数的方法,一般可设定为50代,此时就可能得出最优解.此种方法简单易行,但可能不是很精确(Matlab程序参见附录1);(2)根据个体的差异来判断,通过计算种群中基因多样性测度,即所有基因位相似程度来进行控制.3.遗传算法的收敛性前面我们已经就遗传算法中的编码、适应度函数、选择、交叉和变异等主要操作的基本内容及设计进行了详细的介绍.作为一种搜索算法,遗传算法通过对这些操作的适当设计和运行,可以实现兼顾全局搜索和局部搜索的所谓均衡搜索,具体实现见下图2所示.图2 均衡搜索的具体实现图示应该指出的是,遗传算法虽然可以实现均衡的搜索,并且在许多复杂问题的求解中往往能得到满意的结果,但是该算法的全局优化收敛性的理论分析尚待解决.目前普遍认为,标准遗传算法并不保证全局最优收敛.但是,在一定的约束条件下,遗传算法可以实现这一点.下面我们不加证明地罗列几个定理或定义,供读者参考(在这些定理的证明中,要用到许多概率论知识,特别是有关马尔可夫链的理论,读者可参阅有关文献).定理1 如果变异概率为,交叉概率为,同时采用比例选择法(按个体适应度占群体适应度的比例进行复制),则标准遗传算法的变换矩阵P是基本的.定理2 标准遗传算法(参数如定理1)不能收敛至全局最优解.由定理2可以知道,具有变异概率,交叉概率为以及按比例选择的标准遗传算法是不能收敛至全局最最优解.我们在前面求解例1时所用的方法就是满足定理1的条件的方法.这无疑是一个令人沮丧的结论.然而,庆幸的是,只要对标准遗传算法作一些改进,就能够保证其收敛性.具体如下:我们对标准遗传算法作一定改进,即不按比例进行选择,而是保留当前所得的最优解(称作超个体).该超个体不参与遗传.最佳个体保存方法(elitist model)的思想是把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中.此种选择操作又称复制(copy).De Jong 对此方法作了如下定义:定义设到时刻t(第t代)时,群体中a*(t)为最佳个体.又设A(t+1)为新一代群体,若A(t+1)中不存在a*(t),则把a*(t)作为A(t+1)中的第n+1个个体(其中,n为群体大小)(Matlab程序参见附录11).采用此选择方法的优点是,进化过程中某一代的最优解可不被交叉和变异操作所破坏.但是,这也隐含了一种危机,即局部最优个体的遗传基因会急速增加而使进化有可能限于局部解.也就是说,该方法的全局搜索能力差,它更适合单峰性质的搜索空间搜索,而不是多峰性质的空间搜索.所以此方法一般都与其他选择方法结合使用.定理3 具有定理1所示参数,且在选择后保留当前最优值的遗传算法最终能收敛到全局最优解.当然,在选择算子作用后保留当前最优解是一项比较复杂的工作,因为该解在选择算子作用后可能丢失.但是定理3至少表明了这种改进的遗传算法能够收敛至全局最优解.有意思的是,实际上只要在选择前保留当前最优解,就可以保证收敛,定理4描述了这种情况.定理4 具有定理1参数的,且在选择前保留当前最优解的遗传算法可收敛于全局最优解.例2:设,求,编码长度为5,采用上述定理4所述的“在选择前保留当前最优解的遗传算法”进行二、相关函数(命令)及简介本实验的程序中用到如下一些基本的Matlab函数:ones, zeros, sum, size, length, subs, double 等,以及 for, while 等基本程序结构语句,读者可参考前面专门关于Matlab的介绍,也可参考其他数学实验章节中的“相关函数(命令)及简介”内容,此略.三、实验内容上述例1的求解过程为:群体中包含六个染色体,每个染色体用22位0—1码,变异概率为0.01,变量区间为,取Fmin=,遗传代数为50代,则运用第一种终止条件(指定遗传代数)的Matlab程序为:[Count,Result,BestMember]=Genetic1(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,50)执行结果为:Count =50Result =1.0316 1.0316 1.0316 1.0316 1.0316 1.03161.4990 1.4990 1.4990 1.4990 1.4990 1.4990BestMember =1.03161.4990图2 例1的计算结果(注:上图为遗传进化过程中每一代的个体最大适应度;而下图为目前为止的个体最大适应度——单调递增)我们通过Matlab软件实现了遗传算法,得到了这题在第一种终止条件下的最优解:当取1.0316时,.当然这个解和实际情况还有一点出入(应该是取1时,),但对于一个计算机算法来说已经很不错了.我们也可以编制Matlab程序求在第二种终止条件下的最优解.此略,留作练习.实践表明,此时的遗传算法只要经过10代左右就可完成收敛,得到另一个“最优解”,与前面的最优解相差无几.四、自己动手1.用Matlab编制另一个主程序Genetic2.m,求例1的在第二种终止条件下的最优解.提示:一个可能的函数调用形式以及相应的结果为:[Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001)Count =13Result =1.0392 1.0392 1.0392 1.0392 1.0392 1.03921.4985 1.4985 1.4985 1.4985 1.4985 1.4985BestMember =1.03921.4985可以看到:两组解都已经很接近实际结果,对于两种方法所产生的最优解差异很小.可见这两种终止算法都是可行的,而且可以知道对于例1的问题,遗传算法只要经过10代左右就可以完成收敛,达到一个最优解.2.按照例2的具体要求,用遗传算法求上述例2的最优解.3.附录9子程序 Crossing.m中的第3行到第7行为注解语句.若去掉前面的%号,则程序的算法思想有什么变化?4.附录9子程序 Crossing.m中的第8行至第13行的程序表明,当Dim(1)>=3时,将交换数组Population的最后两行,即交换最后面的两个个体.其目的是什么?5.仿照附录10子程序Mutation.m,修改附录9子程序 Crossing.m,使得交叉过程也有一个概率值(一般取0.65~0.90);同时适当修改主程序Genetic1.m 或主程序Genetic2.m,以便代入交叉概率.6.设,求,要设定求解精度到15位小数.。
matlab计算函数极值,如何⽤MATLAB求函数的极值点和最⼤值两种⽅法:1、求导的⽅法:syms x y;>>y=x^3+x^2+1>>diff(y)ans =3*x^2 + 2*x>>solve(ans)ans=-2/3极值有两点。
同时也是最值;2、直接⽤最⼩值函数:求最⼤值,既求-y的最⼩值:>>f=@(x)(-x^3-x^2-1)f =@(x)(-x^3-x^2-1)>>x=fminunc(f,-3,3)%在-3;-3范围内找Warning: Gradient must be provided fortrust-region method; using line-search methodinstead. > In fminunc at354Optimization terminated: relative infinity-norm of gradient lessthan options.TolFun.x =-0.6667>> f(x)ans =-1.1481在规定范围内的最⼤值是1.1481由于函数的局限性,求出的极值可能是局部最⼩(⼤)值。
求全局最值要⽤遗传算法。
例⼦:syms xf=(200+5*x)*(0.65-x*0.01)-x*0.45;s=diff(f);%⼀阶导数s2=diff(f,2);%⼆阶导数h=double(solve(s));%⼀阶导数为零的点可能就是极值点,注意是可能,详情请见⾼数课本fori=1:length(h)ifsubs(s2,x,h(i))<0disp(['函数在' num2str(h(i))'处取得极⼤值,极⼤值为' num2str(subs(f,x,h(i)))])elseifsubs(s2,x,h(i))>0disp(['函数在' num2str(h(i))'处取得极⼩值,极⼩值为'num2str(subs(f,x,h(i)))])elsedisp(['函数在' num2str(h(i))'处⼆阶导数也为0,故在该点处函数可能有极⼤值、极⼩值或⽆极值'])%%%详情见⾼数课本endend。
1、利用遗传算法求出下面函数的极小值:z=2-exp[-(x2+y2)], x,y∈[-5,+5]对于此函数,求某一极值、或说最值时,由于x、y定义域与系数相同,x与y相对于z 来说是地位等同的,因此可以转换成求该函数极值:;继而转换成了一种单变量函数。
函数的实现:(1)ga_main脚本文件% GA main program% Edited by Bian Xuezi% n ---- 种群规模% ger ---- 迭代次数% pc ---- 交叉概率% pm ---- 变异概率% v ---- 初始种群(规模为n)% f ---- 目标函数值% fit ---- 适应度向量% vx ---- 最优适应度值向量% vmfit ---- 平均适应度值向量clear all;close all;clc;tic;n=20;ger=100;pc=0.70;pm=0.009;% 生成初始种群v=init_population(n,20);[N,L]=size(v);disp(sprintf('Number of generations:%d',ger)); disp(sprintf('Population size:%d',N));disp(sprintf('Crossover probability:%.3f',pc)); disp(sprintf('Mutation probability:%.3f',pm)); % 待优化问题xmin=-5;ymin=-5;xmax=5;ymax=5;f='-2+exp(-x.^2-y.^2)';%初始化sol=0.1;vmfit=[];it=1;vx=[];%C=[];% 计算适应度,并画出图形x=decode(v(:,1:10),xmin,xmax);y=decode(v(:,11:20),ymin,ymax);fit=eval(f);figure(1);[X,Y]=meshgrid(-5:0.1:5,-5:0.1:5);Z=-2+exp(-X.^2-Y.^2);mesh(X,Y,Z);grid on;hold on;plot3(x,y,fit,'k*');title('染色体的初始位置');xlabel('x');ylabel('y');zlabel('f(x,y)');% 开始进化while it<=ger%Reproduction(Bi-classist Selection) vtemp=roulette(v,fit);%Crossoverv=crossover(vtemp,pc);%MutationM=rand(N,L)<=pm;%M(1,:)=zeros(1,L);v=v-2.*(v.*M)+M;%Resultsx=decode(v(:,1:10),xmin,xmax);y=decode(v(:,11:20),ymin,ymax);fit=eval(f);[sol,indb]=max(fit);v(1,:)=v(indb,:);media=mean(fit);vx=[vx sol];vmfit=[vmfit media];it=it+1;end%%%% 最后的结果disp(sprintf('\n')); %空一行% 显示最优解及最优值disp(sprintf('Maximum found[x,f(x)]:[%.4f,%.4f,%.4f]',x(indb),y(indb),sol)); % 图形显示最优结果figure(2);[X,Y]=meshgrid(-5:0.1:5,-5:0.1:5);Z=-2+exp(-X.^2-Y.^2);mesh(X,Y,Z);grid on;hold on;plot3(x,y,fit,'k*');title('染色体的最终位置');xlabel('x');ylabel('y');zlabel('f(x,y)');% 图形显示最优及平均函数值变化趋势figure(3);plot(vx);%title('最优,平均函数值变化趋势'); xlabel('Generations');ylabel('f(x,y)');hold on;plot(vmfit,'r');hold off;runtime=toc(2)Crossover函数%Crossoverfunction v=crossover(vtemp,pc) [N,L]=size(vtemp);C(:,1)=rand(N,1)<=pc;I=find(C(:,1)==1);I';j=1;for i=1:2:size(I)if i>=size(I)break;endsite=fix(1+L*rand(1));temp=vtemp(I(i,1),:);vtemp(I(i,1),site:end)=vtemp(I(i+1,1),site:end); vtemp(I(i+1,1),site:end)=temp(:,site:end);%j=j+2;endv=vtemp;(3)decode函数%Decodify bitstringsfunction x=decode(v,min,max)% x ----真实值% v ----待解码的已编码的0-1串v=fliplr(v);[s,c]=size(v);aux=0:1:c-1 ;%21;aux=ones(s(1),1)*aux;x1=sum((v.*2.^aux)');x=min+(max-min)*x1./(2^c-1); % ; (4)init_population函数function v=init_population(n1,s1)v=round(rand(n1,s1));(5)roulette函数function vtemp=roulette(v,fit)N=size(v);fitmin=abs(min(fit));fit=fitmin+fit;%fitS=sum(fit);for i=1:NSI=S*rand(1);for j=1:Nif SI<=sum(fit(1:j))vtemp(i,:)=v(j,:);breakendendend。
题目:使用Matlab遗传算法求解函数最小值的步骤及实例分析
目录
一、概述
二、Matlab遗传算法概述
1. 遗传算法原理
2. Matlab中的遗传算法工具箱介绍
三、使用Matlab遗传算法求解函数最小值的步骤
1. 初始化种裙
2. 适应度函数的定义
3. 轮盘赌选择
4. 交叉与变异
5. 更新种裙
6. 终止条件的设置
四、实例分析
1. 实例背景
2. 实例分析步骤
五、总结
一、概述
在实际工程和科学研究中,经常需要求解函数的最小值,这涉及到优化问题。
遗传算法是一种基于自然选择和遗传机制的全局优化算法,在求解函数最小值问题上具有一定的优势。
Matlab作为一款强大的科
学计算软件,具备丰富的数值计算工具和优化算法库,其中也包括遗
传算法工具箱。
本文将介绍如何使用Matlab中的遗传算法工具箱求
解函数最小值的步骤,并通过一个实例进行分析。
二、Matlab遗传算法概述
1. 遗传算法原理
遗传算法是一种通过模拟自然界生物进化过程进行优化的算法。
其基
本思想是将待优化问题映射成遗传个体的表示形式,并通过种裙的进
化过程求解最优解。
遗传算法包括选择、交叉和变异等操作,通过这
些操作不断迭代种裙,最终得到最优解。
2. Matlab中的遗传算法工具箱介绍
Matlab中提供了用于实现遗传算法的专门工具箱,包括遗传算法函数和用于可视化和评估遗传算法的函数。
使用Matlab的遗传算法工具箱,可以方便地实现遗传算法对函数的全局优化。
三、使用Matlab遗传算法求解函数最小值的步骤
1. 初始化种裙
在使用Matlab遗传算法工具箱时,需要首先对种裙进行初始化。
可
以选择随机生成初始种裙,也可以根据问题的特点进行指定初始种裙。
2. 适应度函数的定义
适应度函数是遗传算法中用于评价个体优劣的函数,它的设计直接影
响遗传算法的求解效果。
在使用Matlab遗传算法工具箱时,需要根
据实际的优化问题设计适应度函数。
3. 轮盘赌选择
在遗传算法中,选择操作决定了哪些个体会被选择进行繁殖,而轮盘
赌选择是一种常用的选择策略。
Matlab遗传算法工具箱中提供了相应的函数来实现轮盘赌选择。
4. 交叉与变异
交叉和变异是遗传算法中的两种重要操作,其中交叉用于产生新个体,而变异用于保持种裙的多样性。
Matlab遗传算法工具箱提供了多种交叉和变异的方式供用户选择。
5. 更新种裙
通过选择、交叉和变异等操作后,需要更新种裙,使得种裙逐步朝着
最优解的方向演化。
Matlab遗传算法工具箱中提供了相应的函数来实现种裙的更新。
6. 终止条件的设置
为了使得遗传算法能够在有限迭代步数内收敛,需要设置合适的终止
条件。
在Matlab中,可以通过设置遗传算法的最大迭代次数或者最
优解的误差精度等方式来设置终止条件。
四、实例分析
1. 实例背景
假设有如下函数需要求解其最小值:
f(x) = 10*sin(5*x) + 7*cos(4*x)
我们将使用Matlab遗传算法工具箱来求解该函数的最小值。
2. 实例分析步骤
(1)我们需要初始化种裙,并设置遗传算法的参数,如种裙大小、交叉概率、变异概率等。
(2)需要定义适应度函数,对于给定的函数f(x),我们可以将f(x)作为适应度函数。
(3)接下来,根据适应度函数进行轮盘赌选择、交叉和变异等遗传算法的基本操作。
(4)根据设定的终止条件,对遗传算法进行迭代,直至满足终止条件为止。
五、总结
本文介绍了使用Matlab遗传算法求解函数最小值的步骤,并通过一个实例对其进行了分析。
遗传算法作为一种全局优化算法,可以应用于多种函数的最小值求解。
在实际应用中,需要根据具体的优化问题来设计适应度函数和设置遗传算法的参数。
希望本文能对使用Matlab 求解函数最小值的读者有所帮助。
以上是本人对Matlab遗传算法求解函数最小值的一些认识,望采纳。