2021届高考数学总复习:集合
- 格式:pptx
- 大小:1.13 MB
- 文档页数:51
专题一 集合与简易逻辑一、单选题1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知:{}U2,1,1B =--,则(){}U1,1AB =-.故选:C.2.设a ∈R ,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.3.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 【答案】C 【解析】根据集合并集概念求解. 【详解】[1,3](2,4)[1,4)A B ==故选:C4.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时, 若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件. 故选:C.5.已知集合P ={|14}<<x x ,{|23}Q x x =<<,则P Q =( ) A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤< D .{|14}<<x x【答案】B 【解析】根据集合交集定义求解. 【详解】(1,4)(2,3)(2,3)P Q ==故选:B6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D.9.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.10.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】b =0 时,f(x)=cosx +bsinx =cosx , f(x)为偶函数; f(x)为偶函数时,f(−x)=f(x)对任意的x 恒成立, f(−x)=cos(−x)+bsin(−x)=cosx −bsinxcosx +bsinx =cosx −bsinx ,得bsinx =0对任意的x 恒成立,从而b =0.从而“b =0”是“f(x)为偶函数”的充分必要条件,故选C.11.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.12.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.13.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.15.设m R ∈,则“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】根据条件先求m 的取值范围,再比较集合的包含关系,判断充分必要条件. 【详解】圆()()22:123C x y m -+-=-,圆心()1,2,半径3r m =-若直线l 与圆C 有公共点, 则圆心()1,2到直线的距离332m d m -=≤-13m ≤<,{}12m m ≤≤ {}13m m ≤<,所以“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的充分不必要条件.故选:A16.设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A. 17.已知集合{}0,1,2,4A =,{}2,nB x x n A ==∈,则AB =( )A .{}0,1,2B .{}0,1,4C .{}0,2,4D .{}1,2,4【答案】D 【解析】由题知{}1,2,4,16B =,再根据集合交集运算求解即可. 【详解】 因为{}0,1,2,4A =,{}1,2,4,16B =,所以{}1,2,4AB =,故选:D.18. “21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案.【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B19.已知命题:p “,a b 是两条不同的直线,α是一个平面,若,b a b α⊥⊥,则//a α”,命题:q “函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,为R 上的增函数”,下列说法正确的是A .“p q ⌝∧”为真命题B .“p q ∧⌝”为真命题C .“p q ∧” 为真命题D .“p q ⌝∧⌝” 为真命题【答案】D 【解析】依题意得p 是假命题;因为312<又()312f f ⎛⎫> ⎪⎝⎭,得q 是假命题,则可判断正确结果. 【详解】若,b a b α⊥⊥,则//a α或a α⊂,所以命题p 是假命题;函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,当1x =时()011f e ==,当32x =时3323022f ⎛⎫=⨯-= ⎪⎝⎭,因为312<又()312f f ⎛⎫> ⎪⎝⎭,所以()f x 在R 上不是增函数,故q 是假命题; 所以p ⌝与q ⌝是真命题,故“p q ⌝∧⌝” 为真命题 故选:D .20.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③ B .①②C .②③D .③④【答案】A 【解析】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .21.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B22.已知M 、N 为R 的子集,若RM N =∅,{}1,2,3N =,则满足题意的M 的个数为( )A .3B .4C .7D .8【答案】D【解析】根据交集、补集的运算的意义,利用韦恩图可得出M ,N 关系,根据子集求解. 【详解】因为M 、N 为R 的子集,且RM N =∅,画出韦恩图如图,可知,M N ⊆, 因为{}1,2,3N =, 故N 的子集有32=8个. 故选:D23. “0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件【答案】A 【解析】根据直线与圆相交的判定,充分条件,必要条件即可求解 【详解】当0a =时,直线为0x y -=,过圆心(0,0),故直线与圆224x y +=相交,当直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交时,圆心到直线的距离222(1)(1)d a a =<++-,化简得220a +>,显然恒成立,不能推出0a =,所以“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的充分不必要条件, 故选:A24.设集合()222021,2020A x y x y ⎧⎫=+=⎨⎬⎩⎭,(){},2x B x y y ==,则集合A B 中元素的个数为( ) A .0 B .1 C .2 D .3【答案】C【解析】 分别作出2220212020x y +=,2x y =图象,判断交点个数即可.【详解】依题意:集合A B 中元素的个数即2220212020x y +=,2x y =图象交点个数如图所以一共有两个交点,所以集合A B 中元素的个数为2故选:C25.已知集合{}13A x x =≤<,{}B y y m =≤,且A B =∅,则实数m 应满足()A .1m <B .1mC .3m ≥D .3m >【答案】A【解析】根据集合交集定义即可求解.【详解】 解:∵集合{}13A x x =≤<,{}B y y m =≤,A B =∅∴1m <,故选:A .26.命题000:,20p x R x lnx ∃∈+<的否定为( )A .000,20x R x lnx ∃∉+≥B .000,20x R x lnx ∃∈+>C .,20x R x lnx ∀∈+>D .,20x R x lnx ∀∈+≥【答案】D【解析】 根据特称命题的否定是全称命题,直接写出即可.【详解】根据特称命题的否定是全称命题,所以命题p 的否定为,20x R x lnx ∀∈+≥.故选:D.27.已知集合{}220A x x x =-->,则A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥ 【答案】B【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x -或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.28.已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件 【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D29.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x ∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍. 若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、填空题30.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.31.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.32.设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题: ①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②【解析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④错误;故答案为:①②【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
2021年高考文科数学一轮复习:题型全归纳与高效训练突破专题1.1 集合的概念与运算目录一、题型全归纳 (1)题型一集合的含义与表示 (1)题型二集合的基本关系 (2)题型三集合的基本运算 (3)题型四利用集合的运算求参数 (4)题型五集合中的新定义问题 (5)二、高效训练突破 (6)一、题型全归纳题型一集合的含义与表示【题型要点】与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.【例1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B中所含元素的个数为() A.3B.6C.8D.10【例2】)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.题型二集合的基本关系【题型要点】(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn图等来直观解决这类问题.【例1】已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4【例2】已知集合A={x|-1<x<3},B={x|-m<x<m},若B⊆A,则m的取值范围为______.题型三集合的基本运算【题型要点】集合基本运算的求解策略【例1】(2020·郑州市第一次质量预测)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=()A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}【例2】(2020黄冈调研)已知函数f(x)=11-x2的定义域为M,g(x)=ln(1-x)的定义域为N,则M∪(∁R N)=()A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1}题型四 利用集合的运算求参数【题型要点】根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.【例1】已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( )A .(-∞,-2)B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞)【例2】集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【例3】(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( )A .]4∞(-, B .4∞(-,) C .22∞(-,)D .22]∞(-,题型五 集合中的新定义问题【题型要点】(1)紧扣“新”定义:分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)把握“新”性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.(3)遵守“新”法则:准确把握新定义的运算法则,将其转化为集合的交集、并集与补集的运算即可.【例1】定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k 2-1,k ∈A },则集合B A∪B 中的元素个数为( ) A .6B .7C .8D .9【例2】设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【例3】如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.二、高效训练突破1.(2020·武汉调研)设A ,B 是两个非空集合,定义集合A -B ={x |x ∈A ,且x ∉B }.若A ={x ∈N |0≤x ≤5},B ={x |x 2-7x +10<0},则A -B =( )A .{0,1}B .{1,2}C .{0,1,2}D .{0,1,2,5} 2.(2020·巴蜀中学月考)已知集合A ={x |x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为( ) A .2B .3C .4D .53.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.44.设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=()A.{2}B.{2,3}C.{-1,2,3} D.{1,2,3,4}5.(2020·宁夏石嘴山三中一模)已知集合A={-1,0,1,2},B={x|x2-1≥0},则下图中阴影部分所表示的集合为()A.{-1} B.{0}C.{-1,0} D.{-1,0,1}6.已知集合A={x|x2-2x-3≤0,x∈N*},则集合A的真子集的个数为()A.7 B.8C.15 D.167.已知全集U=R,函数y=ln(1-x)的定义域为M,集合N={x|x2-x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)9.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=()A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]10.(2020·辽宁辽阳期末)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为()A.3 B.4C.5 D.611.如图所示的Venn图中,A,B是非空集合,定义集合A⊗B为阴影部分表示的集合.若x,y∈R,A={x|2x -x2≥0},B={y|y=3x,x>0},则A⊗B=()A.{x|0<x<2} B.{x|1<x≤2}C.{x|x≤1或x≥2} D.{x|0≤x≤1或x>2}12.(2020·济南外国语学校月考)集合M={x|2x2-x-1<0},N={x|2x+a>0},U=R.若M∩(∁U N)=∅,则a 的取值范围是()A.(1,+∞) B.[1,+∞)C.(-∞,1) D.(-∞,1]二、填空题1.(2020·江苏南京联合调研改编)已知全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},则A∩B =______,∁U A=______.2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=________.3.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a的值是________.4.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是________.5.已知集合A={x∈N|x2-2x-3≤0},B={1,3},定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},则A*B中的所有元素数字之和为________.6.已知k为合数,且1<k<100,当k的各数位上的数字之和为质数时,称此质数为k的“衍生质数”.(1)若k的“衍生质数”为2,则k=________;(2)设集合A={P(k)|P(k)为k的“衍生质数”},B={k|P(k)为k的“衍生质数”},则集合A∪B中元素的个数是________.三、解答题1.(2019·衡水中学测试)已知集合A={x∈R|x2-ax+b=0},B={x∈R|x2+cx+15=0},A∩B={3},A∪B={3,5}.(1)求实数a,b,c的值;(2)设集合P={x∈R|ax2+bx+c≤7},求集合P∩Z.2.已知集合A={x|-1<x≤3},B={x|m≤x<1+3m}.(1)当m=1时,求A∪B;(2)当B⊆∁R A时,求实数m的取值范围.3.(2019·江苏盐城一中模拟)已知集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+a2-5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.2021年高考文科数学一轮复习:题型全归纳与高效训练突破专题1.1 集合的概念与运算目录一、题型全归纳 (1)题型一集合的含义与表示 (1)题型二集合的基本关系 (2)题型三集合的基本运算 (3)题型四利用集合的运算求参数 (4)题型五集合中的新定义问题 (5)二、高效训练突破 (6)一、题型全归纳题型一集合的含义与表示【题型要点】与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.【例1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B中所含元素的个数为() A.3B.6C.8D.10【答案】D【解析】(1)由x∈A,y∈A,x-y∈A,得x-y=1或x-y=2或x-y=3或x-y=4,所以集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B中有10个元素.【例2】)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【答案】-32【解析】因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去), 当m =-32时,m +2=12≠3,符合题意.所以m =-32. 题型二 集合的基本关系【题型要点】(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题.【例1】已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4【答案】D【解析】 由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.【例2】已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______.【答案】(-∞,1]【解析】当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].题型三 集合的基本运算【题型要点】集合基本运算的求解策略【例1】(2020·郑州市第一次质量预测)设全集U =R ,集合A ={x |-3<x <1},B ={x |x +1≥0},则∁U (A ∪B )=( )A .{x |x ≤-3或x ≥1}B .{x |x <-1或x ≥3}C .{x |x ≤3}D .{x |x ≤-3}【答案】D【解析】因为B ={x |x ≥-1},A ={x |-3<x <1},所以A ∪B ={x |x >-3},所以∁U (A ∪B )={x |x ≤-3}.故选D.【例2】(2020黄冈调研)已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1-x )的定义域为N ,则M ∪(∁R N )=( )A .{x |x >-1}B .{x |x ≥1}C .∅D .{x |-1<x <1} 【答案】A11 / 19 【解析】由1-x >0得N ={x |x <1},∁R N ={x |x ≥1},而由1-x 2>0得M ={x |-1<x <1},所以M ∪(∁R N )={x |x >-1}.题型四 利用集合的运算求参数【题型要点】根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.【例1】已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( )A .(-∞,-2)B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞) 【答案】D.【解析】:因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,解得m ≥2或m ≤-2.【例2】集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4 【答案】D【解析】根据并集的概念,可知{a ,a 2}={4,16},故a =4.【例3】(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( )A .]4∞(-, B .4∞(-,) C .22∞(-,) D .22]∞(-,。
2021高|考真题分类汇编:集合与简易逻辑1.【2021高|考真题浙江理1】设集合A ={x|1<x <4} ,集合B ={x|2x -2x -3≤0}, 那么A ∩ (C R B ) =A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪ (3,4 ) 【答案】B【解析】B ={x|2x -2x -3≤0} =}31|{≤≤-x x ,A ∩ (C R B ) ={x|1<x <4} }3,1|{>-<x x x 或 =}43|{<<x x .应选B.2.【2021高|考真题新课标理1】集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,那么B 中所含元素的个数为 ( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时 ,y 可是1 ,2 ,3 ,4.当4=x 时 ,y 可是 1 ,2 ,3.当3=x 时 ,y 可是1 ,2.当2=x 时 ,y 可是1 ,综上共有10个 ,选D.3.【2021高|考真题陕西理1】集合{|lg 0}M x x => ,2{|4}N x x =≤ ,那么M N =( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,应选C.4.【2021高|考真题山东理2】全集{}0,1,2,3,4U = ,集合{}{}1,2,3,2,4A B == ,那么U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2021高|考真题辽宁理1】全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,那么)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9} .应选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素 ,所剩的元素形成的集合 ,由此可快速得到答案 ,选B【点评】此题主要考查集合的交集、补集运算 ,属于容易题 .采用解析二能够更快地得到答案 . 6.【2021高|考真题辽宁理4】命题p :∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0 ,那么⌝p 是 (A) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题 ,所以其否认⌝p 应是特称命题 ,又(f (x 2)-f (x 1))(x 2-x 1)≥0否认为(f (x 2)-f (x 1))(x 2-x 1)<0 ,应选C【点评】此题主要考查含有量词的命题的否认 ,属于容易题 .7.【2021高|考真题江西理1】假设集合A ={ -1 ,1} ,B ={0 ,2} ,那么集合{z ︱z =x +y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C 【答案】C【命题立意】此题考查集合的概念和表示 .【解析】因为B y A x ∈∈, ,所以当1-=x 时 ,2,0=y ,此时1,1-=+=y x z .当1=x 时 ,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素 ,选C. 8.【2021高|考真题江西理5】以下命题中 ,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数C .假设,x y ∈R ,且2,x y +>那么,x y 至|少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数 【答案】B【命题立意】此题考查命题的真假判断 .【解析】对于B,假设21,z z 为共轭复数 ,不妨设bi a z bi a z -=+=21, ,那么a z z 221=+ ,为实数 .设di c z bi a z +=+=21, ,那么i d b c a z z )()(21+++=+ ,假设21z z +为实数 ,那么有0=+d b ,当c a ,没有关系 ,所以B 为假命题 ,选B.9.【2021高|考真题湖南理1】设集合M ={ -1,0,1} ,N ={x|x 2≤x} ,那么M ∩N = A.{0} B.{0,1} C.{ -1,1} D.{ -1,0,0} 【答案】B 【解析】{}0,1N = M ={ -1,0,1} ∴M ∩N ={0,1}.【点评】此题考查了{}0,1N =,再利用交集定义得出M ∩N. 10.【2021高|考真题湖南理2】命题 "假设α =4π,那么tan α =1”的逆否命题是 α≠4π ,那么tan α≠1 B. 假设α =4π,那么tan α≠1 C. 假设tan α≠1 ,那么α≠4π D. 假设tan α≠1 ,那么α =4π【答案】C【解析】因为 "假设p ,那么q 〞的逆否命题为 "假设p ⌝ ,那么q ⌝〞 ,所以 "假设α =4π ,那么tan α =1”的逆否命题是 "假设tan α≠1 ,那么α≠4π〞. 【点评】此题考查了 "假设p ,那么q 〞形式的命题的逆命题、否命题与逆否命题 ,考查分析问题的能力.11.【2021高|考真题湖北理2】命题 "0x ∃∈R Q ,30x ∈Q 〞的否认是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否认知 ,是把谓词取否认 ,然后把结论否认 .因此选D 12.【2021高|考真题广东理2】设集合U ={1,2,3,4,5,6} , M ={1,2,4 } ,那么CuM = A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,应选C.13.【2021高|考真题福建理3】以下命题中 ,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a +b =0的充要条件是ab= -1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多项选择用筛选法 ,因为0>xe 对任意R x ∈恒成立 ,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义 ,所以选项C 错误;应选D.14.【2021高|考真题北京理1】集合A ={x ∈R|3x +2>0} B ={x ∈R| (x +1 )(x -3)>0} 那么A ∩B = A ( -∞ , -1 )B ( -1 , -23 ) C ( -23,3 )D (3, +∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .应选D .15.【2021高|考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内 ,直线b 在平面β内 ,且b m ⊥ ,那么 "αβ⊥〞是 "a b ⊥〞的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】此题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ,②如果//a m ,那么a b ⊥与b m ⊥条件相同.16.【2021高|考真题全国卷理2】集合A ={1.3.} ,B ={1 ,m} ,A B =A, 那么m =A 0B 0或3C 1D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.假设3=m ,那么}3,1{},3,3,1{==B A ,满足A B A = .假设m m = ,解得0=m 或1=m .假设0=m ,那么}0,3,1{},0,3,1{==B A ,满足A B A = .假设1=m ,}1,1{},1,3,1{==B A 显然不成立 ,综上0=m 或3=m ,选B..17【2021高|考真题四川理13】设全集{,,,}U a b c d = ,集合{,}A a b = ,{,,}B b c d = ,那么B C A C U U ___________ .【答案】{},,a c d【命题立意】此题考查集合的根本运算法那么 ,难度较小. 【解析】},{d c A C U = ,}{a B C U = ,},,{d c a B C A C U U =∴18.【2021高|考真题上海理2】假设集合}012|{>+=x x A ,}2|1||{<-=x x B ,那么=B A .【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(- .19.【2021高|考真题天津理11】集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 那么m =__________ ,n =__________. 【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根 ,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n .20.【2021高|考江苏1】 (5分 )集合{124}A =,, ,{246}B =,, ,那么A B = ▲ .【答案】{}1,2,4,6 . 【考点】集合的概念和运算 . 【分析】由集合的并集意义得{}1,2,4,6AB = .21.【2021高|考江苏26】 (10分 )设集合{12}n P n =,,,… ,*N n ∈.记()f n 为同时满足以下条件的集合A 的个数:①n A P ⊆;②假设x A ∈ ,那么2x A ∉;③假设A C x n p ∈ ,那么A C x np ∉2 .(1 )求(4)f ;(2 )求()f n 的解析式 (用n 表示 ).【答案】解: (1 )当=4n 时 ,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,, , ∴ (4)f =4 .( 2 )任取偶数n x P ∈ ,将x 除以2 ,假设商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m .于是=2k x m ,其中m 为奇数*k N ∈ .由条件知.假设m A ∈那么x A k ∈⇔为偶数;假设m A ∉ ,那么x A k ∈⇔为奇数 .于是x 是否属于A ,由m 是否属于A 确定 .设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数 . 当n 为偶数〔 或奇数 )时 ,n P 中奇数的个数是2n (12n + ) . ∴()()2122()=2nn n f n n +⎧⎪⎨⎪⎩为偶数为奇数. 【考点】集合的概念和运算 ,计数原理 .【解析】 (1 )找出=4n 时 ,符合条件的集合个数即可 . (2 )由题设 ,根据计数原理进行求解 .22.【2021高|考真题陕西理18】 (本小题总分值12分 )(1 )如图 ,证明命题 "a 是平面π内的一条直线 ,b 是π外的一条直线 (b 不垂直于π ) ,c 是直线b 在π上的投影 ,假设a b ⊥ ,那么a c ⊥〞为真 . (2 )写出上述命题的逆命题 ,并判断其真假 (不需要证明 )【答案】分析: (1 )证法一:做出辅助线 ,在直线上构造对应的方向向量 ,要证两条直线垂直 ,只要证明两条直线对应的向量的数量积等于0 ,根据向量的运算法那么得到结果.证法二:做出辅助线 ,根据线面垂直的性质 ,得到线线垂直 ,根据线面垂直的判定定理 ,得到线面垂直 ,再根据性质得到结论.(2 )把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.。