结晶器介绍
- 格式:doc
- 大小:62.00 KB
- 文档页数:4
DTB连续结晶器简介一、概述结晶是一个重要的化工过程,是物质提纯的主要手段之一。
众多化工、医药产品及中间产品都是以晶体形态出现的,结晶往往是大规模生产它们的最好又最经济的方法。
结晶过程是一个复杂的传热、传质过程。
在溶液和晶体并存的悬浮液中,溶液中的溶质分子向晶体转移(结晶),同时晶体的分子也在向溶液扩散(溶解)。
在未饱和溶液中溶解速度大于结晶速度,从宏观上看这个过程就是溶解;在过饱和溶液中结晶速度大于溶解速度,从宏观上看这个过程就是结晶。
所以,结晶的前提是溶液必须有一定的过饱和度。
对于不同的物料特性,有的溶液可以通过降温来实现过饱和,而有的溶液则必须移走溶剂才能实现过饱和。
过饱和度是物料结晶的推动力,但当过饱和度超出介稳区时将产生大量的细晶,这在结晶过程中是需要避免的。
在结晶过程中,晶体表面裹有一层饱和浓度的液膜,阻碍着晶体与溶液之间的传质。
液膜越薄、更新越快,则晶体生长就越快。
一般来说,连续结晶都是在全密闭条件下进行的,原料连续加入,晶浆连续排出,可以方便地控制其温度、压力和浓度。
通过对温度、压力、流量、蒸发量等参数的精确控制,可以准确地控制料液的过饱和度,给结晶过程提供恒定的推动力,使物料始终处在最适合结晶的状态。
连续结晶设备均设有晶浆循环系统,可为晶浆提供良好的流体动力学条件,使结晶的传质充分、迅速。
和传统的间歇结晶工艺相比,连续结晶具有收率高、能耗低、母液少、产品质量好、自动化程度高、设备占地面积小及操作人员少等优点。
由于连续结晶器具有较高的生产效率,一套连续结晶器往往可以取代数套乃至数十套间歇结晶器,相应配套设备的数量也大大减少。
二、DTB型结晶器DTB(Draft Tube Baffle)型结晶器是上世纪50年代出现的一种高效能的结晶器。
经过多年的实际运行的考察,证明这种形式的结晶器性能良好,生产强度高,器内不易结疤。
能生产大晶粒(600~1200μm)。
已成为连续结晶器的主要形式之一。
结晶器简介连铸结晶器结构有哪几种型式按连铸机型式不同,结晶器可分为直的和弧形的两大类。
按铸坯规格和形状来分,有小方坯、大方坯、板坯和异形坯结晶器。
按结晶器本身结构来说,可分为3种类型:管式结晶器:它是用壁厚为6~12mm的铜管制成所需要的断面,在铜管外面,套有套管以形成5~7mm的冷却水通路,保证冷却水流速为每分钟6~10m。
这种结晶器结构简单,制造方便,广泛用于小方坯连铸机上。
整体式结晶器:它是用整块铜锭刨削制成的,在其内腔四周钻有许多小孔用以通冷却水。
这种结晶器刚性好,易维护,寿命较长,但制造成本高,耗铜多,近几年已不采用。
组合结晶器:它是由4块铜板组合成所需要的内腔。
在20~50㎜的钢板上刨槽,并与一块钢板联结起来,冷却水在槽中通过。
大方坯和板坯连铸机都用这种形式的结晶器。
连铸结晶器应具有哪些性能结晶器是连铸机的重要部件。
钢液在结晶器中凝固成型,结成一定厚度的坯壳并被连续拉出进入二次冷却区。
良好的结晶器应具有下列性能:(1)良好的导热性,能使钢液快速凝固。
每lkg钢水浇注成坯并冷却到室温,放出的热量约为1340kJ/kg,而结晶器约带走5~10%,即67~134kJ/kg,若板坯尺寸为250×1700mm,拉速为lm/min时,结晶器每分钟带走的热量多达20万kJ。
而结晶器长度又较短,一般不超过lm,在这样短的距离内要能带走大量的热量,要求它必须具有良好的导热性能。
若导热性能差,会使出结晶器的铸坯坯壳变薄,为防止拉漏,只好降低拉速,因此结晶器具有良好的导热性是实现高拉速的重要前提。
(2)结构刚性要好。
结晶器内壁与高温金属接触,外壁通冷却水,而它的壁厚又很薄(仅有10~20mm),因此在它的厚度方向温度梯度极大,热应力相当可观,其结构必须具有较大的刚度,以适应大的热应力。
(3)装拆和调整方便。
为了能快速改变铸坯尺寸或快速修理结晶器,以提高连铸机的生产能力,现代结晶器都采用了整体吊装或在线调宽技术。
结晶器的原理结晶器是一种常见的实验设备,用于从溶液中分离出晶体。
它的原理基于溶解度和结晶过程的物理化学规律。
在结晶器中,溶液中的溶质随着溶剂的挥发逐渐饱和,导致溶质逐渐凝结成晶体,从而实现了分离的目的。
首先,溶液中的溶质在溶剂中的溶解度是一个关键因素。
溶解度取决于溶质和溶剂的性质,温度和压力等因素。
当溶质在溶剂中的溶解度达到饱和状态时,就会出现过饱和现象,这时溶质会开始凝结成晶体。
其次,结晶器中的温度控制也是至关重要的。
通常情况下,通过控制结晶器的温度,使溶剂逐渐挥发,从而导致溶质逐渐饱和并凝结成晶体。
温度的控制可以影响结晶速率和晶体的质量,因此在实验过程中需要精确控制温度。
此外,结晶器的设计也对结晶过程有着重要影响。
结晶器通常采用圆底烧瓶或结晶皿等容器,通过表面积和形状的设计来影响溶剂的挥发速率和晶体的形成。
合适的结晶器设计可以提高结晶效率和晶体的纯度。
总的来说,结晶器的原理是通过控制溶质在溶剂中的溶解度和温度,以及结晶器的设计,实现溶质从溶液中凝结成晶体的过程。
这一原理在化学、生物、药物等领域都有着广泛的应用,是一种重要的分离和纯化技术。
结晶器的原理虽然看似简单,但在实际操作中需要注意许多细节。
例如,在控制温度时需要避免温度波动,以免影响结晶过程;在结晶器的设计中需要考虑溶剂的挥发速率和晶体的收集等因素。
只有充分理解结晶器的原理,并在实验操作中严格控制各项条件,才能获得理想的结晶效果。
总之,结晶器作为一种重要的分离和纯化技术,其原理基于溶解度和结晶过程的物理化学规律。
通过控制溶质在溶剂中的溶解度和温度,以及结晶器的设计,可以实现溶质从溶液中凝结成晶体的目的。
在实际操作中,需要注意各项条件的控制,以获得理想的结晶效果。
结晶器内部构造摘要:一、结晶器简介二、结晶器内部构造1.容器部分2.搅拌器部分3.冷却装置部分4.过滤器部分5.控制仪表部分三、结晶器内部构造的影响因素1.容器材质2.搅拌器形式3.冷却方式4.过滤器形式正文:结晶器是化工、石油、冶金等工业生产过程中的一种重要设备,用于将溶液或熔融物中的某些成分转化为固态晶体。
结晶器内部构造的重要性不言而喻,它直接影响到结晶过程的效果和效率。
一、结晶器简介结晶器通常由容器、搅拌器和冷却装置等组成。
容器是结晶器的主体部分,用于容纳溶液或熔融物。
容器内部通常为圆形或方形,有平底或锥底等不同形式。
二、结晶器内部构造1.容器部分结晶器容器通常由不锈钢、碳钢等材质制成,具有优良的耐腐蚀性、耐磨性和热稳定性。
容器内部通常为圆形或方形,有平底或锥底等不同形式,以满足不同结晶过程的需求。
2.搅拌器部分搅拌器用于在容器内保持溶液或熔融物的均匀混合,以保证结晶过程的稳定进行。
搅拌器的形式有多种,如桨式、螺旋式、涡轮式等。
根据实际需求选择合适的搅拌器形式。
3.冷却装置部分冷却装置用于控制结晶过程中的温度,以保证晶体生长速率的适宜范围。
常见的冷却方式有水冷、风冷、油冷等。
根据实际需求选择合适的冷却方式。
4.过滤器部分过滤器用于分离晶体与母液,从而获得纯净的晶体。
过滤器的形式有多种,如布袋式、框式、板式等。
根据实际需求选择合适的过滤器形式。
5.控制仪表部分控制仪表用于实时监测结晶过程中的各项参数,如温度、压力、流量等,以便及时调整参数,保证结晶过程的稳定进行。
常见的控制仪表有温度控制器、压力计、流量计等。
三、结晶器内部构造的影响因素1.容器材质容器材质对结晶过程有重要影响。
通常,容器材质需要具有优良的耐腐蚀性、耐磨性和热稳定性。
根据实际需求选择合适的容器材质。
2.搅拌器形式搅拌器形式的选择应根据实际需求,以保证结晶过程中的混合效果。
不同的搅拌器形式可适用于不同类型的结晶过程。
连铸结晶器结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模,它的性能对连铸机的生产能力和铸坯质量起着十分重要的作用,因此,被称之为连铸设备的“心脏”。
1、结晶器的作用结晶器是连铸机的心脏,它的重要作用表现在:1)在尽可能高的拉速下保证出结晶器时形成足够的坯壳厚度,以抵抗钢水静压力而不拉漏;2)结晶器周边坯壳厚度能均匀稳定生长;3)结晶器内的钢水——渣相——坯壳——铜壁之间的相互作用,对铸坯表面质量有决定性影响。
上述第1)个作用决定了连铸机的生产率;2)、3)作用决定了铸坯表面质量。
2、结晶器的性能1)有较好的导热性能,能迅速形成足够厚度的初生坯壳;2)有良好的结构刚度和结构工艺性,便于加工制造,易于拆装和调整;3)有较好的耐磨性及较高的热疲劳性;4)重量轻、以便在振动时有较小的惯性力。
3、结晶器的分类按连铸机型式不同,结晶器可分为直形和弧形两大类。
1)直型结晶器。
直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。
该类型结晶器还有利于提高坯壳的质量和拉坯速度、结构较简单、易于制造、安装和调试方便;夹杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。
直形结晶器用于立式和立弯式及直弧连铸机。
2)弧形结晶器。
弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。
弧形结晶器用在全弧形和椭圆形连铸机上。
按铸坯规格和形状来分,有小方坯、大方坯、板坯和异性坯结晶器。
按结晶器结构可分为管式、整体式和组合式三种。
连铸结晶器:就是一个钢水制冷成型设备。
其由框架,结晶器冷却背板或水箱和铜板,调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。
连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。
保护材料用途:1.确保连铸工艺顺行;2.改善铸坯表面质量。
连铸结晶器钢水流动控制技术1、连铸板坯的表面和内部缺陷与结晶器内钢液的流动状态密切相关。
结晶器的原理结晶器是一种常见的实验设备,它主要用于从溶液中分离出固体晶体。
结晶器的原理涉及到溶解度、饱和度和过饱和度等概念,下面我们来详细介绍一下结晶器的原理。
首先,我们需要了解溶解度这一概念。
溶解度是指在一定温度下,单位溶剂中最多能溶解多少量的溶质。
当溶质的溶解度达到最大值时,我们称溶液为饱和溶液。
溶解度取决于溶质和溶剂的性质,温度也会对溶解度产生影响。
一般来说,随着温度的升高,溶解度会增加。
其次,饱和溶液中的溶质可以通过降温或者蒸发溶剂来形成固体晶体。
当溶液中的溶质含量超过了饱和溶液的溶解度时,就会形成过饱和溶液。
过饱和溶液是不稳定的,它会在适当的条件下形成固体晶体,这就是结晶的过程。
结晶器利用了过饱和溶液的原理。
在结晶器中,我们首先需要将溶剂和溶质混合在一起,然后通过加热或者搅拌等方式使溶质充分溶解。
接着,我们可以逐渐降低温度或者让溶剂蒸发,使溶液的溶质含量超过饱和溶液的溶解度,从而形成过饱和溶液。
最后,在适当的条件下,过饱和溶液中的溶质就会析出,形成固体晶体。
结晶器的原理可以用来分离溶液中的杂质,纯化溶液中的溶质,或者制备一些晶体材料。
通过控制溶液的温度、浓度和溶剂的蒸发速度等因素,我们可以得到不同形状和大小的晶体。
因此,结晶器在化学、生物、药物等领域都有着广泛的应用。
总的来说,结晶器的原理涉及溶解度、饱和度和过饱和度等概念。
通过控制溶液的条件,我们可以实现溶质从溶液中析出形成固体晶体的过程。
结晶器在实验室和工业生产中都有着重要的应用,它为我们提供了一种有效的方法来分离和纯化物质。
希望本文对结晶器的原理有所帮助,谢谢阅读。
结晶器内部构造
【原创版】
目录
1.结晶器的概念与作用
2.结晶器的内部构造
3.结晶器的操作方法与原理
4.结晶器的应用领域
正文
结晶器是一种用于实现溶液过饱和度并结晶的设备,其内部构造和操作方法对于结晶过程的效果至关重要。
首先,结晶器通常由一个或多个容器组成,这些容器用于盛放溶液。
容器的内部构造通常包括一个或多个加热器,用于加热溶液,使其达到沸腾状态。
此外,结晶器还配备有冷却系统,用于在溶液蒸发后降低容器内的温度,促进结晶过程的发生。
其次,结晶器的操作方法通常包括蒸发结晶法和真空冷却结晶法。
蒸发结晶法是通过加热溶液,使其在常压或减压下蒸发溶剂,以达到溶液过饱和度的方法。
真空冷却结晶法则是在减压条件下,通过降低溶液的温度,使其达到过饱和度并结晶的方法。
最后,结晶器广泛应用于化学、生物、医药等领域。
在化学工业中,结晶器用于制备盐类、糖类等晶体物质;在生物医药领域,结晶器用于提取纯化生物大分子,如蛋白质和核酸等。
第1页共1页。
结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模。
称之为连铸设备的“心脏”。
结晶器的定义:一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。
结晶槽可用作蒸发结晶器或冷却结晶器。
为提高晶体生产强度,可在槽内增设搅拌器。
结晶槽可用于连续操作或间歇操作。
间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。
这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。
结晶器的作用:(1)使钢液逐渐凝固成所需要规格、形状的坯壳;(2)通过结晶器的振动,使坯壳脱离结晶器壁而不被拉断和漏钢;(3)通过调整结晶器的参数,使铸坯不产生脱方、鼓肚和裂纹等缺陷;(4)保证坯壳均匀稳定的生成。
结晶器的类型(1)结晶器的类型按其内壁形状,可分为直形及弧形等 1)直型结晶器。
直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。
该类型结晶器还有利于提高坯壳的质量和拉坯速度、结构较简单、易于制造、安装和调试方便;夹杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。
直形结晶器用于立式和立弯式及直弧连铸机。
2)弧形结晶器。
弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。
弧形结晶器用在全弧形和椭圆形连铸机上。
(2)按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆(即母液和晶体的混合物)循环结晶器;按操作方式可分连续结晶器和间歇结晶器。
通俗的讲连铸结晶器:就是一个钢水制冷成型设备。
基本由框架,水箱和铜板(背板与铜板),调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。
连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。
保护材料用途: 1.确保连铸工艺顺行; 2.改善铸坯表面质量。
oslo结晶器和fc结晶器原理Oslo结晶器和FC结晶器原理引言:结晶器是一种用于实现物质结晶过程的设备。
在化学、冶金、生物、材料等领域中,结晶过程被广泛应用于纯化、提纯、晶体生长和材料制备等方面。
本文将介绍两种常见的结晶器——Oslo结晶器和FC结晶器,分别探讨其工作原理和应用特点。
一、Oslo结晶器的原理Oslo结晶器是一种常用的连续结晶设备,其原理基于湿式结晶的过程。
它主要包括稳定器、冷却器、搅拌器和收集器等部分。
Oslo结晶器通过控制温度、溶液浓度和搅拌速度等参数,使溶液中的溶质逐渐凝结成晶体。
Oslo结晶器的工作原理可概括为以下几个步骤:1. 溶液进入稳定器:溶液首先进入稳定器,通过稳定器中的调节装置控制温度和浓度,以保持溶液在稳定的状态。
2. 溶液进入冷却器:稳定的溶液随后进入冷却器,在冷却器中通过降低溶液温度,使溶质逐渐达到过饱和状态。
3. 溶液进入搅拌器:过饱和的溶液进入搅拌器,通过搅拌器中的机械搅拌或气体搅拌等方式,引入扰动,促进晶体的形核和生长。
4. 溶液进入收集器:晶体在搅拌器中逐渐生长,随着溶液流动,晶体被带到收集器中,从而实现结晶过程。
Oslo结晶器的特点:1. 高效连续:Oslo结晶器能够实现高效连续的结晶过程,大大提高了生产效率。
2. 粒度可控:通过调节温度、浓度和搅拌速度等参数,可以控制晶体的粒度和形状,满足不同需求。
3. 适用范围广:Oslo结晶器适用于各种溶液的结晶过程,具有较广泛的应用领域。
二、FC结晶器的原理FC结晶器是一种常见的批式结晶设备,其原理基于气体扩散结晶的过程。
它主要包括反应器、冷却器和收集器等部分。
FC结晶器通过控制温度、压力和流速等参数,使气体中的溶质逐渐凝结成晶体。
FC结晶器的工作原理可概括为以下几个步骤:1. 溶液进入反应器:溶液首先进入反应器,通过加热使其达到过饱和状态。
2. 过饱和气体进入冷却器:过饱和的气体进入冷却器,通过降低温度,使气体中的溶质逐渐凝结成晶体。
结晶器
结晶器-正文
用于结晶操作的设备。
结晶器的类型很多,按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆(即母液和晶体的混合物)循环结晶器;按操作方式可分连续结晶器和间歇结晶器。
常用的结晶器有:
结晶槽一种槽形容器,器壁设有夹套或器内装有蛇管,用以加热或冷却槽内溶液。
结晶槽可用作蒸发结晶器或冷却结晶器。
为提高晶体生产强度,可在槽内增设搅拌器。
结晶槽可用于连续操作或间歇操作。
间歇操作得到的晶体较大,但晶体易连成晶簇,夹带母液,影响产品纯度。
这种结晶器结构简单,生产强度较低,适用于小批量产品(如化学试剂和生化试剂等)的生产。
强制循环蒸发结晶器一种晶浆循环式连续结晶器(图1)。
操作时,料液自循环管下部加入,与离开结晶室底部的晶浆混合后,由泵送往加热室。
晶浆在加热室内升温(通常为2~6℃),但不发生蒸发。
热晶浆进入结晶室后沸腾,使溶液达到过饱和状态,于是部分溶质沉积在悬浮晶粒表面上,使晶体长大。
作为产品的晶浆从循环管上部排出。
强制循环蒸发结晶器生产能力大,但产品的粒度分布较宽。
DTB型蒸发结晶器即导流筒-挡板蒸发结晶器,也是一种晶浆循环式结晶器(见彩图)。
器下部接有淘析柱,器内设有导流筒和筒形挡板,操作时热饱和料液连续加到循环管下部,与循环管内夹带有小晶体的母液混合后泵送至加热器。
加热后的溶液在导流筒底部附近流入结晶器,并由缓慢转动的螺旋桨沿导流筒送至液面。
溶液在液面蒸发冷却,达过饱和状态,其中部分溶质在悬浮的颗粒表面沉积,使晶体长大。
在环形挡板外围还有一个沉降区。
在沉降区内大颗粒沉降,而小颗粒则随母液入循环管并受热溶解。
晶体于结晶器底部入淘析柱。
为使结晶产品的粒度尽量均匀,将沉降区来的部分母液加到淘析柱底部,利用水力分级的作用,使小颗粒随液流返回结晶器,而结晶产品从淘析柱下部卸出(图2)。
奥斯陆型蒸发结晶器又称为克里斯塔尔结晶器,一种母液循环式连续结晶器(图3)。
操作的料液加到循环管中,与管内循环母液混合,由泵送至加热室。
加热后的溶液在蒸发室中蒸发并达到过饱和,经中心管进入蒸发室下方的晶体流化床(见流态化)。
在晶体流化床内,溶液中过饱和的溶质沉积在悬浮颗粒表面,使晶体长大。
晶体流化床对颗粒进行水力分级,大颗粒在下,而小颗粒在上,从流化床底部卸出粒度较为均匀的结晶产品。
流化床中的细小颗粒随母液流入循环管,重新加热时溶去其中的微小晶体。
若以冷却室代替奥斯陆蒸发结晶器的加热室并除去蒸发室等,则构成奥斯陆冷却结晶器。
这种设备的主要缺点是溶质易沉积在传热表面上,操作较麻烦,因而应用不广泛。