2010届高考数学专题精练8
- 格式:doc
- 大小:595.00 KB
- 文档页数:6
2010年高三数学试题精编-10.1排列、组合D入9个空中,共有29A种排法,因此一共有8289A A种排法。
2.(广东卷理8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同。
记这5个彩灯有序地各闪亮一次为一个闪烁。
在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5妙。
如果要实现所有不同的闪烁,那么需要的时间至少是A、1205秒 B.1200秒C.1195秒 D.1190秒【答案】C.【解析】每次闪烁时间5秒,共5×120=600s,每两次闪烁之间的间隔为5s,共5×(120-1)=595s.总共就有600+595=1195s.3.(湖北卷理8)现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.54【答案】B【解析】分类讨论:若有2人从事司机工作,则方案有233318C A⨯=;若有1人从事司机工作,则方案有123343108C C A⨯⨯=种,所以共有18+108=126种,故B 正确.4.(湖北卷文6)现有名同学支听同时进行的个课外知识讲座,名每同学可自由选择其中的一个讲座,不同选法的种数是A.45 B. 56 C. 5654322⨯⨯⨯⨯⨯D.6543⨯⨯⨯⨯2【答案】A5.(湖南卷理7)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为A.10B.11C.12D.15【答案】B【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有24C6=(个)6.(全国Ⅰ卷理6)某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种(D)48种【答案】A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想. 【解析】:可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有1234C C种不同的选法;(2)A 类选修课选2门,B类选修课选1门,有2134C C种不同的选法.所以不同的选法共有1234C C=+=C C+2134181230种.7.(全国Ⅱ卷理6文9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.8.(山东卷理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A )36种 (B )42种 (C )48种 (D )54种【答案】B【解析】分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B 。
十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8nD.S n =12n 2-2n2.(2019·浙江·T10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10D.当b=-4时,a 10>103.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10D.124.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 45.(2018·北京·理T4文T5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23fB.√223fC.√2512fD.√2712f6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.1107.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3C.3D.88.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A.100B.99C.98D.979.(2015·浙江·理T13)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>010.(2015·全国2·文T5)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5B.7C.9D.1111.(2015·全国1·文T7)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10= ( )A.172B.192C.10D.1212.(2015·全国2·理T4)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21B.42C.63D.8413.(2015·全国2·文T9)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=()A.2B.1C.1D.114.(2014·大纲全国·文T8)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=( )A.31B.32C.63D.6415.(2014·全国2·文T5)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)216.(2013·全国2·理T3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( )A.13B.-13C.19D.-1917.(2013·全国1·文T6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则( )A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n18.(2013·全国1·理T12)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=c n+a n2,c n+1=b n+a n2,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.620.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5D.-721.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= .2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .3.(2019·江苏·T8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 . 4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 . 5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= .6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .9.(2018·上海·T10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S n a n+1=12,则q=.10.(2018·江苏·T14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 .11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k =____________.12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= .13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=. 14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 18.(2015·湖南·理T14)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = . 19.(2015·福建·文T16)若a,b 是函数f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 . 20.(2015·江苏·理T11)设数列{a n }满足a 1=1,且a n+1- a n =n+1(n ∈N *).则数列{1a n}前10项的和为____________.21.(2015·全国2·理T16)设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = . 22.(2015·广东·理T10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .23.(2015·陕西·文T13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 24.(2014·江苏·理T7)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 . 25.(2014·广东·文T13)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5= .26.(2014·安徽·理T12)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q= . 27.(2014·全国2·文T16)数列{a n }满足a n+1=11-a n,a 8=2,则a 1=____________.28.(2014·北京·理T12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 29.(2014·天津·理T11)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为 .30.(2013·全国2·理T16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 . 31.(2013·辽宁·理T14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6= .32.(2013·全国1·理T14)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n = . 33.(2012·全国·文T14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q= . 三、计算题1.(2019·全国2·文T18)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.2.(2019·全国2·理T19)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n+1=3a n -b n +4,4b n+1=3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.3.(2019·天津·文T18)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数,求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).4.(2019·天津·理T19)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4. (1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N *.①求数列{a 2n (c 2n -1)}的通项公式;②求∑i=12na i c i (n ∈N *).5.(2019·浙江·T 20)设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (1)求数列{a n },{b n }的通项公式; (2)记c n =√a n n,n ∈N *,证明:c 1+c 2+…+c n <2√n ,n ∈N *. 6.(2019·江苏·T 20)定义首项为1且公比为正数的等比数列为“M- 数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M- 数列”; (2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n=2b n−2b n+1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M- 数列”{c n }(n ∈N *),对任意正整数k,当k ≤m 时,都有c k ≤b k ≤c k+1成立,求m 的最大值.7.(2018·北京·文T15)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .8.(2018·上海·T 21)给定无穷数列{a n },若无穷数列{b n }满足:对任意x ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n+1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由; (2)设数列{a n }的前四项为a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m:(3)已知{a n }是公差为d 的等差数列.若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.9.(2018·江苏·T 20)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1, √2m],证明:存在d ∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).10.(2018·天津·文T18)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.11.(2018·天津·理T18)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *), ①求T n ;②证明∑k=1n(T k +b k+2)b k(k+1)(k+2)=2n+2n+2-2(n ∈N *). 12.(2018·全国2·理T17文T17)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.13.(2018·全国1·文T17)已知数列{a n }满足a 1=1,na n+1=2(n+1)a n .设b n =an n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.14.(2018·全国3·理T17文T17)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m.15.(2017·全国1·文T17)设S n 为等比数列{a n }的前n 项和,已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n+1,S n ,S n+2是否成等差数列.16.(2017·全国2·文T17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T3=21,求S3.17.(2017·全国3·文T17)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;}的前n项和.(2)求数列{a n2n+118.(2017·天津·理T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).19.(2017·山东·理T19)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.20.(2017·山东·文T19)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.1)求数列{a n}的通项公式;}的前n项和T n.(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列{b na n21.(2017·天津·文T18)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).22.(2016·全国2·理T17)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.23.(2016·全国2·文T17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 24.(2016·浙江·文T17)设数列{a n }的前n 项和为S n .已知S 2=4,a n+1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n-2|}的前n 项和.25.(2016·北京·文T15)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.26.(2016·山东·理T18文T19)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1. (1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n,求数列{c n }的前n 项和T n .27.(2016·天津·理T18)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n ∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12−b n 2,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d,T n =∑k=12n(-1)kb k 2,n ∈N *,求证:∑k=1n1T k<12d 2.28.(2016·天津·文T18)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1−1a 2=2a 3,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(-1)nb n 2}的前2n 项和.29.(2016·全国1·文T17)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n+1+b n+1=nb n . (1)求{a n }的通项公式; (2)求{b n }的前n 项和.30.(2016·全国3·文T17)已知各项都为正数的数列{a n }满足a 1=1, a n 2-(2a n+1-1)a n -2a n+1=0. (1)求a 2,a 3;(2)求{a n }的通项公式.31.(2016·全国3·理T17)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.32.(2015·北京·文T16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 33.(2015·重庆·文T16)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 34.(2015·福建·文T17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n,求b 1+b 2+b 3+…+b 10的值.35.(2015·全国1·理T17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n+1,求数列{b n }的前n 项和.36.(2015·安徽·文T18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =an+1S n S n+1,求数列{b n }的前n 项和T n .37.(2015·天津·理T18)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.38.(2015·山东·文T19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .39.(2015·浙江·文T17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n+1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n+1-1(n ∈N *). (1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .40.(2015·天津·文T18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7. (1)求{a n }和{b n }的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.41.(2015·湖北·文T19)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=a nb n,求数列{c n}的前n项和T n.42.(2014·全国2·理T17)已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明:{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+…+1a n<32.43.(2014·福建·文T17)在等比数列{a n}中,a2=3,a5=81.(1)求a n;(2)设b n=log3a n,求数列{b n}的前n项和S n.44.(2014·湖南·文T16)已知数列{a n}的前n项和S n=n 2+n,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(-1)n a n,求数列{b n}的前2n项和.45.(2014·北京·文T14)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.46.(2014·大纲全国·理T18)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.47.(2014·山东·理T19)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-14na n a n+1,求数列{b n}的前n项和T n.48.(2014·全国1·文T17)已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{ann }的前n 项和.49.(2014·安徽·文T18)数列{a n }满足a 1=1,na n+1=(n+1)a n +n(n+1),n ∈N *.(1)证明:数列{an}是等差数列;(2)设b n =3n·√a n ,求数列{b n }的前n 项和S n .50.(2014·山东·文T19)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a n (n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .51.(2014·大纲全国·文T17)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2. (1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.52.(2014·全国1·理T17)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n -1,其中λ为常数. (1)证明:a n+2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.53.(2013·全国2·文T17)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n-2.54.(2013·全国1·文T17)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式; (2)求数列{1a2n -1a 2n+1}的前n项和.55.(2012·湖北·理T18文T20)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 56.(2011·全国·文T17)已知等比数列{a n }中,a 1=13,公比q=13. (1)S n 为{a n }的前n 项和,证明:S n =1-a n2; (2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.57.(2011·全国·理T17)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n}的前n项和. 58.(2010·全国·理T17)设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.59.(2010·全国·文T17)设等差数列{a n}满足a3=5,a10=-9,(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n及使得S n最大的序号n的值.十年高考真题分类汇编(2010—2019)数学专题08 数列一、选择题1.(2019·全国1·理T9)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n-5 B.a n =3n-10C.S n =2n 2-8n D.S n =12n 2-2n【答案】A【解析】由题意可知,{S 4=4a 1+4×32·d =0,a 5=a 1+4d =5,解得{a 1=-3,d =2.故a n =2n-5,S n =n 2-4n,故选A.2.(2019·浙江·T10)设a,b ∈R,数列{a n }满足a 1=a,a n+1=a n 2+b,n ∈N *,则( )A.当b=12时,a 10>10 B.当b=14时,a 10>10 C.当b=-2时,a 10>10 D.当b=-4时,a 10>10【答案】A【解析】当b=12时,a 2=a 12+12≥12,a 3=a 22+12≥34,a 4=a 32+12≥1716≥1,当n≥4时,a n+1=a n 2+12≥a n 2≥1,则lo g 1716a n+1>2lo g 1716a n ⇒lo g 1716a n+1>2n-1,则a n+1≥(1716 )2n -1(n≥4),则a 10≥(1716) 26=(1+116)64=1+6416+64×632×1162+…>1+4+7>10,故选A. 3.(2018·全国1·理T4)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12 B.-10 C.10 D.12【答案】B【解析】因为3S 3=S 2+S 4,所以3S 3=(S 3-a 3)+(S 3+a 4),即S 3=a 4-a 3.设公差为d,则3a 1+3d=d,又由a 1=2,得d=-3,所以a 5=a 1+4d=-10.4.(2018·浙江·T10)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 4 【答案】B【解析】设等比数列的公比为q,则 a 1+a 2+a 3+a 4=a 1(1-q 4)1-q ,a 1+a 2+a 3=a 1(1-q 3)1-q.∵a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),∴a 1+a 2+a 3=e a 1+a 2+a 3+a 4,即a 1(1+q+q 2)=e a 1(1+q+q2+q 3).又a 1>1,∴q<0.假设1+q+q 2>1,即q+q 2>0,解得q<-1(q>0舍去). 由a 1>1,可知a 1(1+q+q 2)>1, ∴a 1(1+q+q 2+q 3)>0,即1+q+q 2+q 3>0,即(1+q)+q 2(1+q)>0,即(1+q)(1+q 2)>0,这与q<-1相矛盾. ∴1+q+q 2<1,即-1<q<0.∴a 1>a 3,a 2<a 4.5.(2018·北京·理T4文T 5)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f,则第八个单音的频率为( ) A.√23f B.√223fC.√2512fD.√2712f【答案】D【解析】设第n 个单音的频率为a n ,由题意,a na n -1=√212(n≥2),所以{a n }为等比数列,因为a 1=f,所以a 8=a 1×(√212)7=√2712f,故选D.6.(2017·全国1·理T12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110 【答案】A【解析】设数列的首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推,设第n 组的项数为n,则前n组的项数和为n (1+n )2.第n 组的和为1-2n 1-2=2n -1,前n 组总共的和为2(1-2n )1-2-n=2n+1-2-n.由题意,N>100,令n (1+n )2>100,得n≥14且n ∈N *,即N 出现在第13组之后.若要使最小整数N 满足:N>100且前N 项和为2的整数幂,则S N -S n (1+n )2应与-2-n 互为相反数,即2k-1=2+n(k ∈N *,n≥14),所以k=log 2(n+3),解得n=29,k=5.所以N=29×(1+29)2+5=440,故选A. 7.(2017·全国3·理T9)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24 B.-3 C.3 D.8【答案】A【解析】设等差数列的公差为d,则d≠0,a 32=a 2·a 6, 即(1+2d)2=(1+d)(1+5d), 解得d=-2,所以S 6=6×1+6×52×(-2)=-24,故选A.8.(2016·全国1·理T3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100 B.99 C.98 D.97【答案】C 【解析】因为S 9=(a 1+a 9)×9=27,a 1+a 9=2a 5, 所以a 5=3.又因为a 10=8,所以d=a 10-a 510-5=1. 故a 100=a 10+(100-10)×1=98.9.(2015·浙江·理T13)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A.a 1d>0,dS 4>0 B.a 1d<0,dS 4<0 C.a 1d>0,dS 4<0 D.a 1d<0,dS 4>0【答案】B【解析】设{a n }的首项为a 1,公差为d,则a 3=a 1+2d,a 4=a 1+3d,a 8=a 1+7d. ∵a 3,a 4,a 8成等比数列,∴(a 1+3d)2=(a 1+2d)(a 1+7d),即3a 1d+5d 2=0. ∵d≠0,∴a 1d=-53d 2<0,且a 1=-53d. ∵dS 4=4d (a 1+a 4)2=2d(2a 1+3d)=-23d 2<0. 10.(2015·全国2·文T5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A.5 B.7 C.9 D.11 【答案】A【解析】由a 1+a 3+a 5=3及等差中项,得3a 3=3,解得a 3=1.故S 5=5(a 1+a 5)2=5a 3=5. 11.(2015·全国1·文T7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10= ( ) A.172B.192C.10D.12【答案】B【解析】∵公差d=1,S 8=4S 4, ∴8(a 1+a 8)2=4×4(a 1+a 4)2, 即2a 1+7d=4a 1+6d,解得a 1=12. ∴a 10=a 1+9d=1+9=19.12.(2015·全国2·理T4)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21B.42C.63D.84【答案】B 【解析】由题意知a 1+a 3+a 5a 1=1+q 2+q 4=213=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42.13.(2015·全国2·文T9)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( ) A.2 B.1C.12D.18【答案】C【解析】∵a 3a 5=4(a 4-1),∴a 42=4(a 4-1),解得a 4=2.又a 4=a 1q 3,且a 1=14,∴q=2.∴a 2=a 1q=12.14.(2014·大纲全国·文T8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( ) A.31 B.32 C.63 D.64【答案】C【解析】由等比数列前n 项和的性质,得S 2,S 4-S 2,S 6-S 4成等比数列,所以(S 4-S 2)2=S 2(S 6-S 4),即(15-3)2=3(S 6-15),解得S 6=63,故选C.15.(2014·全国2·文T5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A.n(n+1) B.n(n-1)C.n (n+1)2D.n (n -1)2【答案】A【解析】∵a 2,a 4,a 8成等比数列, ∴ =a 2·a 8,即(a 1+6)2=(a 1+2)(a 1+14), 解得a 1=2. ∴S n =na 1+n (n -1)2d=2n+n 2-n=n 2+n=n(n+1). 16.(2013·全国2·理T3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B.-13C.19D.-19【答案】C【解析】由S 3=a 2+10a 1,得a 1+a 2+a 3=a 2+10a 1,整理得a 3=9a 1,所以q 2=a 3a 1=9.由a 5=9,得a 1=a 5q 4=992=19.17.(2013·全国1·文T6)设首项为1,公比为2的等比数列{a n }的前n 项和为S n ,则( ) A.S n =2a n -1 B.S n =3a n -2 C.S n =4-3a n D.S n =3-2a n 【答案】D【解析】S n =a 1(1-q n )1-q=a 1-a n q 1-q=1-23a n 1-23=3-2a n .18.(2013·全国1·理T12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,….若 b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=c n +a n ,c n+1=b n +an ,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n-1}为递增数列,{S 2n }为递减数列D.{S 2n-1}为递减数列,{S 2n }为递增数列 【答案】B【解析】因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13,p=12(a 1+b 1+c 1)=32a 1,则S 1=√3a 12·a 12·a 16·5a16=√1512a 12; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1,S 2=√3a12·a12·2a13·a13=√66a 12;显然S 2>S 1.同理,a 3=a 1,b 3=76a 1+a 12=1312a 1,c 3=56a 1+a 12=1112a 1,S 3=√3a12·a12·512a 1·712a 1=√10524a 12,显然S 3>S 2.19.(2013·全国1·理T7)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m= ( ) A.3 B.4 C.5 D.6 【答案】C【解析】∵S m-1=-2,S m =0,S m+1=3, ∴a m =S m -S m-1=2,a m+1=S m+1-S m =3. ∴d=a m+1-a m =3-2=1. ∵S m =m (a 1+a m )2=m (a 1+2)2=0, ∴a 1=-2,a m =-2+(m-1)×1=2.∴m=5.20.(2012·全国·理T5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A.7 B.5 C.-5 D.-7【答案】D【解析】∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8. 联立{a 4+a 7=2,a 4a 7=-8可解得{a 4=4,a 7=-2或{a 4=-2,a 7=4,当{a 4=4,a 7=-2时,q 3=-12, 故a 1+a 10=a4q 3+a 7q 3=-7;当{a 4=-2,a 7=4时,q 3=-2,同理,有a 1+a 10=-7. 21.(2012·全国·文T12)数列{a n }满足a n+1+(-1)na n =2n-1,则{a n }的前60项和为( ) A.3 690 B.3 660 C.1 845 D.1 830【答案】D【解析】∵a n+1+(-1)na n =2n-1, ∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234=15×(10+234)2=1 830. 二、填空题1.(2019·全国3·文T14)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10= . 【答案】100【解析】设等差数列{a n }的公差为d,则{a 3=a 1+2d =5,a 7=a 1+6d =13,解得{a 1=1,d =2. 故S 10=10a 1+10×92d=10×1+10×92×2=100. 2.(2019·全国3·理T14)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5= .【答案】4【解析】设等差数列{a n }的公差为d. ∵a 1≠0,a 2=3a 1, ∴a 1+d=3a 1,即d=2a 1.∴S10S 5=10a 1+10×92d5a 1+5×42d=100a 125a 1=4. 3.(2019·江苏·T 8)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 . 【答案】16【解析】∵{a n }为等差数列,设公差为d,a 2a 5+a 8=0,S 9=27,∴{(a 1+d )(a 1+4d )+a 1+7d =0,①9a 1+9×82d =27,②整理②得a 1+4d=3,即a 1=3-4d,③ 把③代入①解得d=2,∴a 1=-5. ∴S 8=8a 1+28d=16.4.(2019·北京·理T10)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 . 【答案】0 -10【解析】等差数列{a n }中,由S 5=5a 3=-10,得a 3=-2,又a 2=-3,公差d=a 3-a 2=1,a 5=a 3+2d=0,由等差数列{a n }的性质得当n ≤5时,a n ≤0,当n ≥6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为-10.5.(2019·全国1·文T14)记S n 为等比数列{a n }的前n 项和.若a 1=1,S 3=34,则S 4= . 【答案】58【解析】设等比数列{a n }的公比为q. S 3=a 1+a 1q+a 1q 2=1+q+q 2=34, 即q 2+q+14=0.解得q=-12.故S 4=a 1(1-q 4)=1-(-12)41+12=5.6.(2019·全国1·理T14)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.【答案】1213【解析】设等比数列{a n }的公比为q, 则a 4=a 1q 3=13q 3,a 6=a 1q 5=13q 5.∵a 42=a 6,∴19q 6=13q 5.∵q≠0,∴q=3.∴S 5=a 1(1-q 5)1-q=13(1-35)1-3=1213. 7.(2018·全国1·理T14)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 【答案】-63【解析】∵S n =2a n +1,① ∴S n-1=2a n-1+1(n ≥2).②①-②,得a n =2a n -2a n-1,即a n =2a n-1(n ≥2).又S 1=2a 1+1,∴a 1=-1.∴{a n }是以-1为首项,2为公比的等比数列,则S 6=-1(1-26)1-2=-63.8.(2018·北京·理T9)设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 . 【答案】a n =6n-3【解析】∵{a n }为等差数列,设公差为d, ∴a 2+a 5=2a 1+5d=36.∵a 1=3,∴d=6.∴a n =3+(n-1)×6=6n-3.9.(2018·上海·T 10)设等比数列{a n }的通项公式为a n =q n-1(n ∈N *),前n 项和为S n ,若lim n →∞S na n+1=12,则q= . 【答案】3【解析】由a n =q n-1,得a n+1=q n.当q=1时,不满足题意;当q≠1时,S n =a 1(1-q n )1-q=1-q n1-q. 若0<|q|<1,则lim n →∞1-q n(1-q )q n 不存在;若|q|>1,则lim n →∞Sn a n+1=lim n →∞1-q n(1-q )q n =lim n →∞1(1-q )·(1q n -1)=-11-q =12,解得q=3.10.(2018·江苏·T 14)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 【答案】27【解析】①若a n+1=2k(k ∈N *),则S n =21+22+…+2k-1+1+3+ (2)-1=2k-2+(2k-1)2⇒(2k-1)2+2k-2>12·2k. 令2k=t ⇒14t 2+t-2>12t ⇒t(t-44)>8.∴t ≥64⇒k ≥6.此时,n=k-1+2k-1=37. ②若a n+1=2k+1(k ∈N *),则S n =21+22+ (2)+1+3+…+2k-1(2t<2k+1,t ∈N *), ∴S n =2t+1-2+k 2>12(2k+1)⇒2t+1>-k 2+24k+14. ∴-k 2+24k+14<2t+1<4k+2⇒k(k-20)>12.取k=21,此时772<2t <43(舍),取k=22,29<2t<45,t=5,n=5+22=27. 由①②,得n min =27.11.(2017·全国2·理T15)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k=____________.【答案】2nn+1【解析】设等差数列的首项为a 1,公差为d,由题意可知{a 1+2d =3,4a 1+4×32d=10,解得{a 1=1,d =1.所以S n =na 1+n (n -1)2d=n (1+n )2. 所以1S n =2n (n+1)=2(1n -1n+1).所以∑k=1n1S k=2[(1-12)+(12-13)+…+(1n -1n+1)]=2(1-1n+1)=2nn+1. 12.(2017·全国3·理T14)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4= . 【答案】-8【解析】设{a n }的公比为q,则由题意, 得{a 1(1+q )=-1,a 1(1-q 2)=-3,解得{a 1=1,q =-2,故a 4=a 1q 3=-8. 13.(2017·江苏·理T9文T9)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= . 【答案】32【解析】设该等比数列的公比为q,则S 6-S 3=634−74=14,即a 4+a 5+a 6=14.①∵S 3=74,∴a 1+a 2+a 3=74. 由①得(a 1+a 2+a 3)q 3=14,∴q 3=1474=8,即q=2.∴a 1+2a 1+4a 1=7,a 1=1. ∴a 8=a 1·q 7=14×27=32.14.(2016·浙江·理T13文T13)设数列{a n }的前n 项和为S n ,若S 2=4,a n+1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 121【解析】由题意,可得a 1+a 2=4,a 2=2a 1+1, 所以a 1=1,a 2=3.再由a n+1=2S n +1,a n =2S n-1+1(n ≥2), 两式相减得a n+1-a n =2a n ,即a n+1=3a n (n ≥2).又因为a 2=3a 1,所以数列{a n }是以1为首项,3为公比的等比数列.所以S 5=1-351-3=121. 15.(2016·北京·理T12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= . 【答案】6【解析】∵{a n }是等差数列,∴a 3+a 5=2a 4=0.∴a 4=0. ∴a 4-a 1=3d=-6.∴d=-2. ∴S 6=6a 1+15d=6×6+15×(-2)=6.16.(2016·全国1·理T15)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【答案】64【解析】由已知a 1+a 3=10,a 2+a 4=a 1q+a 3q=5,两式相除得a 1+a 3q (a 1+a 3)=105=2,解得q=12,a 1=8, 所以a 1a 2…a n =8n·(1)1+2+…+(n -1)=2-12n 2+7n2,函数f(n)=-1n 2+7n的对称轴为n=-722×(-12)=3.5,又n ∈N *,所以当n=3或4时,a 1a 2…a n 取最大值为2-12×32+7×32=26=64.17.(2015·全国1·文T13)在数列{a n }中,a 1=2,a n+1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n= . 【答案】6【解析】∵a n+1=2a n ,即an+1a n=2,∴{a n }是以2为公比的等比数列.。
2010年全国各地高考数学真题分章节分类汇编(实际应用题)一、选择题:1.(2010年高考广东卷理科8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
如果要实现所有不同的闪烁,那么需要的时间至少是()A、1205秒 B.1200秒 C.1195秒 D.1190秒【答案】C.【解析】每次闪烁时间5秒,共5×120=600s,每两次闪烁之间的间隔为5s,共5×(120-1)=595s.总共就有600+595=1195s.2.(2010年高考四川卷理科7)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为(A)甲车间加工原料10箱,乙车间加工原料60箱(B)甲车间加工原料15箱,乙车间加工原料55箱(C)甲车间加工原料18箱,乙车间加工原料50箱(D)甲车间加工原料40箱,乙车间加工原料30箱解析:设甲车间加工原料x箱,乙车间加工原料y箱则目标函数z=280x+300y结合图象可得:当x=15,y=55时z最大本题也可以将答案逐项代入检验.答案:B3.(2010年全国高考宁夏卷6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为(A)100 (B)200 (C)300 (D)400【答案】B解析:根据题意显然有,所以,故.二、填空题:1.(2010年高考江苏卷试题14)将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是____▲____。
【2010年高考精品】历届数学高考试题重组金卷函数与不等式(A )文新学堂:X 永平老师1A .{|1}x x ≤ B .{|0}x x ≥ C .{|10}x x x ≥或≤D .{|01}x x ≤≤2(2007全国Ⅱ理)把函数y =e x 的图象按向量a =(2,3)平移,得到y =f (x )的图象,则f (x )=( )(A) e x -3+2 (B) e x +3-2 (C)e x -2+3 (D) e x +2-33.(2005某某文科)下列大小关系正确的是( )A .20.440.43log 0.3<<; B .20.440.4log 0.33<<;C .20.44log 0.30.43<<;D .0.424log 0.330.4<<4.(2007某某文)设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),5.(2006某某文、理)若不等式210x ax ++≥对一切102x ⎛⎤∈ ⎥⎝⎦,成立,则a 的最小值为( )A.0B.2- C.52-D.3- 6.(2006理)已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值X 围是( ) (A )(0,1) (B )1(0,)3(C )11[,)73 (D )1[,1)77.(2008某某理)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,), (1)2f =,则(3)f -等于( )A .2B .3C .6D .98(2007某某文、理)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是( )9.(2008某某文) 已知函数20()20x x f x x x +⎧=⎨-+>⎩,≤,,,则不等式2()f x x ≥的解集为( )A .[]11-,B .[]22-,C .[]21-,D .[]12-,10.(2008理)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1C .3D .9二、填空题:(每小题5分,计35分)11、(2006全国Ⅰ卷文)已知函数121)(+-=x a x f ,若()f x 为奇函数,则a =________。
2010年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:每小题6分,共10小题,共60分.在每小题的四个选项中,只有一项是符合要求的.1.已知集合A ={x|x 2―1>0},B ={x|log 2x <0},则A ∩B 等于 ( )A .ØB .{x|x <-1}C .{x|x >1}D .{x|x <-1或x >1}2. 若不等式||x a -<1成立的充分条件是04<<x ,则实数a 的取值范围是( ) A. a ≥3B. a ≤3C. a ≥1D. a ≤13.函数)1(log 2-=x y 的反函数图像是 ( )A B4. 如图所示,∆OAB 是边长为2的等边三角形,直线x t =截这个三角形位于此直线左方的图形面积为y (见图中阴影部分)则函数y f t =()的大致图形为( )5.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π6椭圆22143x y +=的右焦点到直线y x =的距离是 ( )A.127. 过圆锥曲线C 的一个焦点F 的直线l 交曲线C 于A 、B 两点,且以AB 为直径的圆与F 相应的准线相交,则曲线C 为A. 双曲线B. 抛物线C. 椭圆D. 以上都有可能 8.若αααααcos sin cos 3sin ,2tan +-=则的值是( )A .31-B .-35C .31 D .35 9.直线052)3(057)3()1(2=-+-=-+-++y x m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或10.已知1(2)2x f x x ++=+,则1(2)f x -+= ( ) A.12x x -+ B.11x -+ C.211x x +-- D.21x x +-+二、填空题:每小题5分,共8小题,共计40分.将答案填在题中的横线上。
2010年高考广东理科数学试题及答案一、选择题(共8小题;共40分)1. 若集合A=x−2<x<1,B=x0<x<2,则集合A∩B= A. x−1<x<1B. x−2<x<1C. x−2<x<2D. x0<x<12. 若复数z1=1+i,z2=3−i,则z1⋅z2= A. 4+2iB. 2+iC. 2+2iD. 33. 若函数f x=3x+3−x与g x=3x−3−x的定义域均为R,则 A. f x与g x均为偶函数B. f x为偶函数,g x为奇函数C. f x与g x均为奇函数D. f x为奇函数,g x为偶函数4. 已知数列a n为等比数列,S n是它的前n项和,若a2⋅a3=2a1,且a4与2a7的等差中项为5,则4 S5= A. 35B. 33C. 31D. 29"是"一元二次方程x2+x+m=0有实数解"的 5. " m<14A. 充分非必要条件B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件BBʹ=CCʹ=AB,则多6. 如图,△ABC为正三角形,AAʹ∥BBʹ∥CCʹ,CCʹ⊥平面ABC,且3AAʹ=32面体ABC−AʹBʹCʹ的正视图(也称主视图)是 A. B.C. D.7. 已知随机变量X服从正态分布N3,1,且P2≤X≤4=0.6826,则P X>4= A. 0.1588B. 0.1587C. 0.1586D. 0.15858. 为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是 A. 1205秒B. 1200秒C. 1195秒D. 1190秒二、填空题(共7小题;共35分)9. 函数f x=lg x−2的定义域是.10. 若向量a=1,1,x,b=1,2,1,c=1,1,1,满足条件c−a⋅2b=−2,则x=.11. 已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=3,A+C=2B,则sin A=.12. 若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是.13. 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n位居民的月均用水量分别为x1,⋯,x n(单位:吨).根据如图所示的程序框图,若n=2,且x1,x2分别为1,2,则输出的结果S为.,∠OAP=30∘,则14. 如图,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a3CP=.15. 在极坐标系ρ,θ0≤θ<2π中,曲线ρ=2sinθ与ρcosθ=−1的交点的极坐标为.三、解答题(共6小题;共78分)16. 已知函数f x=A sin3x+φA>0,x∈−∞,+∞,0<φ<π在x=π12时取得最大值4.(1)求f x的最小正周期;(2)求f x的解析式;(3)若f23α+π12=125,求sinα.17. 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为490,495,495,500,⋯,510,515,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.18. 如图,AEC是半径为a的半圆,AC为直径,点E为AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=5a,EF=6a.(1)证明:EB⊥FD;(2)已知点Q,R分别为线段FE,FB上的点,使得FQ=23FE,FR=23FB,求平面BED与平面RQD所成二面角的正弦值.19. 某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?−y2=1的左、右顶点分别为A1,A2,点P x1,y1,Q x1,−y1是双曲线上不同的20. 已知双曲线x22两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H0, >1的两条直线l1和l2与轨迹E都只有一个交点,且l1⊥l2,求 的值.21. 设A x1,y1,B x2,y2是平面直角坐标系xOy上的两点,现定义由点A到点B的一种折线距离ρA,B为ρA,B=x2−x1+y2−y1.对于平面xOy上给定的不同的两点A x1,y1,B x2,y2,(1)若点C x,y是平面xOy上的点,试证明ρA,C+ρC,B≥ρA,B;(2)在平面xOy上是否存在点C x,y,同时满足①ρA,C+ρC,B=ρA,B;②ρA,C=ρC,B.若存在,请求出所有符合条件的点;若不存在,请予以证明.答案第一部分1. D2. A3. B 【解析】验证f−x=3−x+3−−x=f x,g−x=3−x−3−−x=−g x.4. C 【解析】a2⋅a3=a1q⋅a1q2=2a1,a1q3=2,即a4=2.又a4与2a7的等差中项为54,即a4+2a7=52,得a7=14.所以q=12,a1=16.所以S5=161−1251−12=31.5. A【解析】方程x2+x+m=0有实数解的充要条件为Δ=1−4m≥0,解得m≤1 4 .6. D7. B 【解析】由题设条件知μ=3,则P X>4=1−P2≤X≤4=1−0.6826=0.1587.8. C 【解析】由题意知共有5!=120个不同的闪烁,每次闪烁时间5秒,共5×120=600秒,每两次闪烁之间的间隔为5秒,共5×120−1=595秒.总共就有600+595=1195秒.第二部分9. 2,+∞10. 2【解析】由已知c=1,1,1,a=1,1,x,得c−a=0,0,1−x,所以c−a⋅2b=0,0,1−x⋅2,4,2=21−x=−2,即x=2.11. 12【解析】因为A+C=2B,所以B=60∘,又由正弦定理得:asin A =bsin B,所以sin A=a sin Bb=323=12.12. x+22+y2=213. 14【解析】当i=1时,S1=1,S2=1;当i=2时,S1=1+2=3;S2=1+22=5,此时S=12×5−12×9=14.i的值变成3,从循环体中跳出,输出S的值为14.14. 98a【解析】在△OPA中,P为AB的中点,∠OAP=30∘,所以AP=32a,又由相交弦定理得PC⋅PD=PA2,得PC⋅23a=32a2,即PC=98a.15. 2,34π【解析】两条曲线ρ=2sinθ与ρcosθ=−1的普通方程分别为x2+y2=2y与x=−1,交点坐标为−1,1,对应的极坐标为2,34π .第三部分16. (1)因为f x=A sin3x+φ,所以T=2π3.(2)因为最大值为4,所以A=4.由题意得4sin3×π12+φ =4,则有sin3×π+φ =1,即π+φ=π+2kπ,k∈Z解得φ=π+2kπ,k∈Z因为0<φ<π故φ=π4.所以f x的解析式为f x=4sin3x+π.(3)由题意得4sin32α+π+π=12,即sin2α+π=3,从而cos2α=1−2sin2α=3 ,解得sinα=±5 5 .17. (1)重量超过505克的产品数量是40×0.05×5+0.01×5=12 件.(2)依题意Y 的所有可能取值为0,1,2.P Y =0 =C 282402=63,P Y =1 =C 121C 281C 402=2865,P Y =2 =C 122C 402=11130,所以Y 的分布列为Y 012P632811(3)该流水线上产品重量超过505克的概率为0.3.令ξ为任取的5件产品中重量超过505克的产品数量,则ξ~B 5,0.3 , 故所求的概率为P ξ=2 =C 52 0.3 2 1−0.3 3=0.3087.18. (1)∵E 为AC 的中点,AB =BC ,AC 为直径, ∴EB ⊥AD .∵EF 2=6a 2= 5a 2+a 2=BF 2+BE 2, ∴EB ⊥FB . 又∵BF ∩BD =B , ∴EB ⊥平面BDF . ∵FD ⊂平面BDF , ∴EB ⊥FD .(2)方法一:如图,过D 作HD ∥QR .由FQ =23FE ,FR =23FB ,知QR ∥EB ,∴HD ∥EB .又∵D ∈平面 BED ∩平面 RQD , ∴HD 为平面BED 与平面RQD 的交线. ∵DR ,DB ⊂平面 BDF ,BE ⊥平面 BDF , ∴HD ⊥平面 BDF ,从而HD ⊥BD ,HD ⊥RD ,则∠RDB是平面BED与平面RQD所成二面角的平面角.由FB=FD,BC=CD,得FC⊥BD,则cos∠FBC=BCBF=a5a=55,从而sin∠FBC=25,由余弦定理得RD=BD2+BR2−2BD⋅BR cos∠RBD=2a2+5a3−2⋅2a⋅5a3⋅15=29 3a.由正弦定理得sin∠RDB=RBRD⋅sin∠FBC=5a3293⋅5=229.故平面BED与平面RQD所成二面角正弦值为22929.方法二:如图,以B为原点,BE为x轴正方向,BD为y轴正方向,过B作平面BEC的垂线,建立空间直角坐标系,由此得B0,0,0,C0,a,0,D0,2a,0,E a,0,0,由FD=FB,BC=CD,得FC⊥BD,则FC=2a.由FQ=23FE,FR=23FB,得R0,13a,23a ,从而RQ=23BE=23a,0,0,RD=0,5 3 a,−23a .设平面RQD的法向量为n1=x,y,z,则n1⋅RD=0,n1⋅RQ=0,即ax=0,5ay−2az=0,所以n1=0,2,5.而平面BED的法向量为n2=0,0,1,所以cos n1,n2=529,从而sin n1,n2=229.故平面BED与平面RQD所成二面角正弦值为22929.19. 设为该儿童分别预订x、y个单位的午餐和晚餐,共花费z元,则z=2.5x+4y,且满足以下条件12x+8y≥64,6x+6y≥42,6x+10y≥54,x,y≥0,化简得3x+2y≥16,x+y≥7,3x+5y≥27,x,y≥0,作出可行域如图,则z在可行域的四个顶点A9,0,B4,3,C2,5,D0,8处的值分别为z A=2.5×9+4×0=22.5,z B=2.5×4+4×3=22,z C=2.5×2+4×5=25,z D=2.5×0+4×8=32.比较之,z B最小,因此应当为该儿童预定4个单位的午餐和3个单位的晚餐,就可以满足要求.20. (1)由A1,A2为双曲线的左右顶点知A1 −2,0,A22,0,故有直线A1P的方程为y=1x1+2+2, ⋯⋯①直线A2Q的方程为y=1x1−2−2, ⋯⋯②两式相乘得y 2=−y 1212x 2−2 , 因为点P x 1,y 1 在双曲线上,所以x 122−y 12=1,即y 12x 12−2=12,故y 2=−12 x 2−2 ,整理得x 22+y 2=1, 因为点P ,Q 是双曲线上的不同两点,所以它们与点A 1,A 2均不重合, 故点A 1,A 2均不在轨迹上.过点 0,1 及A 2的直线l 的方程为x + 2y − 2=0, 解方程组x + 2y − 2=0,x 22−y 2=1,得x = y =0,所以直线l 与双曲线只有一个交点A 2. 故轨迹不经过 0,1 ,同理轨迹也不经过点 0,−1 . 综上分析,轨迹E 的方程为x 22+y 2=1,x ≠0 且 x ≠± 2.(2)设l 1:y =kx + k >0 ,则由l 1⊥l 2知,l 2:y =−1k x + . 将l 1:y =kx + 代入x 22+y 2=1,得x 22+ kx + 2=1,即 1+2k 2 x 2+4k x +2 2−2=0,若l 1与椭圆相切,则Δ=16k 2 2−4 1+2k 2 2 2−2 =0,即1+2k 2= 2. 同理,若l 2与椭圆相切,则1+2⋅1k = 2,由l 1与l 2与轨迹E 都只有一个交点包含以下四种情况: ①直线l 1与l 2都与椭圆相切,即1+2k 2= 2,且1+2⋅1k 2= 2,消去 2得1k 2=k 2,即k 2=1,从而2=1+2k 2=3,即 = 3;②直线l 1过点A 1 − 2,0 ,而l 2与椭圆相切,此时k ⋅ − 2 + =0,1+2⋅1k 2= 2,解得 = 1+ 172; ③直线l 2过点A 2 2,0 ,而l 1与椭圆相切,此时−1k ⋅ 2+ =0,1+2k 2= 2,解得 =1+ 172; ④直线l 1过点A 1 − 2,0 ,而直线l 2过点A 2 2,0 ,此时k ⋅ − 2 + =0,−1k⋅ 2 + =0,所以 = 2,综上所述, 的值为 3, , 1+ 172. 21. (1)由绝对值不等式知普通高等学校招生全国统一考试高考数学教师精校版含详解完美版ρA,C+ρC,B=x−x1+x2−x+y−y1+y2−y≥ x−x1+x2−x+y−y1+y2−y=x2−x1+y2−y1=ρA,B,当且仅当x−x1⋅x2−x≥0且y−y1⋅y2−y≥0时等号成立.(2)由ρA,C+ρC,B=ρA,B,得x−x1⋅x2−x≥0,且y−y1⋅y2−y≥0, ⋯⋯①由ρA,C=ρC,B,得x−x1+y−y1=x2−x+y2−y, ⋯⋯②因为A x1,y1,B x2,y2是不同的两点,则:1)若x1=x2且y1≠y2,不妨设y1<y2,由①得x=x1=x2且y1≤y≤y2,由②得y=y1+y22,此时,点C是线段AB的中点,即只有点C x1+x22,y1+y22满足条件;2)若x1≠x2且y1=y2,同理可得:只有AB的中点C x1+x22,y1+y22满足条件;3)若x1≠x2且y1≠y2,不妨设x1<x2. a.若y1<y2时,由①得x1≤x≤x2且y1≤y≤y2,由②得x+y=x1+x22+y1+y22,此时,所求点C的全体为M=x,y x+y=12x1+x2+y1+y2,x1≤x≤x2且y1≤y≤y2.b.若y1>y2时,类似地由条件①可得x1≤x≤x2且y2≤y≤y1,从而由条件②得x−y= 12x1+x2−y1−y2.此时,所求点C的全体为N=x,y x−y=12x1+x2−y1−y2,x1≤x≤x2且y2≤y≤y1.。
2010年四川理一、选择题(共12小题;共60分)1. i是虚数单位,计算i+i2+i3= A. −1B. 1C. −iD. i2. 下列四个图象所表示的函数,在点x=0处连续的是 A. B.C. D.3. 2log510+log50.25= A. 0B. 1C. 2D. 44. 函数f x=x2+mx+1的图象关于直线x=1对称的充要条件是 A. m=−2B. m=2C. m=−1D. m=15. 设点M是线段BC的中点,点A在直线BC外,BC2=16,AB+AC=AB−AC,则AM=A. 8B. 4C. 2D. 16. 将函数y=sin x的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 A. y=sin2x−π10B. y=sin2x−π5C. y=sin12x−π10D. y=sin12x−π207. 某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为 A. 甲车间加工原料10箱,乙车间加工原料60箱B. 甲车间加工原料15箱,乙车间加工原料55箱C. 甲车间加工原料18箱,乙车间加工原料50箱D. 甲车间加工原料40箱,乙车间加工原料30箱8. 已知数列 a n 的首项a 1≠0,其前n 项的和为S n ,且S n +1=2S n +a 1,则lim n→∞a nS n= A. 0B. 12C. 1D. 29. 椭圆x 2a 2+y 2b 2=1 a >b >0 的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 A. 0,22B. 0,12C. 2−1,1D. 12,110. 半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,△BCD 是平面α内边长为R 的正三角形,线段AC 、AD 分别与球面交于点M 、N ,那么M ,N 两点间的球面距离是 A. R arccos 1725B. R arccos 1825C. 13πRD. 415πR11. 设a >b >c >0,则2a 2+1ab +1a a−b −10ac +25c 2的最小值是 A. 2B. 4C. 2D. 512. 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是 A. 72B. 96C. 108D. 144二、填空题(共4小题;共20分) 13. 直线x −2y +5=0与圆x 2+y 2=8相交于A ,B 两点,则 AB = .14. 如图,二面角α−l −β的大小是60∘,AB ⊂α,B ∈l ,AB 与l 所成的角为30∘,则AB 与平面β所成角的正弦值是 .15. 设S 为复数集C 的非空子集.若对任意x ,y ∈S ,都有x +y ,x −y ,xy ∈S ,则称S 为封闭集.下列命题: ①集合S = a +b i a ,b 为整数,i 为虚数单位 为封闭集; ②若S 为封闭集,则一定有0∈S ; ③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆C 的任意集合T 也是封闭集.其中真命题是 .(写出所有真命题的序号)16. 2− x3 6的展开式中的第四项是 .三、解答题(共6小题;共78分)17. 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料.(1)求甲中奖且乙、丙都没有中奖的概率; (2)求中奖人数ξ的分布列及数学期望Eξ.18. 已知正方体ABCD −AʹBʹCʹDʹ的棱长为1,点M 是棱AAʹ的中点,点O 是对角线BDʹ的中点.(1)求证:OM 为异面直线AAʹ和BDʹ的公垂线; (2)求二面角M −BCʹ−Bʹ的大小; (3)求三棱锥M −OBC 的体积.19. (1)(i )证明两角和的余弦公式C α+β :cos α+β =cos αcos β−sin αsin β; (ii )由C α+β 推导两角和的正弦公式S α+β :sin α+β =sin αcos β+cos αsin β. (2)已知△ABC 的面积S =12,AB ⋅AC =3,且cos B =35,求cos C .20. 已知定点A −1,0 ,F 2,0 ,定直线l :x =12,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N . (1)求E 的方程; (2)试判断以线段MN 为直径的圆是否过点F ,并说明理由.21. 已知数列 a n 满足a 1=0,a 2=2,且对任意m ,n ∈N ∗都有a 2m−1+a 2n−1=2a m +n−1+2 m −n 2. (1)求a 3,a 5;(2)设b n =a 2n +1−a 2n−1 n ∈N ∗ ,证明:数列 b n 是等差数列; (3)设c n = a n +1−a n q n−1 q ≠0,n ∈N ∗ ,求数列 c n 的前n 项和S n .22. 设f x =1+a x1−a x a >0 且 a ≠1 ,g x 是f x 的反函数.(1)设关于x 的方程log a tx −17−x =g x 在区间 2,6 上有实数解,求t 的取值范围;(2)当a =e (e 为自然对数的底数)时,证明: g kn k =2>2 2n n +1;(3)当0<a ≤12时,试比较 f k n k =1−n 与4的大小,并说明理由.答案第一部分1. A2. D3. C4. A5. C6. C7. B 【解析】设甲车间加工原料x箱,乙车间加工原料y箱,则x+y≤70,10x+6y≤480,x,y∈N.目标函数z=280x+200y.由线性规划可得:当x=15,y=55时z最大.8. B 【解析】由S n+1=2S n+a1,且S n+2=2S n+1+a1,作差得a n+2=2a n+1.又S2=2S1+a1,即a2+a1=2a1+a1,即a2=2a1.故a n是公比为2的等比数列,且S n=a11−2n1−2=−a11−2n,则lim n→∞a nS n=lim n→∞2n−12n−1=lim n→∞12⋅11−12n=12.9. D 【解析】答案:D解析:线段AP的垂直平分线过点F,即F点到P点与A点的距离相等,而 FA =a 2c −c=b2c, PF ∈a−c,a+c,于是b2c∈a−c,a+c,即ac−c2≤b2≤ac+c2.所以ac−c2≤a2−c2,a2−c2≤ac+c2⇒ca≤1,ca≤−1 uo ca≥12.又e∈0,1,故e∈12,1.10. A【解析】在Rt△ABC中,由AB=2R,BC=R,得AC=5R,从而cos∠BAC=25.由于OA=OM,则△AOM为等腰三角形,从而AM=2R cos∠BAC=45R.因为MN∥CD,所以AM=MN,解得MN=4 R.在△OMN中,由余弦定理得cos∠MON=R2+R2−45R22R⋅R=1725,从而∠MON =arccos17. 故M ,N 间的球面距离为R arccos 1725.11. B 【解析】2a 2+1ab +1a a −b−10ac +25c 2= a −5c 2+a 2−ab +ab +1ab +1a a −b= a −5c 2+ab +1+a a −b +1≥0+2+2=4.当且仅当a −5c =0,ab =1,a a −b =1,即a = 2,b = 22,c =25时,最小值为4. 12. C 【解析】先选一个偶数排个位,有3种选法. ①若5在十位或十万位,共有24种. ②若5排在百位、千位或万位,共有12种. 所以共计3× 24+12 =108种. 第二部分 13. 2 3 14. 34【解析】过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线,垂足为D .连接AD ,容易得知AD ⊥l ,故∠ADC 为二面角α−l −β的平面角,大小为60∘.又由已知,∠ABD =30∘,连接CB ,则∠ABC 为AB 与平面β所成的角,设AD =2,则AC = 3,CD =1,AB =ADsin 300=4,所以sin ∠ABC =ACAB =34.15. ①②【解析】直接验证可知①正确;当S 为封闭集时,因为x −y ∈S ,取x =y ,得0∈S ,②正确; 对于集合S = 0 ,显然满足所有条件,但S 是有限集,③错误;取S = 0 ,T = 0,1 ,满足S ⊆T ⊆C ,但由于0−1=−1∉T ,故T 不是封闭集,④错误. 16. −160x【解析】T 4=C 63×23 x3 3=−160x.第三部分17. (1)设甲、乙、丙中奖的事件分别为A 、B 、C ,那么P A =P B =P C =1,所求概率为P A⋅B⋅C =P A P B P C=16⋅562=25216.答:甲中奖且乙、丙都没有中奖的概率为25216.(2)ξ的可能值为0,1,2,3.那么Pξ=k=C3k 1k53−kk=0,1,2,3.所以中奖人数ξ的分布列为ξ0123P 12521625725721216数学期望Eξ=0×125216+1×2572+2×572+3×1216=12.18. (1)法一:如图,连接AC,取AC中点K,则K为BD的中点,连接OK.因为M是棱AAʹ的中点,点O是BDʹ的中点.所以AM∥DDʹ∥OK,AM=12DDʹ=OK,所以AKOM为平行四边形.所以MO∥AK,MO=AK.由AAʹ⊥AK,得MO⊥AAʹ,因为AK⊥BD,AK⊥BBʹ,所以AK⊥平面BDDʹBʹ,所以AK⊥BDʹ,所以MO⊥BDʹ.又因为OM与异面直线AAʹ和BDʹ都相交,故OM为异面直线AAʹ和BDʹ的公垂线.法二:以点D为坐标原点,建立如图所示空间直角坐标系D−xyz.则A1,0,0,B1,1,0,C0,1,0,Aʹ1,0,1,Cʹ0,1,1,Dʹ0,0,1.因为点M是棱AAʹ的中点,点O是BDʹ的中点.所以M1,0,12,O12,12,12,所以OM=12,−12,0,AAʹ=0,0,1,BDʹ=−1,−1,1,所以OM⋅AAʹ=0,OM⋅BDʹ=−12+12+0=0.所以OM⊥AAʹ,OM⊥BDʹ.又因为OM与异面直线AAʹ和BDʹ都相交,故OM为异面直线AAʹ和BDʹ的公垂线.(2)解法一:取BBʹ中点N,连接MN,则MN⊥平面BCCʹBʹ,过点N作NH⊥BCʹ于H,连接MH,则由三垂线定理得BCʹ⊥MH.从而∠MHN为二面角M−BCʹ−Bʹ的平面角,所以MN=1,NH=BN sin45∘=12×22=24,在Rt△MNH中,tan∠MHN=MNNH =24=22.故二面角M−BCʹ−Bʹ的大小为arctan22.解法二:设平面BMCʹ的一个法向量为n1=x,y,z,BM=0,−1,12,BCʹ=−1,0,1,则n1⋅BM=0,n1⋅BCʹ=0,即−y+1z=0,−x+z=0,取z=2,则x=2,y=1,从而n1=2,1,2.取平面BCʹBʹ的一个法向量为n2=0,1,0,所以cos n1,n2=n1⋅n212=19⋅1=1.由图可知,二面角M−BCʹ−Bʹ的平面角为锐角,故二面角M−BCʹ−Bʹ的大小为arccos13.(3)解法一:易知S△OBC=S△OAʹDʹ,且△OBC和△OAʹDʹ都在平面BCDʹAʹ内,点O到平面MAʹDʹ距离 =12,所以V M−OBC=V M−OAʹDʹ=V O−MAʹDʹ=1S△MAʹDʹ =1.解法二:易知S△OBC=1S四边形BCDʹAʹ=1×1×2=2,设平面OBC的一个法向量为n3=x1,y1,z1,BDʹ=−1,−1,1,BC=−1,0,0,则n3⋅BDʹ=0,n3⋅BC=0,即−x1−y1+z1=0,−x1=0.取z1=1,得y1=1,从而n3=0,1,1.点M到平面OBC的距离d=BM⋅n33=122=2,所以V M−OBC=13S△OBC⋅d=13×24×24=124.19. (1)(i)如图,在直角坐标系xOy内作单位圆O,并作出角α、β与−β,使角α的始边为Ox,交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2,终边交⊙O于P3;角−β的始边为OP1,终边交⊙O 于P4.则P11,0,P2cosα,sinα,P3cosα+β,sinα+β,P4cos−β,sin−β.由P1P3=P2P4及两点间的距离公式,得cosα+β−12+sin2α+β=cos−β−cosα2+sin−β−sinα2,展开并整理,得2−2cosα+β=2−2cosαcosβ−sinαsinβ,所以cosα+β=cosαcosβ−sinαsinβ.(ii)由(i)易得cos π2−α =sinα,sin π2−α =cosα.sinα+β=cos π2−α+β=cos π2−α +−β=cos π−α cos−β−sinπ−α sin−β=sinαcosβ+cosαsinβ.(2)由题意,设△ABC的角B、C的对边分别为b、c,则S=12bc sin A=12,AB⋅AC=bc cos A=3>0,所以A∈0,π2,cos A=3sin A,又sin2A+cos2A=1,所以sin A=1010,cos A=31010,由题意cos B=35,得sin B=45,所以cos A+B=cos A cos B−sin A sin B=1010,故cos C=cosπ−A+B=−cos A+B=−10 10.20. (1)设P x,y,则x22=2x−1 2 ,化简得x2−y2=1y≠0.(2)以线段MN为直径的圆经过点F.理由如下:①当直线BC与x轴不垂直时,设BC的方程为y=k x−2k≠0,与双曲线x2−y23=1联立消去y,得3−k2x2+4k2x−4k2+3=0.由题意知3−k2≠0且Δ>0.设B x1,y1,C x2,y2,则x1+x2=4k2 2,x1x2=4k2+3 k2−3,所以y1y2=k2x1−2x2−2=k2x1x2−2x1+x2+4=k24k2+3k2−3−8k2k2−3+4=−9k2 2,因为x1,x2≠−1,所以直线AB的方程为y=y1x1+1x+1,因此M点的坐标为12,3y12x1+1.所以FM= −3,3y11,同理可得FN= −32,3y22x2+1.因此FM⋅FN= −32+9y1y212=94+−81k2k2−344k2+3k2−3+4k2k2−3+1=0.②当直线BC与x轴垂直时,其方程为x=2,则B2,3,C2,−3,AB的方程为y=x+1,因此M点的坐标为12,32,所以FM= −32,3 2,同理可得FN= −32,−32.因此FM⋅FN= −32+3× −3=0.综上,FM⋅FN=0,即FM⊥FN,故以线段MN为直径的圆经过点F.21. (1)由题意,令m=2,n=1,可得a3=2a2−a1+2=6,再令m=3,n=1,可得a5=2a3−a1+8=20.(2)当n∈N∗时,由已知(以n+2代替m)可得a2n+3+a2n−1=2a2n+1+8.于是a2n+1+1−a2n+1−1−a2n+1−a2n−1=8,即b n+1−b n=8.所以数列b n是公差为8的等差数列.(3)由(1)(2)解答可知b n是首项为b1=a3−a1=6,公差为8的等差数列,则b n=8n−2,即a2n+1−a2n−1=8n−2.另由已知(令m=1),可得a n=a2n−1+a12−n−12.那么a n+1−a n=a2n+1−a2n−12−2n+1=8n−22−2n+1=2n,于是c n=2nq n−1.当q=1时,S n=2+4+6+⋯+2n=n n+1;当q≠1时,S n=2⋅q0+4⋅q1+6⋅q2+⋯+2n⋅q n−1.两边同乘以q,可得qS n=2⋅q1+4⋅q2+6⋅q3+⋯+2n⋅q n.上述两式相减得1−q S n=21+q+q2+⋯+q n−1−2nq n=2⋅1−q n1−q−2nq n=2⋅1−n+1q n+nq n+1.所以S n=2⋅nq n+1−n+1q n+11−q2.综上所述S n=n n+1,q=1, 2⋅nq n+1−n+1q n+1,q≠1.22. (1)由题意得a x=y−1y+1>0 y=f x,故g x=log a x−1x+1,x∈−∞,−1∪1,+∞.由log atx2−17−x=log ax−1x+1,得t=x−127−x,x∈2,6,则tʹ=−3x2+18x−15=−3x−1x−5.列表如下:x22,555,66tʹ+0−t5↗极大值32↘25所以t最小值=5,t最大值=32,所以t的取值范围为5,32.(2)由题意得g k nk=2=ln1+ln2+ln3+⋯+lnn−1 =ln1×2×3×⋯×n−1=−lnn n+12.令u z=−ln z2−1−z2z=−2ln z+z−1zz>0,则uʹz=−2z+1+1z2=1−1z2≥0.所以u z在0,+∞上是增函数.又因为n n+12>1>0,所以u n n+12>u1=0,即ln 2−1−n n+122>0,即g k nk=2>22n n+1(3)设a=11+p,则p≥1,1<f1=1+a1−a=1+2p≤3.当n=1时,f1−1=2p≤2<4;当n≥2时,设k≥2,k∈N∗时,则f k=1+p k+1=1+2=1+2C k1p+C k2p2+⋯+C k k p k,所以1<f k≤1+2C k1+C k2=1+4k k+1=1+4k−4k+1.从而n −1< f k nk =2≤n −1+42−4n +1=n +1−4n +1<n +1. 所以n < f k nk =1<f 1 +n +1≤n +4.综上所述,总有 f k n k =1−n <4.。
2010-高三数学试题D最大值是 .9.(文)已知a 、b 、c 是锐角ABC ∆中角A 、B 、C 的对边,若3,4a b ==,ABC ∆的面积为33,则=c .(理)如果函数||1|lg |)(-=x x f 在其定义域的某个子集(1,1)k k -+上不存在反函数,那么实数k的取值范围是 . 10.(文)已知}221|{≤≤=x x A ,q px x x f ++=2)(和11)(++=xx x g 是定义在A 上的函数,当x 、0x A ∈时,有)()(0x f x f ≥,)()(0x g x g ≥,且)()(00x g x f =,则()f x 在A 上的最大值是 . (理)若关于x 的方程0)5(6241=-+⋅-⋅+k k k x x 在区间[0,1]上有解,则实数k 的取值范围是 . 11.(文)如果函数||1|lg |)(-=x x f 在定义域的某个子集)1,1(+-k k 上不存在反函数,那么实数k的取值范围是 . (理)设()f x 是定义在R 上的奇函数,且对于任意的x R ∈,(1)(1)f x f x +=-恒成立. 当[0,1]x ∈时,()2f x x =. 若关于x 的方程()f x ax =有5个不同的解,则实数a 的取值范围是 . 12.(文)对于函数2()lg(1)f x x ax a =+--,给出下列命题:① 当0a=时,()f x 的值域为R ;② 当0a >时,()f x 在[2,)+∞上有反函数;③ 当01a <<时,()f x 有最小值;④ 若()f x 在[2,)+∞上是增函数,则实数a 的取值范围是[)4,-+∞.上述命题中正确的是 .(填上所有正确命题的序号) (理)设集合R A ⊆,如果R x ∈0满足:对任意0>a ,都存在A x ∈,使得a x x <-<||00,那么称0x 为集合A 的聚点。
2010高考数学萃取精华30套(8)1.山东三模20. 已知椭圆C 的中心为坐标原点O ,一个长轴端点为)2,0(,短轴端点和焦点所组成的四边形为正方形,直线l 与y 轴交于点),0(m P ,与椭圆C 交于相异两点A 、B ,且2=.(Ⅰ)求椭圆方程;(Ⅱ)求m 的取值范围.20.解:(Ⅰ)由题意知椭圆的焦点在y 轴上,设椭圆方程为)0(12222>>=+b a bx a y ,由题意知2=a ,c b =,又222c b a +=则2=b ,所以椭圆方程为12422=+x y --------------------------------------4分 (Ⅱ)设),(),,(2211y x B y x A ,由题意,直线l 的斜率存在, 设其方程为m kx y +=,与椭圆方程联立即⎩⎨⎧+==+mkx y x y 4222, 则0)4)(2(4)2(,042)2(222222>---=∆=-+++m k mk m mkx x k由韦达定理知⎪⎪⎩⎪⎪⎨⎧+-=⋅+-=+22212212422k m x x k m k x x ;----------------------------------------6分又2=,即有),(2),(2211m y x y m x -=--2222222122121)22(22422k m k k m x x x x x x x x +-=+-∴⎩⎨⎧-=-=+∴=-∴--------------------------------------------8分 整理得22228)49(m k m -=-又0492=-m 时不成立,所以04928222>--=m m k ---------------------------10分得4942<<m ,此时0>∆ 所以m 的取值范围为)2,32()32,2(⋃--.-------------------------------------12分21. 已知关于x 函数x a xx g ln 2)(+=(R ∈a ),)()(2x g x x f +=, (Ⅰ)试讨论函数)(x g 的单调区间;(Ⅱ)若,0>a 试证)(x f 在区间)1,0(内有极值. 21.解:(Ⅰ)由题意)(x g 的定义域为),0(+∞x a xx g ln 2)(+=22'22)(x ax x a x x g -=+-=∴(i )若0≤a ,则0)('<x g 在),0(+∞上恒成立,),0(+∞为其单调递减区间; (ii )若0>a ,则由0)('=x g 得ax 2=, )2,0(a x ∈时,0)('<x g ,),2(+∞∈a x 时,0)('>x g ,所以)2,0(a 为其单调递减区间;),2(+∞a为其单调递增区间;----------6分(Ⅱ))()(2x g x x f +=所以)(x g 的定义域也为),0(+∞,且232''2'2222)()()(xax x x ax x x g x x f -+=-+=+=令),0[,22)(3+∞∈-+=x ax x x h因为0>a ,则06)(2'>+=a x x h ,所以)(x h 为),0[+∞上的单调递增函数,又0)1(,02)0(>=<-=a h h ,所以在区间)1,0(内)(x h 至少存在一个变号零点0x ,且0x 也是)('x f 的变号零点,所以)(x f 在区间)1,0(内有极值. --------------------12分22.已知数列}{n a 满足:)(1*N n a S n n ∈-=,其中n S 为数列}{n a 的前n 项和. (Ⅰ)试求}{n a 的通项公式; (Ⅱ)若数列}{n b 满足:)(*N n a nb nn ∈=,试求}{n b 的前n 项和公式n T ; (III )设11111n n n c a a +=++-,数列}{n c 的前n 项和为n P ,求证:212->n P n . 22. 解:(Ⅰ)n n a S -=1 ①111++-=∴n n a S ②②-①得n n n a a a +-=++11 )(,21*1N n a a n n ∈=∴+ 又1=n 时,111a a -=211=∴a )(,)21()21(21*1N n a n n n ∈=⋅=∴---------------------------------4分 (Ⅱ))(,2*N n n a nb n nn ∈⋅==n n n T 223222132⨯++⨯+⨯+⨯=∴ ③ 143222322212+⨯++⨯+⨯+⨯=∴n n n T ④③-④得1132221)21(222222++⨯---=⨯-++++=-n n n n n n n T整理得:*1,22)1(N n n T n n ∈+-=+-------------------------8分 (III ))121121(212111*********)21(11)21(111111111111--+-=-+++-=-++=-++=-++=++++++n n n n n n n n n n n n n a a c ----------------------------------------------------10分又1112121112121121122212222)12)(12()12(12121121+++++++<-+=-+<-+-=-++--=--+n nn n n nn n n n n n n n n -----------------------------------------------------------12分*1214322,21221212211)211(212)21212121(22N n n n n n P n n n n ∈->+-=---=+++->∴++ -----------------------------------------------------------14分2.江苏一模17.(本小题满分15分)设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,.(1)求数列{}n a 的通项公式及前n 项和公式; (2)设数列{}n b 的通项公式为nn n a b a t=+,问: 是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.【解】(1)设等差数列{}n a 的公差为d . 由已知得51323439a a a +=⎧⎨=⎩,, ……………………2分 即118173a d a d +=⎧⎨+=⎩,,解得112.a d =⎧⎨=⎩,……………………4分.故221n n a n S n =-=,.………6分(2)由(1)知2121n n b n t-=-+.要使12m b b b ,,成等差数列,必须212m b b b =+,即312123121m t t m t -⨯=+++-+,……8分.整理得431m t =+-, …………… 11分因为m ,t 为正整数,所以t 只能取2,3,5.当2t =时,7m =;当3t =时,5m =;当5t =时,4m =.故存在正整数t ,使得12m b b b ,,成等差数列. ………………… 15分18.(本小题满分15分)某地有三个村庄,分别位于等腰直角三角形ABC 的三个顶点处,已知AB =AC =6km ,现计划在BC 边的高AO 上一点P 处建造一个变电站. 记P 到三个村庄的距离之和为y . (1)设PBO α∠=,把y 表示成α的函数关系式; (2)变电站建于何处时,它到三个小区的距离之和最小? 【解】(1)在Rt AOB ∆中,6AB =,所以OB =OA =32.所以π4ABC ∠=由题意知π04α≤≤. ……………………2分所以点P 到A 、B 、C 的距离之和为 322sin 22(3232)3232cos y PB PA ααα-=+==. ……………………6分 故所求函数关系式为()2sin π32320y αα-=≤≤. ……………………7分(2)由(1)得22s i n 132cos y αα-'=,令0y '=即1sin 2α=,又π04α≤≤,从而π6α=. ……………………9分.当π06α≤<时,0y '<;当ππ64α<≤时, 0y '>. 所以当π6α=时,2sin 432cos y αα-=+取得最小值, ………………… 13分 此时π3266OP ==km ),即点P 在OA 上距O 6处. 【答】变电站建于距O 6处时,它到三个小区的距离之和最小. ………… 15分19.(本小题满分16分)已知椭圆()22220y x C a b a b:+=1>>6A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,. (1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440x mx y y m -+++-=与D 有公共点,试求实数m 的最小值.【解】(1)由离心率6e =226a b -=,即223a b =. ① ………………2分又点(13)B --,在椭圆2222:1y x C a b =+上,即2222(3)(1)1a b--=+.② ………………4分解 ①②得22124a b ==,,OBCAP(第18题图)故所求椭圆方程为221124y x +=. …………………6分由(20)(13)A B --,,,得直线l 的方程为2y x =-. ………8分 (2)曲线2222440x mx y y m -+++-=,即圆22()(2)8x m y -++=,其圆心坐标为(2)G m -,,半径22r =,表示圆心在直线 2y =-上,半径为22. ………………… 10分由于要求实数m 的最小值,由图可知,只须考虑0m <的情形. 设G 与直线l 相切于点T 222=,得4m =±,………………… 12分当4m =-时,过点(42)G --,与直线l 垂直的直线l '的方程为60x y ++=, 解方程组6020x y x y ++=⎧⎨--=⎩,得(24)T --,. ………………… 14分 因为区域D 内的点的横坐标的最小值与最大值分别为12-,,所以切点T D ∉,由图可知当G 过点B 时,m 取得最小值,即22(1)(32)8m --+-+=,解得min 71m =-. ………………… 16分3.深圳一模20.(本题满分14分)如图,为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已 知|AB|=4,曲线C 过Q 点,动点P 在曲线C 上运动且保 持|PA|+|PB|的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DN DM =λ,求λ的取值范围.20解:(1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系,∵|PA|+|PB|=|QA|+|QB|=2521222=+>|AB|=4.∴曲线C 为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a,短半轴为b,半焦距为c,则2a=25,∴a=5,c=2,b=1.∴曲线C 的方程为52x +y2=1.(2)设直线l 的方程为y=kx+2,代入52x +y2=1,得(1+5k2)x2+20kx+15=0.Δ=(20k)2-4×15(1+5k2)>0,得k2>53.由图可知21x x DN DM ==λ由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x k k x x将x1=λx2代入得⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x两式相除得)5(380)51(15400)1(2222k k k +=+=λλ+ 316)51(3804,320515,3510,532222<+<<+<∴<<∴>k k k k 即331,0,316)1(42<λ<∴>=λ<λλ+<∴解得DN DM①,21DNDM x x ==λ M 在D 、N 中间,∴λ<1 ②又∵当k 不存在时,显然λ=31=DN DM (此时直线l 与y 轴重合)综合得:1/3 ≤λ<1.21.已知函数3()3.f x x x =- (1)求曲线()y f x =在点2x =处的切线方程;(2)若过点(1,)(2)A m m ≠-可作曲线()y f x =的三条切线,求实数m 的取值范围.20.解(1)23()33,(2)9,(2)2322f x x f f ''=-==-⨯= ……………………………2分∴曲线()y f x =在2x =处的切线方程为29(2)y x -=-,即9160x y --=;…………4分(2)过点(1,)A m 向曲线()y f x =作切线,设切点为00(,)x y则32000003,()3 3.y x x k f x x '=-==-则切线方程为320000(3)(33)()y x x x x x --=--………………………………………………6分整理得32002330(*)x x m -++= ∵过点(1,)(2)A m m ≠-可作曲线()y f x =的三条切线 ∴方程(*)有三个不同实数根.记322()233,()666(1)g x x x m g x x x x x '=-++=-=- 令()0,0g x x '==或 1. …10分则,(),()x g x g x '的变化情况如下表当0,()x g x =有极大值3;1,()m x g x +=有极小值2m +. ………………12分由()g x 的简图知,当且仅当(0)0,(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,过点A 可作三条不同切线.所以若过点A 可作曲线()y f x =的三条不同切线,m 的范围是(3,2)--.……22.(本小题满分14分)已知函数2()2f x x x =+. (Ⅰ)数列11{}:1,(),n n n a a a f a +'==满足求数列}{n a 的通项公式;(Ⅱ)已知数列11{}0,()(*)n n n b b t b f b n N +=>=∈满足,求数列{}n b 的通项公式;(Ⅲ)设11,{}n n n n b c c b ++=数列的前n 项和为Sn ,若不等式n S <λ对所有的正整数n 恒成立,求λ的取值范围。
2010年高考数学试题分类汇编——新课标选考内容一、选择题(2010湖南文数)4. 极坐标cos p θ=和参数方程12x ty t ⎧=--⎨=+⎩(t 为参数)所表示的图形分别是A. 直线、直线B. 直线、圆C. 圆、圆D. 圆、直线D(2010重庆理数)(3)2241lim 42x x x →⎛⎫- ⎪--⎝⎭= A. —1 B. —14 C. 14D. 1 解析:2241lim 42x x x →⎛⎫- ⎪--⎝⎭=4121)2)(4(2(lim lim 222-=+-=+--→→x x x x x x(2010北京理数)(5)极坐标方程(p-1)(θπ-)=(p ≥0)表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线 答案:C(2010湖南理数)5、421dx x ⎰等于A 、2ln 2-B 、2ln 2C 、ln 2-D 、ln 2(2010湖南理数)3、极坐标方程cos ρθ=和参数方程123x ty t=--⎧⎨=+⎩(t 为参数)所表示的图形分别是A 、圆、直线B 、直线、圆C 、圆、圆D 、直线、直线(2010安徽理数)7、设曲线C 的参数方程为23cos 13sin x y θθ=+⎧⎨=-+⎩(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 距离为10的点的个数为 A 、1 B 、2C 、3D 、47.B【解析】化曲线C 的参数方程为普通方程:22(2)(1)9x y -++=,圆心(2,1)-到直线320x y -+=的距离3d ==<,直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求,3>在直线l 的另外一侧没有圆上的点符合要求,所以选B.【方法总结】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系,这就是曲线C 上到直线l 距离为,然后再判断知3>.二、填空题(2010上海文数)3.行列式cossin 66sincos66ππππ的值是 0.5 。
决战2010:高考数学专题精练(八)圆锥曲线一、填空题 1.已知椭圆1121622=+yx的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么 =21:PF PF .2.抛物线x y =2的准线方程是 .3.若方程22ax by c +=的系数,,a b c 可以从1,0,1,2,3,4-这6个数中任取3个不同的数而得到,则这样的方程表示焦点在x 轴上的椭圆的概率是___________.(结果用数值表示) 4.过点)1,4(-A 和双曲线116922=-yx右焦点的直线方程为 .5.已知AB 是椭圆)0(12222>>=+b a by ax 的长轴,若把该长轴n 等分,过每个等分点作AB 的垂线,依次交椭圆的上半部分于点121,,,-n P P P ,设左焦点为1F ,则________)(1111111lim=++++-∞→B F P F P F A F nn n6.抛物线28y x =-的焦点坐标为 . 7.抛物线28y x =-的焦点坐标为 . 二、解答题 1.(本题满分14分)我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径34=R 百公里)的中心F 为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)A 到火星表面的距离为8百公里,远火星点(轨道上离火星表面最远的点)B 到火星表面的距离为800百公里. 假定探测器由近火星点A 第一次逆时针运行到与轨道中心O 的距离为ab 百公里时进行变轨,其中a 、b 分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).2.过直角坐标平面xOy 中的抛物线()022>=p px y 的焦点F 作一条倾斜角为4π的直线与抛物线相交于A ,B 两点。
(1)用p 表示A ,B 之间的距离;(2)证明:AOB ∠的大小是与p 无关的定值,并求出这个值。
3.(本题满分14分)设12,F F 分别是椭圆C :22221(0)x y a b ab+=>>的左右焦点(1)设椭圆C 上的点2到12,F F 两点距离之和等于4,写出椭圆C 的方程和焦点坐标(2)设K 是(1)中所得椭圆上的动点,求线段1KF 的中点B 的轨迹方程(3)设点P 是椭圆C 上的任意一点,过原点的直线L 与椭圆相交于M ,N 两点,当直线PM ,PN 的斜率都存在,并记为,PM PN k K 试探究PM PN k K ⋅的值是否与点P 及直线L 有关,并证明你的结论。
4.(本题满分12分)设点F 为椭圆1121622=+yx的左焦点,点P 是椭圆上的动点.试求FP的模的最小值,并求此时点P 的坐标.5.(本题满分12分)设点)0,(m M 在椭圆1121622=+yx的长轴上,点P 是椭圆上任意一点. 当MP的模最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.6.(本题满分16分)第1小题满分4分,第2小题满分12分.在平面直角坐标系xoy 中,已知圆C 的圆心在第二象限,半径为且与直线y x =相切于原点O .椭圆22219x ya+=与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)圆C 上是否存在点Q ,使O Q 、关于直线(CF C 为圆心,F 为椭圆右焦点)对称,若存在,请求出点Q 的坐标;若不存在,请说明理由.第八部分:圆锥曲线参考答案 一、填空题 1.3:5 2.41-=x .3.1104.-=x y 5. 5.a 6.(2,0)- 7.(2,0)- 二、解答题1.[解] 设所求轨道方程为)0(12222>>=+b a by ax ,22ba c -=.348,34800+=-+=+c a c a ,396,438==∴c a . …… 4分于是 35028222=-=c a b . ∴ 所求轨道方程为13502819184422=+yx. …… 6分设变轨时,探测器位于),(00y x P ,则1.819752020==+ab y x ,13502819184422=+y x ,解得 7.2390=x ,7.1560=y (由题意). …… 10分 ∴ 探测器在变轨时与火星表面的距离为3.187)(2020≈-+-R y c x . …… 13分答:探测器在变轨时与火星表面的距离约为187百公里. …… 14分 2.解:(1)焦点()0,1F ,过抛物线的焦点且倾斜角为4π的直线方程是2p x y -=由⎪⎩⎪⎨⎧-==222p x y px y 04322=+-⇒p px x 4,32p x x p x x B A B A ==+⇒p p x x AB B A 4=++=⇒ ( 或 p p AB 44sin22==π)(2)()()()()222222222222222cos B BAAB A B A B B A A y xy xy y x x y x y x BOAO ABBOAOAOB ++----+++=-+=∠()()()()[]4141342422222222-=+++++-=+++=px x p x x x x px x p x x y xy xy y x x B A B A B A B A B A BBAABA B A∴AOB ∠的大小是与p 无关的定值,AOB ∠41413arccos-=π。
3.解:(1)由于点22221ab+= ------1分2a =4, ------2分椭圆C 的方程为22143x y+=--------3分焦点坐标分别为(-1,0) ,(1,0)-----------4分 (2)设1KF 的中点为B (x, y )则点(21,2)K x y +--------6分 把K 的坐标代入椭圆22143xy+=中得22(21)(2)143x y ++=-----8分线段1KF 的中点B 的轨迹方程为221()1324yx ++=----------10分(3)过原点的直线L 与椭圆相交的两点M ,N 关于坐标原点对称设0000(,)(,),(,)M x y N x y p x y -- ----11分,,M N P 在椭圆上,应满足椭圆方程,得222200222211x y x yaba b+=+=,------12分000PM PN y y y y k K x x x x -+==-+-------------------13分PM PN k K ⋅=2200022y y y y y y x x x x x x -+-⋅=-+-=22b a------------15分故:PM PN k K ⋅的值与点P 的位置无关,同时与直线L 无关,-----16分 4.解:由条件,可得2224c a b =-=,故左焦点F 的坐标为()2,0-.设),(y x P 为椭圆上的动点,由于椭圆方程为1121622=+yx,故44≤≤-x .因为()2,FP x y =+,所以22222(2)(2)12(1)16xFPx y x =++=++⨯-2211416(8)44x x x =++=+,[]4,4x ∈-由二次函数性质可知,当4x =-时,2FP 取得最小值4.所以,FP的模的最小值为2,此时点P 坐标为(4,0)-.5.解:设),(y x P 为椭圆上的动点,由于椭圆方程为1121622=+yx,故44≤≤-x .因为(),MP x m y =-,所以22222()()12(1)16xM P x m y x m =-+=-+⨯-推出2M P2222312)4(4112241m m x mmx x -+-=++-=.依题意可知,当4=x 时,2M P 取得最小值.而[]4,4x ∈-,故有44≥m ,解得1≥m .又点M 在椭圆的长轴上,即44≤≤-m . 故实数m 的取值范围是]4,1[∈m .6.解:(1)由题意知:圆心(2,2),半径,圆C :22(2)(2)8x y ++-=(2)由条件可知5a =,椭圆221259xy+=,(4,0)F ∴(解法1)若存在,直线CF 的方程的方程为1(4)3y x =--即340x y +-=设Q (x , y ),则334022y x x y ⎧=⎪⎪⎨⎪+-=⎪⎩,解得45125x y ⎧=⎪⎪⎨⎪=⎪⎩,所以存在点Q ,Q 的坐标为412(,)55.(解法2)由条件知OF=QF ,设Q (x , y ),则22(2)(2)84x y ⎧++-=⎪=,解得45125x y ⎧=⎪⎪⎨⎪=⎪⎩,所以存在点Q ,Q 的坐标为412(,)55.。