七年级下数学平行线相交线必背证明题
- 格式:doc
- 大小:163.80 KB
- 文档页数:4
人教版七年级数学下册第五章相交线与平行线:几何计算和证明综合练习试题1、如图,已知∠2=∠3,∠C=∠D,求证:∠A=∠F.证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3.∴DB∥CE.∴∠DBA=∠C.∵∠D=∠C,∴∠D=∠DBA.∴DF∥AC.∴∠A=∠F.2、如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).3、如图,∠1=115°,∠2=50°,∠3=65°,EG为∠NEF的平分线.求证:AB∥CD,EG∥FH.证明:∵∠1=115°,∴∠FCD=180°-∠1=180°-115°=65°.∵∠3=65°,∴∠FCD=∠3.∴AB∥CD.∵∠2=50°,∴∠NEF=180°-∠2=180°-50°=130°.∵EG为∠NEF的平分线,∴∠GEF=12∠NEF=65°.∴∠GEF=∠3.∴EG∥FH.4、如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.解:BC∥AD,理由:∴BE∥FD.∴∠B=∠BCF.又∵∠B=∠D,∴∠BCF=∠D.∴BC∥AD.5、如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1.求证:AD平分∠BAC.证明:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴AD∥EG.∴∠1=∠2,∠E=∠3.∵∠E=∠1,∴∠2=∠3.∴AD平分∠BAC.6、如图,B,C,E三点在一条直线上,A,F,E三点在一条直线上,AB∥CD,∠1=∠2,∠3=∠4.求证:AD∥BE.证明:∵AB∥CD,∴∠4=∠BAE.∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAF,即∠BAE=∠CAD.∴∠3=∠CAD.∴AD∥BE.7、如图,已知AB∥CD,试判断∠B,∠BED和∠D之间的关系,并说明理由.解:∠BED=∠B+∠D.理由如下:过点E作EF∥AB,则∠B=∠BEF.∵AB∥CD,∴EF∥CD.∴∠DEF=∠D.∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D.8、如图,∠AEF+∠CFE=180°,∠1=∠2,EG与HF平行吗?为什么?解:平行.理由:∵∠AEF+∠CFE=180°,∴AB∥CD.∴∠AEF=∠EFD.∴∠AEF -∠1=∠EFD -∠2,即∠GEF =∠HFE.∴EG ∥HF.9、如图,A ,B ,C 三点在同一直线上,∠1=∠2,∠3=∠D ,试判断BD 与CF 的位置关系,并说明理由.解:BD ∥CF.理由如下:∵∠1=∠2,∴AD ∥BF.∴∠D =∠DBF.∵∠3=∠D ,∴∠3=∠DBF.∴BD ∥CF.10、如图,∠ABC =∠ADC ,BF ,DE 分别是∠ABC ,∠ADC 的平分线,∠1=∠2,试说明:DC ∥AB.解:∵BF ,DE 分别是∠ABC ,∠ADC 的平分线,∴∠3=12∠ADC ,∠2=12∠ABC. ∵∠ABC =∠ADC ,∴∠3=∠2.∵∠1=∠2,∴∠1=∠3.∴DC∥AB.11、如图,AD平分∠BAC,AD⊥BC于D,点E,A,C共线,∠DAC=∠EFA,延长EF 交BC于点G.求证:EG⊥BC.证明:∵AD平分∠BAC,∴∠DAC=∠DAB.又∵∠DAC=∠EFA,∴∠DAB=∠EFA.∴AD∥EG.∴∠ADC=∠EGD.∵AD⊥BC,∴∠ADC=90°.∴∠EGD=90°.∴EG⊥BC.12、已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.13、如图,把一张长方形纸片ABCD沿EF折叠后,D,C分别落在D′和C′的位置上,ED′与BC的交点为G.若∠EFG=50°,求∠1,∠2,∠3的度数.解:根据折叠的性质可知,∠DEF=∠D′EF,∠EFC=∠EFC′.∵∠EFG=50°,∴∠EFC=180°-50°=130°.∴∠EFC′=∠EFC=130°.∴∠3=∠EFC′-∠EFG=130°-50°=80°.∵AD∥BC,∴∠DEF=∠EFG=50°.∴∠DED′=2∠DEF=100°.∴∠1=180°-∠DED′=180°-100°=80°.∵AD∥BC,∴∠1+∠2=180°.∴∠2=180°-∠1=100°.故∠1=80°,∠2=100°,∠3=80°.14、如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.解:(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF.∴∠2=∠A.∵∠1=∠2,∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD,∴∠D+∠CBD+∠3=180°.∵∠D =∠3+60°,∠CBD =70°,∴∠3=25°.∵AB ∥CD ,∴∠C =∠3=25°.15、(1)如图1,AB ∥CD ,则∠E +∠G 与∠B +∠F +∠D 有何关系?(2)如图2,若AB ∥CD ,又能得到什么结论?请直接写出结论.解:(1)过点E 作EM ∥AB ,过点F 作FN ∥AB ,过点G 作GH ∥CD. ∵AB ∥CD ,∴AB ∥EM ∥FN ∥GH ∥CD.∴∠1=∠B ,∠2=∠3,∠4=∠5,∠6=∠D.∴∠1+∠2+∠5+∠6=∠B +∠3+∠4+∠D ,即∠BEF +∠FGD =∠B +∠EFG +∠D.(2)∠B +∠F 1+∠F 2+…+∠F n -1+∠D =∠E 1+∠E 2+…+∠E n .16、已知E ,F 分别是AB ,CD 上的动点,P 也为一动点.(1)如图1,若AB ∥CD ,求证:∠P =∠BEP +∠PFD ;(2)如图2,若∠P =∠PFD -∠BEP ,求证:AB ∥CD ;(3)如图3,AB ∥CD ,移动E ,F ,使∠EPF =90°,作∠PEG =∠BEP ,则∠AEG∠PFD =2.证明:(1)过点P作PG∥AB,则∠EPG=∠BEP.∵AB∥CD,∴PG∥CD.∴∠GPF=∠PFD.∴∠EPF=∠EPG+∠FPG=∠BEP+∠PFD.(2)过点P作PQ∥AB,则∠QPE=∠BEP.∵∠EPF=∠PFD-∠BEP,∴∠PFD=∠EPF+∠BEP=∠EPF+∠QPE=∠FPQ. ∴DC∥PQ.∴AB∥CD.。
北师大版七年级下第二章平行线与相交线证明题.北师大版七年级下第二章平行线与相交线1.如图,已知直线EF 与AB 、CD 都相交,且AB ∥CD ,说明∠1=∠2的理由.理由:∵EF 与AB 相交(已知) ∴∠1=∠3( )∵AB ∥CD(已知)∴∠2=∠3() ∴∠1=∠2( )2.如图:已知∠A =∠F ,∠C =∠D ,求证:BD ∥CE 。
证明:∵∠A =∠F ( 已知 ) ∴AC ∥DF ( ) ∴∠D =∠ ( )又∵∠C =∠D ( 已知 ), ∴∠1=∠C ( 等量代换 ) ∴BD∥CE()。
3.已知∠B =∠BGD ∠DGF =∠F 求证∠B + ∠F =180°证明:∵∠B =∠BGD ( 已知 )∴AB ∥CD ( )∵∠DGF =∠F ;( 已知 ) ∴CD ∥EF () ∵AB ∥EF( )∴∠B + ∠F =180°()。
321FEDCBA4.已知:如图、BE//CF ,BE 、CF 分别平分∠ABC 和∠BCD 求证:AB//CD证明:∵BE 、平分∠ABC (已知)∴∠1=21∠ ∵CF 平分∠BCD ( )∴∠2=21∠( ) ∵BE//CF (已知) ∴∠1=∠2( )∴21∠ABC=21∠BCD( )即∠ABC=∠BCD ∴AB//CD( ) 5.如图,已知:∠BCF=∠B+∠F 。
求证:AB//EF证明:经过点C 作CD//AB ∴∠BCD=∠B 。
( )∵∠BCF=∠B+∠F ,(已知) ∴∠ ( )=∠F 。
( ) ∴CD//EF。
( ) ∴AB//EF()6.已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:AD ∥BE 。
证明:∵AB ∥CD (已知) ∴∠4=∠( ) ∵∠3=∠4(已知) ∴∠3=∠(AC DF B E1 2 A D B C EF1 2 3 4)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF ()即∠ =∠∴∠3=∠()∴AD∥BE ()7、已知:DE⊥AO于E,BO ⊥AO,∠CFB=∠EDO试说明:CF∥DO证明:∵DE⊥AO,BO⊥AO(已知)∴∠DEA=∠BOA=900()∵DE∥BO ())∴∠EDO=∠DOF ()又∵∠CFB=∠EDO ()∴∠DOF=∠CFB ()∴CF∥DO ())8、已知:如图2-82,DE∥BC,∠ADE=∠EFC,求证:∠1=∠2证明:∵ DE∥BC()∴∠ADE=______()∵∠ADE=∠EFC()∴______=______()∴DB∥EF()∴∠1=∠2()9、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.证明:∵∠A=∠F(已知)∴AC∥DF()∴∠D=∠()又∵∠C=∠D(已知)∴∠1=∠C(等量代换)∴BD∥CE()10、如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD().∴∠B=∠DCE (). 又∵∠B=∠D(已知),∴∠DCE=∠ D ( ).∴AD∥BE().∴∠E=∠DFE ().11、如图,已知:∠1=∠2,当DE∥FH时,(1)证明:∠EDA=∠HFB (2)CD与FG 有何关系?证明:(1)∵DE∥FH (已知),∴∠EDF=∠DFH ( ),∴∠EDA=∠HFB ( ) .DABFG HKF EDC B A (2) ∵∠EDF=∠DFH ( ), 且∠CDF=∠EDF-∠1 ,∠DFG=∠DFH-∠2 , 又∵∠1=∠2(已知 ), ∴CD∥FG().12、如图,已知AD ⊥BC,EF ⊥BC,∠1=∠2.求证:DG ∥BA. 证明:∵AD ⊥BC,EF ⊥BC ( ) ∴∠EFB=∠ADB=90° ( ) ∴EF∥AD( ) ∴∠1=∠BAD( ) 又∵∠1=∠ 2()∴ (等量代换) ∴DG∥BA.( )13、如图:已知:AD ⊥BC 于D ,EF ⊥BC 于F ,∠1=∠3,求证 :AD 平分∠BAC 。
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
B CD 4FECD) ) )z Ez )A B z DCz )))))又) 180°)( )又)())ABA BFE和zABC BE DE// 2-82 ))())试说明 z C= z D )) )) 求证AB//EF ))AFD) )BCE)AB// CF ) )z Fz DOF= z CFB EFC 求证CFB= z EDO CF // DO()) ))BD //CE. 匸仁z 2,z_ ( (已知), 等量代换))即 z ABC= z BCD z (z 1=z CDE // BO ( z EDO= z DOF ( (求证:BD// CE 5•如图,已知:z BCF= z B+ z F 证明:经过点C 作CD//AB••• BD// CE (3.已知z B =z 证明:•••/ • AB// CD •••/ DGF=z • CD// EF •/ AB// EF • z B + zBC, z ADE=z z BCD= z B 。
(z BCF= z B+ z F ,(已知))=z F o ( 8、已知:如图 z 1 = z 2 证明:••• DE // • z ADE= _ •••/ ADE=z \G D-------- D分别平分z ) ) ) ) )4.已知:如图、BE//CF BCD 求证:AB//CD证明:••• BE 、平分z ABC (已CD//EF o ( AB//EF (证明:••• DE 丄AO , BO 丄AO (已知)z DEA= z BOA=90 0(( 又•••/ C= z D(已知) • z 1 = z C(等量代换)• BD // CE()F 求证z B +已知) BGD z DGF=z B =z BGD(F ;(已知 ((F = 180 °z 2= - z2 —BE//CF (已知)z 1 = z 2 ( z 仁-z _________2CF 平分z BCD ( 1 1z ABC= z BCD ( 2 2 AB//CD (• DB// EF ( • z 1 = z 2 (9、如图,已知z A= z F 证明:•••/ A= z F(已知)• AC // DF( • z D= z 北师大版七年级下第二章平行线与相交线1.如图,已知直线 EF 与AB CD 都相交,且 AB// CD 说 明z 仁z 2的理由.理由:••• EF 与AB 相交(已知)• z 仁 z 3( )•/ AB// CD (已知)• z 2=z 3( • z 仁z 2(AC// DF (z D=z洞z A =z F ,z C =z D, A =z F (已知)• z 3=z ______ (• AD// BE (7、已知:DE 丄 AO 于 E , BO 丄 AO ,/ CFB= z EDO 试 说明:CF // DO1 2 :B6.已知,如图,BCE AFE 是直线 3=z 4 o 求证:AD// BE= 证明:••• AB// CD (已知)• z 4=z ______ ( 3=z 4 (已知) 3=z _____ ( 1 = z 2 (已知) 1 + z CAF=/ 2+z CAF ( 即z = z BC( —( EFC( ____ (10、如图,已知/ B+ / BCD=180 °,/ B= / D.求证:/ E= / DFE.证明:T/ B+ / BCD=180 ° (已知),• AB // CD().• / B= / DCE ( ).又•••/ B= / D (已知),• / DCE= / D ().• AD // BE().• / E= / DFE ( ).11、如图,已知:/ 1 = / 2,当DE// FH时,(1)证明/ EDA= / HFB ( 2) CD 与FG 有何关系?证明:(1)v DE // FH (已知),•••/ EDF= / DFH ( ),•••/ EDA= / HFB ( ). (2) I / EDF= / DFH ( ),且/ CDF= / EDF- / 1,/ DFG= / DFH- / 2 , 又•••/仁/ 2 (已知)• CD // FG( 14、如图所示,已知直线EF和, AB,CD 分别相交于K,H,且EG 丄AB, / CHF=60 0,/E=30。
平行线与相交线几何证明题专项训练及答案证明题1:平行线与等角线的性质问题描述在平面内给出一组平行线和一条相交线,证明以下性质:如果该相交线与任意一条平行线均成相等角,则该相交线与其它平行线也成相等角。
证明过程已知条件设给出的平行线为l1 和 l2,给出的相交线为l3。
根据已知条件,相交线l3与平行线l1成相等角,即∠A = ∠D(角度A在l1上,角度D在l3上)。
证明目标要证明相交线l3与平行线l2成相等角,即∠B = ∠E(角度B在l2上,角度E在l3上)。
证明过程1.假设相交线l3与平行线l2不成相等角,即∠B ≠ ∠E。
2.在l2上取一点F,并作垂线FG与l1相交于G点。
3.连接点E和G,并延长线段EG与l1和l2相交于H 点。
4.根据平行线的性质,得到∠D = ∠F(对应角相等)和∠A = ∠G(同旁内角相等)。
5.在△DGF和△AEG中,根据三角形内角和定理,得到∠D + ∠F + ∠G = 180°和∠A + ∠E + ∠G = 180°。
6.结合前述结果,得到∠D + ∠F = ∠A + ∠E。
7.根据已知条件,得到∠A = ∠D。
8.结合步骤6和7的结果,得到∠F = ∠E。
9.根据角度相等的定义,得到∠B = ∠E,即相交线l3与平行线l2也成相等角,证明完毕。
答案根据以上证明过程,可以得出结论:如果相交线与一组平行线成等角,那么相交线与其它平行线也成等角。
证明题2:平行线的封闭性问题描述在平面内给出一组平行线,证明以下性质:如果两条平行线的一个夹角与另外一条平行线的一个角相等,则这两条平行线也相等。
证明过程已知条件设给出的平行线为l1 和 l2,给出的夹角为∠A(角度A在l1和l2之间)。
根据已知条件,∠A = ∠B(角度B在l1和另外一条平行线l3之间)。
证明目标要证明l1 = l2,即两条平行线相等。
证明过程1.假设l1 ≠ l2,即l1和l2不相等。
证明题七年级下册一、相交线与平行线证明题。
1. 如图,已知直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠2 : ∠1 = 4:1,求∠AOF的度数。
证明:设∠1 = x,因为∠2:∠1 = 4:1,则∠2 = 4x。
因为OE平分∠BOD,所以∠DOE=∠1 = x。
又因为∠2+∠DOE = 180°(邻补角之和为180°),即4x + x=180°,5x = 180°,解得x = 36°。
所以∠COE=180° - ∠1=180° - 36° = 144°。
因为OF平分∠COE,所以∠COF=(1)/(2)∠COE=(1)/(2)×144° = 72°。
∠AOC = ∠1 = 36°(对顶角相等)所以∠AOF=∠AOC + ∠COF = 36°+72° = 108°。
2. 已知:如图,AB∥CD,∠1 = ∠2,求证:AM∥CN。
证明:因为AB∥CD,所以∠EAB = ∠ACD(两直线平行,同位角相等)。
又因为∠1 = ∠2,所以∠EAB - ∠1=∠ACD - ∠2,即∠MAC = ∠NCA。
所以AM∥CN(内错角相等,两直线平行)3. 如图,已知∠1 = ∠2,∠C = ∠D,求证:∠A = ∠F。
证明:因为∠1 = ∠2,∠1 = ∠3(对顶角相等),所以∠2 = ∠3。
所以DB∥EC(同位角相等,两直线平行)。
所以∠D = ∠4(两直线平行,同位角相等)。
又因为∠C = ∠D,所以∠C = ∠4。
所以DF∥AC(内错角相等,两直线平行)。
所以∠A = ∠F(两直线平行,内错角相等)二、三角形证明题。
4. 在△ABC中,AD是BC边上的中线,E是AD的中点,BE的延长线交AC于F。
求证:AF=(1)/(3)AC。
证明:过点D作DG∥BF交AC于G。
人教版七年级下册数学第5章 相交线与平行线 证明题专题训练1.如图,直线AB 与直线CD 相交于点O ,OE ⊥OF ,且OA 平分⊥COE . (1)若⊥DOE =50°,求⊥AOE ,⊥BOF 的度数.(2)设⊥DOE =α,⊥BOF =β,请探究α与β的数量关系(要求写出过程).2.如图,直线AB 和CD 相交于点O ,OE 把⊥AOC 分成两部分,且⊥AOE ⊥⊥EOC =2⊥3,OF 平分⊥BOE . (1)若⊥BOD =65°,求⊥BOE .(2)若⊥AOE =12⊥BOF ﹣10°,求⊥COE .3.已知如图,直线AB 、直线CD 相交于点O ,OE 是AOD ∠内的一条射线,且OE CD ⊥,:1:2AOE AOC ∠∠=. (1)求BOD ∠的度数;(2)如图2,射线OM 平分AOD ∠,射线ON 在BON ∠内部,且23BON BOM ∠=∠,求DON ∠的度数.4.如图,⊥1+⊥2=180°,⊥C =⊥D .求证:AD ⊥BC .5.如图,FCG B ∠=∠,180DEF D +=︒∠∠,则AB 与EF 平行吗?为什么?6.已知,如图,ABC ADC ∠=∠,BF 、DE 分别平分ABC ∠与ADC ∠,且13∠=∠.求证://AB DC .7.如图,点A 在CF 上,46BAF ∠=︒,136ACE ∠=︒,CE DG ⊥于点C .问 //DG AB 吗?为什么?8.如图,//AB CD ,//CD EF ,//BC ED ,70B ∠=︒,求C ∠,D ∠和E ∠的度数.9.将一副直角三角板按如图所示的方式放置,60B ∠=︒,45E ∠=︒,75AFD ∠=︒.求证://AE BC .10.如图,已知180BAD ADC ∠+∠=︒,AE 平分BAD ∠,交CD 于点F ,交BC 的延长线于点E ,DG 交BC 的延长线于点G ,CFE AEB ∠=∠. (1)若87B ∠=︒,求DCG ∠的度数;(2)AD 与BC 是什么位置关系?请说明理由;(3)若DAB α∠=,DGC β∠=,直接写出α,β满足什么数量关系时AE DG ∥.11.如图,已知射线AM ⊥BN ,连结AB ,点C 是射线BN 上的一个动点(与点B 不重合),AD ,AE 分别平分⊥BAC 和⊥CAM ,交射线BN 于点D ,E . (1)试说明:⊥ACB =2⊥AEB ;(2)若⊥ADB ﹣⊥BAD =45°,求⊥AEB 的度数.12.如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,A F ∠=∠,C D ∠=∠,求证:12∠=∠.13.如图,⊥ENC +⊥CMG =180°,AB ⊥CD . (1)求证:⊥2=⊥3.(2)若⊥A =⊥1+70°,⊥ACB =42°,则⊥B 的大小为______.14.已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠. (1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.15.如图,点D ,E 分别在AB 和AC 上,DE BC ∥,30DBE ∠=︒,25EBC ∠=︒,求BDE ∠的度数.16.如图,已知,A ADE C E ∠=∠∠=∠. (1)若3,EDC C ∠=∠求C ∠的度数; (2)求证://BE CD .17.已知:如图,CDG B ∠=∠,AD BC ⊥于点D ,EF BC ⊥于点F ,试判断1∠与2∠的关系,并说明理由.(写出推理依据)18.已知:如图,⊥BAP+⊥APD =180°,⊥1 =⊥2.求证:AE⊥PF.19.如图,AE⊥BC,FG⊥BC,⊥1=⊥2,求证:AB⊥CD.20.如图,AB⊥DE,C为BD上一点,⊥A=⊥BCA,⊥E=⊥ECD,求证:CE⊥CA.21.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分⊥ADC交BC于点E,点F为线段CD延长线上一点,⊥BAF=⊥EDF(1)求证:⊥DAF=⊥F;(2)在不添加任何辅助线的情况下,请直接写出所有与⊥CED互余的角.22.已知AB⊥CD,点E为AB,CD之外任意一点.(1)如图1,探究⊥BED与⊥B,⊥D的数量关系,并说明理由;(2)如图2,探究⊥CDE与⊥B,⊥E的数量关系,并说明理由.参考答案:1.解:⊥⊥DOE=50°,⊥⊥COE=180°-⊥DOE=180°-50°=130°,⊥OA平分⊥COE,⊥⊥AOE=12⊥COE=12×130°=65°,⊥OE⊥OF,⊥⊥EOF=90°,⊥⊥BOF=180°-⊥AOE-⊥EOF=180°-65°-90°=25°;(2)解:⊥⊥DOE=α,⊥⊥COE=180°-⊥DOE=180°-α,⊥OA平分⊥COE,⊥⊥AOE=12⊥COE=12(180°-α)=90°-12α,⊥OE⊥OF,⊥⊥EOF=90°,⊥⊥BOF=β=180°-⊥AOE-⊥EOF=180°-(90°-12α)-90°=12α,即α=2β.2.解:⊥⊥AOC与⊥BOD是对顶角,⊥⊥AOC=⊥BOD=65°.⊥⊥AOE:⊥EOC=2:3,⊥⊥AOE=25⊥AOC=26°.⊥⊥BOE=180°-⊥AOE=180°-26°=154°;(2)解:设⊥AOE=2x,⊥EOC=3x.⊥⊥AOE=12⊥BOF-10°,⊥⊥BOF=4x+20°.⊥OF平分⊥BOE,⊥⊥BOE=2⊥BOF=8x+40°.⊥⊥AOE +⊥BOE =2x +8x +40°=180°. ⊥x =14°. ⊥⊥COE =3x =42°. 3.解:⊥OE ⊥CD , ⊥⊥COE =90°, ⊥⊥AOE :⊥AOC =1:2, ⊥⊥AOC =90°×23=60°,⊥⊥BOD =⊥AOC =60°; (2)由(1)可知:⊥BOD =60°,⊥⊥AOD =180°-⊥BOD =180°-60°=120°, ⊥OM 平分⊥AOD , ⊥⊥AOM =12 ×120°=60°,⊥⊥BOM =180°-⊥AOM =180°-60°=120°, ⊥⊥BON =23 ⊥BOM =23×120°=80°,⊥⊥DON =⊥BON -⊥BOD =80°-60°=20°. 4.证明:⊥⊥1+⊥2=180°,⊥2+⊥AED =180°, ⊥⊥1=⊥AED , ⊥DE ⊥AC , ⊥⊥D =⊥DAF , ⊥⊥C =⊥D , ⊥⊥DAF =⊥C , ⊥AD ⊥BC . 5.解:AB 与EF 平行, 理由:⊥FCG B ∠=∠, ⊥//AB DC ,⊥180DEF D +=︒∠∠, ⊥//EF DC ,6.证明:BF ,DE 分别平分ABC ∠与ADC ∠21ABC ∴∠=∠,22ADC ∠=∠ ABC ADC ∠=∠ 12∠∠∴=13∠=∠23∴∠=∠//AB CD ∴.7.解://DG AB ,理由如下. ⊥CE CD ⊥, ⊥90DCE ∠=︒, ⊥136ACE ∠=︒,⊥36013690134ACD ∠=︒-︒-︒=︒, ⊥46BAF ∠=︒,⊥180********BAC BAF ∠=︒-∠=︒-︒=︒, ⊥ACD BAC ∠=∠, ⊥//DG AB . 8.//AB CD ,//CD EF ,////AB CD EF ∴,70C B ∴∠=∠=︒,E D ∠=∠,又//BC DE , 180C D ∴∠+∠=︒,⊥⊥D =110°,110E ∴∠=︒.答:C ∠,D ∠和E ∠的度数分别是70︒、110︒、110︒. 9.解:由直角三角板的性质可得: ⊥C=30°,⊥⊥AFD=⊥C+⊥CDF=75°,⊥⊥CDF=⊥E , ⊥AE⊥BC . 10.解:⊥180BAD ADC ∠+∠=︒, ⊥AB CD ∥, ⊥87B DCG ∠=∠=︒. (2)解:AD 与BC 是的位置关系为:AD BC ∥,理由如下: ⊥AE 平分BAD ∠, ⊥BAE DAE ∠=∠, ⊥180BAD ADC ∠+∠=︒, ⊥AB CD ∥, ⊥BAE CFE ∠=∠, ⊥AEB CFE ∠=∠, ⊥⊥AEB =⊥BAE =⊥DAE , ⊥AD BC ∥. (3)解:α与β的数量关系为:12αβ=,理由如下:当AE DG ∥时,AEB DGC β∠=∠=,由(2)中推导可知,1122AEB EAD BAD α∠=∠=∠=,⊥12αβ=. 11.解:⊥AE 平分⊥CAM2.CAM EAM ∴∠=∠,AM BN ∥,.CAM ACB EAM AEB ∴∠=∠∠=∠2.ACB AEB ∴∠=∠(2) 解:,AM BN ∥,.CAM ACB ADB DAM ∴∠=∠∠=∠⊥AD 平分⊥BAC.BAD CAD ∴∠=∠45,ADB BAD ︒∠-∠=45.DAM CAD ︒∴∠-∠= 45.CAM ACB ︒∴∠=∠= 由(1)知,2,ACB AEB ∠=∠22.5.AEB ︒∴∠= 12.证明:⊥A F ∠=∠, ⊥AC DF ∥, ⊥ABD D ∠=∠, 又⊥C D ∠=∠, ⊥ABD C ∠=∠, ⊥DB CE ∥, ⊥13∠=∠, ⊥23∠∠=, ⊥12∠=∠. 13.(1)证明:⊥⊥ENC +⊥CMG =180°,⊥CMG =⊥FMN , ⊥⊥ENC +⊥FMN =180°, ⊥FG ⊥ED , ⊥⊥2=⊥D , ⊥AB ⊥CD , ⊥⊥3=⊥D , ⊥⊥2=⊥3;(2)解:⊥AB ⊥CD ,⊥⊥A +⊥ACD =180°,⊥⊥A =⊥1+70°,⊥ACB =42°,⊥⊥1+70°+⊥1+42°=180°,⊥⊥1=34°,⊥AB ⊥CD ,⊥⊥B =⊥1=34°.故答案为:34°.14.解:(1)⊥32180∠+∠=︒,⊥2+⊥DFE =180°, ⊥⊥3=⊥DFE ,⊥EF //AB ,⊥⊥ADE =⊥1,又⊥1B ∠=∠,⊥⊥ADE =⊥B ,⊥DE //BC ,(2)⊥DE 平分ADC ∠,⊥⊥ADE =⊥EDC ,⊥DE //BC ,⊥⊥ADE =⊥B ,⊥33B ∠=∠⊥⊥5+⊥ADE +⊥EDC =3B B B ∠+∠+∠=180°, 解得:36B ∠=︒,⊥⊥ADC =2⊥B =72°,⊥EF //AB ,⊥⊥2=⊥ADC =180°-108°=72°,15.解:⊥30DBE ∠=︒,25EBC ∠=︒,⊥⊥ABC =⊥DBE +⊥EBC =55°,⊥DE ⊥BC ,⊥⊥BDE +⊥ABC =180°,⊥⊥BDE =180°-⊥ABC =125°.16.(1)A ADE ∠=∠,//ED AC ∴,180EDC C ∴∠+∠=︒.3EDC C ∠=∠ ,3180C C ∴∠+∠=︒,45C ∴∠=︒ ;(2)A ADE ∠=∠,//ED AC ∴,ABE E ∴∠=∠.C E ∠=∠,ABE C ∴∠=∠,//BE CD ∴ .17.CDG B ∠=∠DG AB ∴1DAB ∴∠=∠ 又AD BC ⊥于点D ,EF BC ⊥于点FAD EF ∴2DAB ∴∠=∠12∠∠∴=18.证明:⊥⊥BAP +⊥APD =180°⊥AB⊥CD⊥⊥BAP=⊥CPA⊥⊥1 =⊥2⊥⊥BAP-⊥1=⊥CPA-⊥2,即⊥EAP=⊥FPA ⊥AE⊥PF19.证明:如图,设BC 与AE 、GF 分别交于点M 、N.⊥AE⊥BC,FG⊥BC,⊥⊥AMB=⊥GNB=90°,⊥AE⊥FG,⊥⊥A=⊥1;又⊥⊥2=⊥1,⊥⊥A=⊥2,⊥AB⊥CD.20.证明⊥AB⊥DE,⊥⊥B+⊥D=180°,⊥⊥A=⊥BCA,⊥E=⊥ECD,⊥⊥B=180°-2⊥BCA,⊥D=180°-2⊥ECD,⊥(180°-2⊥BCA)+(180°-2⊥ECD)=180°,⊥⊥BCA+⊥ECD=90°,⊥⊥ACE=90°,⊥CE⊥CA.21.解:(1)⊥AB⊥BC于点B,DC⊥BC于点C,⊥⊥B+⊥C=180°,⊥AB⊥CF,⊥⊥BAF+⊥F=180°,又⊥⊥BAF=⊥EDF,⊥⊥EDF+⊥F=180°,⊥ED⊥AF,⊥⊥ADE=⊥DAF,⊥EDC=⊥F,⊥DE平分⊥ADC,⊥⊥ADE=⊥CDE,⊥⊥DAF=⊥F;(2)⊥⊥C=90°,⊥⊥CED+⊥CDE=90°,⊥⊥CED与⊥CDE互余,又⊥⊥ADE=⊥DAF=⊥EDC=⊥F,⊥与⊥CED互余的角有⊥ADE,⊥CDE,⊥F,⊥FAD.22.解:(1)⊥B=⊥BED+⊥D.理由如下:过点E作EF⊥AB.又⊥AB⊥CD,⊥EF⊥AB⊥CD.⊥⊥BEF=⊥B,⊥D=⊥DEF.⊥⊥BEF=⊥BED+⊥DEF,⊥⊥B=⊥BED+⊥D.(2)⊥CDE=⊥B+⊥BED.理由如下:过点E作EF⊥AB.又⊥AB⊥CD,⊥EF⊥AB⊥CD.⊥⊥B+⊥BEF=180°,⊥CDE+⊥DEF=180°.又⊥⊥DEF=⊥BEF-⊥BED,⊥⊥CDE+⊥BEF-⊥BED=⊥B+⊥BEF,即⊥CDE=⊥B+⊥BED.。
(完整)七年级下物理平行线相交线必背证明题请确保每一行都是直线,并且每一行都是水平的,以使得沿着这些线前进更加简单。
在证明平行线相交线的问题中,我们可以使用一些简单的几何定理。
1. 当两条平行线与一条截线相交时,对应角相等。
证明:设有两条平行线l和m,分别与截线n相交于A和B点。
我们需要证明∠CAB = ∠C'AB'。
假设∠ABC不等于∠A'B'C',我们假设∠ABC大于∠A'B'C',那么在BC上取一点D,使得∠A'BC' = ∠ABC。
根据同位角定理,我们有∠A'BC' = ∠ABC,与题设矛盾,所以∠ABC必然等于∠A'B'C'。
2. 当两条平行线与两条相交线相交时,同位角互等。
证明:设有两条平行线l和m,分别与相交线n和p相交于A、B和C、D点。
我们需要证明∠CAB = ∠DCB。
假设∠CAB不等于∠DCB,我们假设∠CAB大于∠DCB,那么在AB上取一点E,使得∠DCE = ∠CAB。
根据同位角定理,我们有∠DCE = ∠CAB,与题设矛盾,所以∠CAB必然等于∠DCB。
3. 在两条平行线上的平行线互为平行线。
证明:设有两条平行线l和m,平行线n与l相交于A,平行线n与m相交于B。
我们需要证明l与m平行。
假设l和m不平行,那么在l上取一点C,使得C与m相交于D。
根据前面的定理1和定理2,我们有∠CAB = ∠CDB,而∠CDB小于180度,所以∠CAB也小于180度。
这与l和m平行的定义相矛盾,所以l与m平行。
综上所述,我们可以利用上述证明方法来解决平行线相交线的问题。
七年级下物理平行线相交线必背证明题1. 当两条平行线与一条截线相交时,对应角相等。
证明:设有两条平行线l和m,分别与截线n相交于A和B点。
我们需要证明∠CAB = ∠C'AB'。
2. 当两条平行线与两条相交线相交时,同位角互等。
人教版七年下册第五章相交线与平行线5.2.2《平行线的判定》精选题高频考点(含答案)-1学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,下列推理正确的是()A .∵A BCE ∠=∠,∴//AD CEB .∵DCE CEB ∠=∠,∴//AD CEC .∵180A C ︒∠+∠=,∴//AD CE D .∵180DAE CEA ︒∠+∠=,∴//AD CE 【答案】D2.如图,下列条件中能判定直线l 1∥l 2的是()A .∠1=∠2B .∠1=∠5C .∠1+∠3=180°D .∠3=∠5【答案】C3.如图,直线a 和b 被直线c 所截,下列条件中不能判断a ∥b 的是()A .∠1=∠3B .∠2=∠5C .∠2+∠4=180°D .∠2+∠3=180°【答案】C4.我们可以用图示所示方法过直线a 外的一点P 折出直线a 的平行线b ,下列判定不能作为这种方法依据的是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两条直线互相平行【答案】D5.如图,点E是BA延长线上一点,在下列条件中:①∠1=∠3;②∠2=∠4;③∠5=∠D;④∠BAD=∠BCD;⑤∠B+∠BCD=180∘,能判定AB//CD的有()A.1个B.2个C.3个D.4个【答案】C6.下列说法错误的是()A.同位角相等,两直线平行B.与己知直线平行的直线有且只有一条C.在平面内过一点有且只有一条直线垂直于已知直线D.在同一平面内,垂直于同一条直线的两条直线平行【答案】B7.在下列图形中,由条件AB//CD,不能得到∠1+∠2=1800的是()A.B.C.D.【答案】A8.如图,下列条件,不能判定AB//FD的是()A.∠A+∠2=180°B.∠A=∠3C.∠1=∠4D.∠1=∠A 【答案】D9.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5.其中不能判定AB∥CD的条件是()A.①B.②C.③D.④【答案】B10.如图,下面推理中,正确的是()A.∵∠DAE=∠D,∴AD∥BC B.∵∠DAE=∠B,∴AB∥CD C.∵∠B+∠C=180°,∴AB∥CD D.∵∠D+∠B=180°,∴AD∥BC【答案】C11.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B.内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.一个角的补角一定是钝角【答案】C12.如图,下列推理正确的是()A.因为∠BAD+∠ABC=180°,所以AB∥CDB.因为∠1=∠3,所以AD∥BCC.因为∠2=∠4,所以AD∥BCD.因为∠BAD+∠ADC=180°,所以AD∥BC【答案】B13.如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A.同位角相等两直线平行B.同旁内角互补,两直线平行C.内错角相等两直线平行D.平行于同一条直线的两直线平行【答案】C14.如图,下列条件不能判断直线a∥b的是()A.∠1=∠4B.∠3=∠5C.∠2+∠5=180°D.∠2+∠4=180°【答案】D15.如图,能使BF //DC 的条件是()A .∠1=∠3B .∠2=∠4C .∠2=∠3D .∠1=∠4【答案】A16.如图,点E 在AC 的延长线上,下列条件不能判断//AC BD 的是()A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【答案】C17.如图,点E 在BC 的延长线上,则下列条件中,能判定AD 平行于BC 的是()A .∠1=∠2B .∠3=∠4C .∠D +∠DAB =180°D .∠B =∠DCE【答案】B18.如图,在下列的条件中,能判定DE ∥AC 的是()A .∠1=∠4B .∠1=∠AC .∠A =∠3D .∠A +∠2=180°【答案】B19.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)同位角相等;(3)不相交的两条射线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角A .4个B .3个C .2个D .1个【答案】B20.如图,已知∠2=110°,要使a ∥b ,则须具备另一个条件()A .∠3=70°B .∠3=110°C .∠4=70°D .∠1=70°【答案】A二、填空题21.在同一平面内,三条互不重合的直线a 、b 、c ,若a ⊥b ,a ⊥c ,则________.【答案】b ∥c22.如图,直线AB ,CD 被直线AC 所截,E 为线段CD 上一点.(1)若AB ∥CD ,则1∠=∠_____.依据是______________________.(2)若____________,则AE ∥BD .依据是内错角相等,两直线平行.【答案】2∠两直线平行,同位角相等∠6=∠9.23.如图所示,小迪将两个完全相同的三角板拼在一起,沿着三角板的斜边,画出线段AB ,CD .则我们可以判定//AB CD 的依据是__________.【答案】内错角相等,两直线平行24.如图,已知AD BC ∥,ABD ∆是等腰三角形,72AB AD ABC ==︒,∠,则∠______.ADB=【答案】36°25.如图,要使AD∥BF,则需要添加的条件是_____________(写一个即可).【答案】∠A+∠ABC=180°或∠D+∠DCB=180°或∠A=∠EBF或D∠=∠DCF(任意写一个即可,不必写全)26.如图,不添加辅助线,请写出一个能判定DE∥BC的条件___________.∠=∠【答案】DAB B27.如图,要使AD//BE,必须满足条件:____________(写出你认为正确的一个条件).【答案】∠1=∠228.一副直角三角尺如图①叠放,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,要求两块三角尺的一组边互相平行.如图②,当∠BAD=15°时,有一组边BC∥DE,请再写出两个符合要求的∠BAD(0°<∠BAD<180°)的度数_________.【答案】45°,60,105°,135°29.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.①∵∠B=∠3(已知),∴______∥______.(______,______)②∵∠1=∠D(已知),∴______∥______.(______,______)③∵∠2=∠A(已知),∴______∥______.(______,______)④∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)【答案】AB CE同位角相等,两直线平行AC DE同位角相等,两直线平行AB CE内错角相等,两直线平行AB CE同旁内角互补,两直线平行30.如图,点E在AC的延长线上,给出四个条件:①∠1=∠2;②∠3=∠4:③∠A=∠DCE;④∠D+∠ABD=180°.其中能判断AB∥CD的有_____.(填写所有满足条件的序号)【答案】①③④31.如图,已知∠B=40°,要使AB∥CD,需要添加一个条件,这个条件可以是___.【答案】∠BED=40°32.已知:如图,∠EAD=∠DCF,要得到AB∥CD,则需要的条件________.(填一个你认为正确的条件即可)【答案】答案不唯一,如∠EAD=∠B33.已知,如图,要使得AB∥CD,你认为应该添加的一个条件是________【答案】∠ECD=∠A(答案不唯一).34.如图,点E在射线AD的延长线上,要使AB//CD,只需要添加一个条件,这个条件可以是________.(填一个你认为正确的条件即可)【答案】∠l=∠2或∠A=∠CDE或∠C+∠ABC=180°等35.如图,如果∠1=65°,∠C=65°,∠D=120°,则_____∥_____【答案】AB CD36.如图,∠B=∠D,∠1=∠2.求证:AB∥CD.(证明)∵∠1=∠2(已知),∴∥(),∴∠DAB+∠=180°().∵∠B=∠D(已知),∴∠DAB+∠=180°(),∴AB∥CD().【答案】AD,BC,内错角相等两直线平行,B,两直线平行,同旁内角互补,D,等量代换.37.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,________________________.(2)∠A=∠3,________________________.(3)∠ABC+∠C=180°,________________________.【答案】AD∥BC,内错角相等,两直线平行AD∥BC,同位角相等,两直线平行AB∥CD,同旁内角互补,两直线平行38.如图,∠1=60°,∠2=60°,则直线a与b的位置关系是____________.【答案】平行39.如图,EN⊥CD,点M在AB上,∠MEN=156°,当∠BME=________°时,AB∥C D.【答案】66.40.如图,AC平分∠DAB,∠1=∠2,试说明AB∥CD.证明:∵AC平分∠DAB(),∴∠1=∠____(),又∵∠1=∠2(),∴∠2=∠____(),∴AB∥____().【答案】已知3角平分线的定义已知3等量代换CD内错角相等,两直线平行41.观察如图所示的长方体.(1)用符号表示下列两棱的位置关系:AB___A′B′,AA′_____AB,D′A′_____D′C′,AD______BC.(2)A′B′与BC所在的直线是两条不相交的直线,它们_____平行线.(填“是”或“不是”)【答案】(1)∥;⊥;⊥;∥;(2)不是.42.根据题意可知,下列判断中所依据的命题或定理是________.如图,若∠1=∠4,则AB∥CD;若∠2=∠3,则AD∥BC.【答案】内错角相等,两直线平行43.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是__________.(只需填写序号)【答案】②、④.44.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.【答案】a∥c;a∥c.45.(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平行于EF(________________________________________________________);(2)因为直线a∥b,b∥c,所以a∥c(________________________________).【答案】经过直线外一点,有且只有一条直线与这条直线平行平行于同一直线的两条直线平行46.如图,AB∥CD,过点E画EF∥AB,则EF与CD的位置关系是____________,理由是__________________.【答案】EF∥CD;平行于同一直线的两直线互相平行.47.如图∠1=(3x-40)°,∠2=(220-3x)°,那么AB与CD的位置关系是________.【答案】平行.48.如图,请你添加一个条件________,使AB∥CD.【答案】∠1=∠5.49.如图,互相平行的直线是_________.【答案】m∥n,a∥b.50.如图,直角三角尺的直角顶点在直线b上,∠3=25°,转动直线a,当∠1=______时,a∥b.【答案】65°。
人教版七年级下册数学第5章相交线与平行线证明题专题训练1.如图,直线CD ,AB 相交于点O ,∠BOM =90°,∠DON =90°.(1)若∠COM =∠AOC ,求∠AOD 的度数;(2)若∠COM =14∠BOC ,求∠BOD 的度数.2.已知:如图,∠1=∠2,∠3=∠4,∠5=∠C .DE 与BF 平行吗?请说明理由.3.如图,已知:12∠=∠,50D ︒∠=,求B 的度数4.如图,已知AB//CD ,AE//CF ,求证:∠BAE=∠DCF.5.如图//AB CD ,AE 平分BAD ∠,CD 与AE 相交于F ,CFE E ∠=∠,求证://AD BC .6.如图,已知//AB CD ,40B ∠=,CN 是BCE ∠的平分线,CM CN ⊥,求BCM ∠的度数.7.如图,已知EA∠AB 于A ,CD∠DF 于D ,AB∠CD ,请判断:EA 与DF 平行吗?为什么?8.如图,AB∠CD ,BN ,DN 分别平分∠ABM ,∠MDC ,试问∠M 与∠N 之间的数量关系如何?请说明理由.9.如图,已知∠B=∠C .(1)若AD∠BC ,则AD 平分∠EAC 吗?请说明理由.(2)若∠B+∠C+∠BAC=180°,AD 平分∠EAC ,则AD∠BC 吗?请说明理由.10.如图,AB∠DE ,C 为BD 上一点,∠A =∠BCA ,∠E =∠ECD ,求证:CE∠CA .11.如图所示,已知∠1=∠2,AC 平分∠DAB ,试说明DC∠AB .12.如图,AB∠DE∠GF ,∠1:∠D :∠B =2:3:4,求∠1的度数.13.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.14.如图,AD是∠EAC的平分线,AD∠BC,∠B=30o,∠EAD、∠DAC、∠C的度数.15.已知:如图,∠BAP+∠APD =180°,∠1 =∠2.求证:AE∠PF.16.如图,∠1=∠2,∠3=∠4,∠5=∠6,求证:CE//BF.17.如图,AD∠BC,垂足为D,∠ADE=∠CFG,∠C+∠CFG=90°.试说明DE∠AC18.如图,AD∠BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.19.如图,已知∠BEF+∠EFD=180°,EM平分∠BEF,FN平分∠EFC,求证:∠M=∠N.20.已知:如图,AB∠CD,∠1=∠2,∠3=∠4.(1)求证:AD∠BE;(2)若∠B=∠3=2∠2,求∠D的度数.。
一、平行线之间的基本图
1、如图已知,AB ∥CD .,AF CF 分别是EAB ∠、
ECD ∠的角平分线,F 是两条角平分线的交点; 求证:1
2F AEC ∠=∠.
2、已知AB//CD ,此时A ∠、AEF ∠、EFC ∠和C ∠的关系又如何?你能找出其中的规律吗?
E
D
3、将题变为如下图:AB//CD
D
C
此时A ∠、AEF ∠、EFD ∠和D ∠的关系又如何?你能找出其中的规律吗? 4、如图,AB//CD ,那么AEC C A ∠∠∠与、有什么关系?
D
D
E
E
C
D
B C A
F
E
二、两组平行线的证明题【找出连接两组平行线的角】
1.已知:如图,CD 平分∠ACB ,AC ∥DE ,∠DCE=∠FEB ,求证:EF 平分∠DEB .
3、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥
AB.
3、如图,已知EF ⊥AB ,∠3=∠B ,∠1=∠2,求证:CD ⊥AB 。
4、已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关系?试说明理由.
三、两组平行线构造平行四边形
1.已知:如图,AB 是一条直线,∠C = ∠1,∠2和∠D 互余,BE ⊥FD 于G . 求证:AB ∥CD .
A
D F
B
E
C
2、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.
3、如图,M、N、T和A、B、C分别在同一直线上,
且∠1=∠3,∠P=∠T,求证:∠M=∠R。
四、证特殊角
1、AB∥CD,∠BAC的平分线和∠ACD的平分线交于点E,则∠AEC的度数是
.2、AB CD
∥,直线EF与AB、CD分别相交于E、F两点,EP平分∠AEF,
过点F作PF EP
垂足为P,若∠PEF=300,则∠PFC=_____.
3.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
A B C
D E F
1
4
2
3
(第22题)
图7 图8
M
N A D
B
C b 2
1
a
E
4.如图已知直线a ∥b ,AB 平分∠MAD ,AC 平分∠NAD ,DE ⊥AC 于E ,求证:∠1=
∠2
.
五、寻找角之间的关系
1、如图2-97,已知:∠1=∠2,∠3=∠4,∠5=∠6.求证:AD ∥BC.
2、已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:AD ∥BE 。
A D B
C
E
F 1 2
3
4。