2016届集合最新试题汇编
- 格式:doc
- 大小:221.00 KB
- 文档页数:2
2016年全国各地高考数学试题及解答分类汇编大全(01集合)一、选择题:1. (2016北京文)已知集合={|24}A x x <<,{|3B x x =<或5}x >,则AB =( )A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x > 【答案】C考点: 集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.2.(2016北京理)已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =( )A. {0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}- 【答案】C考点:集合交集.【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.3. (2016全国Ⅰ文)设集合{}1,3,5,7A =,{}25B x x =,则AB = ( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.4.(2016全国Ⅰ理)设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.5.(2016全国Ⅲ文)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =( ) (A ){48}, (B ){026},,(C ){02610},,,(D ){0246810},,,,,【答案】C【解析】试题分析:由补集的概念,得C {0,2,6,10}A B =,故选C . 考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.6.(2016全国Ⅲ理)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2][3,+∞) (C) [3,+∞) (D)(0, 2][3,+∞)【答案】D考点:1、不等式的解法;2、集合的交集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.7.(2016全国Ⅱ理)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】 试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C. 考点: 集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.8.(2016全国Ⅱ文)已知集合{123}A =,,,2{|9}B x x =<,则A B =( )(A ){210123}--,,,,, (B ){21012}--,,,,(C ){123},,(D ){12},【答案】D考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.9.(2016山东文)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()UA B =( )(A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}【答案】A【解析】 试题分析:由已知,{13,5}{3,4,5}{1,3,4,5}A B ⋃=⋃=,,所以(){1,3,4,5}{2,6}U U C A B C ⋃==,选A.考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.10.(2016山东理)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.11.(2016四川文) 设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3 【答案】B考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.12.(2016四川理)集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C【解析】试题分析:由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般 是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.13.(2016天津文)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =( )(A )}3,1{ (B )}2,1{(C )}3,2{(D )}3,2,1{【答案】A【解析】试题分析:{1,3,5},{1,3}B AB ==,选A.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.14.(2016天津理)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D【解析】试题分析:{1,4,7,10},A B {1,4}.B ==选D . 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.15.(2016浙江文)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5} 【答案】C考点:补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.16. (2016浙江理)已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞ 【答案】B考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,2x 的系数一定要保证为正数,若2x 的系数是负数,一定要化为正数,否则很容易出错.二、填空题:1. (2016江苏)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________▲________. 【答案】{}1,2- 【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.。
2016年普通高等学校招生全国统一考试(浙江文)一、选择题1.已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(∁U P )∩Q = A .{1} B .{3,5} C .{1,2,4,6} D .{1,2,3,4,5} 2.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n3.函数y =sin x 2的图像是4.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是A .355B . 2C .322D . 55.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>06.已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7.已知函数f (x )满足:f (x )≥|x |且f (x )≥2x ,x ∈R ( ) A .若f (a )≤|b |,则a ≤b B .若f (a )≤2b ,则a ≤b C .若f (a )≥|b |,则a ≥b D .若f (a )≥2b ,则a ≥b8.如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n+1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n}是等差数列 二、填空题9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm 2,体积是______cm 3.10.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是_____,半径是______. 11.已知2cos 2x +sin2x =A sin(ωx +φ)+b (A >0),则A =________,b =_______.12.设函数f (x )=x 3+3x 2+1.已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =_____,b =______. 13.设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.14.如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是______.15.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是______.三、解答题16.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (Ⅰ)证明:A =2B ;(Ⅱ)若cos B =23,求cos C 的值.17.(本题满分15分)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.18.(本题满分15分)如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3. (I)求证:BF ⊥平面ACFD ;(II)求直线BD 与平面ACFD 所成角的余弦值.19.(本题满分15分)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I)求p 的值;(II)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.20.(本题满分15分)设函数f (x )=x 3+1x +1,x ∈[0,1].证明:(I) f (x )≥1-x +x 2; (II) 34<f (x )≤32.数学(文科)一、选择题1.【答案】C2.【答案】C 解析 由已知,α∩β=l ,∴l ⊂β,又∵n ⊥β,∴n ⊥l ,C 正确.故选C . 3.【答案】因y =sin(-x )2=sin x 2,故函数为偶函数,可排除A 和C ;当x =π2时,sin x 2=sin π24≠1,排除B ,只有D 满足.4.【答案】解析:根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 两点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2.5.【答案】由a ,b >0且a ≠1,b ≠1,及log a b >1=log a a 可得:当a >1时,b >a >1,当0<a <1时,0<b <a <1,代入验证只有D 满足题意. 6.【答案】A 解析:因为f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.7.【答案】B ∵|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,∴根据题意可取f (x )=⎩⎪⎨⎪⎧max{x ,2x }=2x,x ≥0,max{-x ,2x},x <0.下面利用特值法验证选项.当a =1,b =-3时可排除选项A ,当a =-5,b =2时可排除选项C ,D .故选B . 8.【答案】由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列,故选A .二、填空题9. 【答案】80;40.10.【答案】由二元二次方程表示圆的条件可得a 2=a +2,解得a =2或-1.当a =2时,方程为4x 2+4y 2+4x +8y +10=0,即x 2+y 2+x +2y +52=0,配方得⎝⎛⎭⎫x +122+(y +1)2=-54<0,不表示圆;当a =-1时,方程为x 2+y 2+4x +8y -5=0,配方得(x +2)2+(y +4)2=25,则圆心坐标为(-2,-4),半径是5.11.【答案】∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎫22cos 2x +22sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1=A sin(ωx +φ)+b (A >0),∴A =2,b =1.12.【答案】解析:因为f (x )=x 3+3x 2+1,所以f (a )=a 3+3a 2+1,所以f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2.由此可得⎩⎪⎨⎪⎧2a +b =-3, ①a 2+2ab =0, ②a 3+3a 2=a 2b . ③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2.13.【答案】如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2,由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2,解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2,∴27<2m +2<8.14.【答案】设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设O 是AC 中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则A ⎝⎛⎭⎫0,62,0,B ⎝⎛⎭⎫302,0,0,C ⎝⎛⎭⎫0,-62,0.作DH ⊥AC 于H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306,因此可设D ′⎝⎛⎭⎫-306cos α,-63,306sin α,则BD ′→=⎝⎛⎭⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD ′→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BD ′→·n |BD ′→|·|n |=639+5cos α,所以cos α=-1时,cos θ取最大值66. 15.【答案】7三、解答题16.【解析】(1)由正弦定理得sin sin 2sin cos B C A B+=,故2sin cos sin sin()sin sin cos cos sin A B B A B B A B A B =++=++,于是,sin sin()B A B =-,又,(0,)A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-,因此,A π=(舍去)或2A B =,所以,2A B =.(2)由2cos 3B =,得5sin 3B =,21cos 22cos 19B B =-=-,故1cos 9A =-,45sin 9A =,22cos cos()cos cos sin sin 27C A B A B A B =-+=-+=. 17.【解析】(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,同时a 2=3a 1,∴数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,此时T 2符合,T 1不符合,∴T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.18.【解析】(1)延长,,AD BE CF 相交于一点K ,如图所示,因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以AC ⊥平面BCK ,因此BF AC ⊥,又因为//EF BC ,1BE EF FC ===,2BC =,所以BCK ∆为等边三角形,且F 为CK 的中点,则BF CK ⊥,所以BF ⊥平面ACFD . (2)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角,在Rt BFD ∆中,33,2BF DF ==,得21cos 7BDF ∠=,所以直线BD 与平面ACFD 所成的角的余弦值为217.19.【解析】(1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1.∵AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y A y B =-4,∴B ⎝⎛⎭⎫1t 2,-2t .又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t .∴N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2t t 2-m =2t +2t t 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1,∴m <0或m >2.经检验知,m <0或m >2满足题意. 综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).20.【解析】(Ⅰ)因423111x x x x x--+-=+由于[0,1]x ∈,有411,11x x x -≤++即23111x x x x-≤-++,所以2()1f x x x ≥-+(Ⅱ)由01x ≤≤得3x x ≤,故()()()()312111333311222122x x f x x x x x x -+=+≤+-+=+≤+++,所以()32f x ≤.由(Ⅰ)得22133()1()244f x x x x ≥-+=-+≥,又1193()2244f =>,所以3()4f x >,综上,()33.42f x <≤2016年普通高等学校招生全国统一考试(浙江理)一、选择题1.已知集合P ={x | 1≤x ≤3},Q ={x | x 2≥4},则P ∪∁R Q =( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞) 2.已知互相垂直的平面α,β交于直线l ,且直线m ,n 满足m ∥α,n ⊥β,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n3.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2 D .64.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2 5.设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关6.如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n}是等差数列 7.已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 8.已知实数a ,b ,c ( )A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 二、填空题9.若抛物线y 2=4x 上的点M 到焦点的距离为10,则点M 到y 轴的距离是 . 10.已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________. 11.某几何体的三视图如图所示,则该几何体的表面积是 ;体积是12.已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________.13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5= .14.如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.15.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________. 三、解答题16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.17.如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.⑴.求证:BF ⊥平面ACFD ; ⑵.求二面角B -AD -F 的余弦值.18.已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ).19.如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.20.设数列{a n }满足|a n -a n +12|≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤(32)n ,n ∈N *,证明:|a n |≤2,n ∈N *.参考答案一、选择题1.B 解析:因为Q ={x ∈R|x 2≥4},所以∁R Q ={x ∈R|x 2<4}={x ∈R|-2<x <2}.因为P ={x ∈R|1≤x ≤3},所以P ∪(∁R Q )={x ∈R|-2<x ≤3}=(-2,3]. 2.解析 由已知,α∩β=l ,∴l ⊂β,又∵n ⊥β,∴n ⊥l ,③正确. 3.已知不等式组表示的平面区域如图中△PMQ 所示.因为l 与直线x +y =0平行,故区域内的点在直线x +y -2上的投影构成线段AB ,则|AB |=|PQ |.由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0解得P (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0解得Q (2,-2).∴|AB |=|PQ |=(-1-2)2+(1+2)2=32.4.D 解析:由于存在性命题的否定形式是全称命题,全称命题的否定形式是存在性命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.5.B 因f (x )=sin 2x +b sin x +c =-cos 2x 2+b sin x +c +12,其中当b =0时,f (x )=-cos 2x 2+c +12,f (x )的周期为π;b ≠0时,f (x )的周期为2π,即f (x )的周期与b 有关但与c 无关,故选B .6.由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,故{S n }是等差数列,故选A . 7.解析 由题意可得:m 2-1=n 2+1,即m 2=n 2+2,又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1. 8.解析 由于此题为选择题,可用特值排除法找正确选项.对选项A ,当a =b =10,c =-110时,可排除此选项;对选项B ,当a =10,b =-100,c =0时,可排除此选项;对选项C ,当a =10,b =-10,c =0时,可排除此选项.故选D .二、填空题9.设点M 的横坐标为x 0,易知准线x =-1,∵点M 到焦点的距离为10,根据抛物线定义,x 0+1=10,∴x 0=9,因此点M 到y 轴的距离为9. 10.∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎫22cos 2x +22sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1=A sin(ωx +φ)+b (A >0),∴A =2,b =1.11.解析 由三视图可知,该几何体为两个相同长方体组合,长方体的长、宽、高分别为4 cm 、2 cm 、2 cm ,其直观图如下:其体积V =2×2×2×4=32(cm 3),由于两个长方体重叠部分为一个边长为2的正方形,故表面积为S =2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm 2).12.解析 设log b a =t ,则t >1,因为t +1t =52,解得t =2,故a =b 2,因此a b =(b 2)b =b 2b =b a ,∴a=2b ,b 2=2b ,又b >1,解得b =2,a =4.13.解析 ∵a n +1=2S n +1,∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12,∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432,∴S 5=121.14.解设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°,∴AC =AB 2+BC 2-2·AB ·BC ·cos ∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB=12(180°-120°)=30°,∴S △BCD =12BC ·DC ×sin ∠ACB =12×2×(23-x )×12=12(23-x ).要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x ,则V 四面体PBCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体PBCD 的最大值为16×3=12. 解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设O 是AC 中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则A ⎝⎛⎭⎫0,62,0,B ⎝⎛⎭⎫302,0,0,C ⎝⎛⎭⎫0,-62,0.作DH ⊥AC 于H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306,因此可设D ′⎝⎛⎭⎫-306cos α,-63,306sin α,则BD ′→=⎝⎛⎭⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD ′→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BD ′→·n |BD ′→|·|n |=639+5cos α,所以cos α=-1时,cos θ取最大值66. 15.法一 由已知可得:6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e |,由于上式对任意单位向量e 都成立.∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b ,即6≥5+2a ·b ,∴a ·b ≤12.法二 由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6可得|cos α|+2|cos β|≤6①.令sin α+2sin β=m ②,①2+②2得4(|cos α cos β|+sin αsin β)≤1+m 2对一切实数α,β恒成立,故4(|cos αcos β|+sin αsin β)≤1.故a ·b =2(cos αcos β+sin αsin β)≤2(|cos αcos β|+sin αsin β)≤12.解析:由于e 是任意单位向量,可设e =a +b|a +b |,则|a ·e |+|b ·e |=⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+⎪⎪⎪⎪⎪⎪b ·(a +b )|a +b |≥⎪⎪⎪⎪⎪⎪a ·(a +b )|a +b |+b ·(a +b )|a +b |=⎪⎪⎪⎪⎪⎪(a +b )·(a +b )|a +b |=|a +b |.因为|a ·e |+|b ·e |≤6,所以|a +b |≤6,所以(a +b )2≤6,所以|a |2+|b |2+2a ·b ≤6.因为|a |=1,|b |=2,所以1+4+2a ·b ≤6,所以a ·b ≤12,所以a ·b 的最大值为12.三、解答题16.【解】(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,故B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,故A =2B .(2)解 由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin 2B =sin B cos B ,因sin B ≠0,得sin C =cosB .又B ,C ∈(0,π),故C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.17.【解】(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC ,故AC ⊥平面BCK ,因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,故△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK ,且CK ∩AC =C ,CK ,AC ⊂平面ACFD ,故BF ⊥平面ACFD .(2)解 法一 过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,故BF ⊥AK ,则AK ⊥平面BQF ,故BQ ⊥AK .故∠BQF 是二面角B -AD -F 的平面角.在Rt △ACK 中,AC =3,CK =2,得AK =13,FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34.故二面角B -AD -F 的平面角的余弦值为34. 法二 如图,延长AD ,BE ,CF 相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,故KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x 轴,z 轴的正方向,建立空间直角坐标系O -xyz .由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝⎛⎭⎫12,0,32,F ⎝⎛⎭⎫-12,0,32.因此,=(0,3,0),=(1,3,3),=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m |·|n |=34.故,二面角B -AD -F 的平面角的余弦值为34. 18.【解】(1)由于a ≥3,故当x ≤1时,(x 2-2ax +4a -2)-2|x -1|=x 2+2(a -1)(2-x )>0,当x >1时,(x 2-2ax +4a -2)-2|x -1|=(x -2)(x -2a ).故使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围是[2,2a ].(2)①设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2,则f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2,故由F (x )的定义知m (a )=min {}f (1),g (a ),即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.②当0≤x ≤2时,F (x )=f (x )≤max {}f (0),f (2)=2=F (2).当2≤x ≤6时,F (x )=g (x )≤max{}g (2),g (6)=max{}2,34-8a =max{}F (2),F (6).故M (a )=⎩⎪⎨⎪⎧34-8a ,3≤a <4,2,a ≥4. 19.【解】(1)设直线y =kx +1被椭圆截得的线段为AP ,由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0.故x 1=0,x 2=-2a 2k 1+a 2k 2,因此|AP |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2.由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22,故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,故(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由于k 1≠k 2,k 1,k 2>0,得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2).①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,故a >2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2.由e =c a =a 2-1a 得,所求离心率的取值范围是(0,22]. 20.【解】(1)由|a n -a n +12|≤1得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,故|a 1|21-|a n |2n =⎝⎛⎭⎫|a 1|21-|a 2|22+⎝⎛⎭⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1=1-12n -1<1,因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =⎝⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1=12n -1⎝⎛⎭⎫1-12m -n <12n -1,故|a n |<⎝⎛⎭⎫12n -1+|a m |2m ·2n ≤⎣⎢⎡⎦⎥⎤12n -1+12m ·⎝⎛⎭⎫32m ·2n =2+(34)m ·2n .从而对于任意m >n ,均有|a n |<2+(34)m 2n .①由m 的任意性得|a n |≤2.否则,存在n 0∈N *,有|a n 0|>2,取正整数m 0>log 34|a n 0|-22n 0且m 0>n 0,则2n 0·(34)m 0<2n 0·(34)log 34|an 0|-22n 0=|a n 0|-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.2016新课标I 文一. 选择题1.设集合A ={1,3,5,7},B ={x |2≤x ≤5},则A ∩B = A .{1,3} B .{3,5} C .{5,7} D .{1,7} 2.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a = A .-3 B .-2 C .2 D .33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是A .13B .12C .23D .564.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b =A . 2B . 3C .2D .35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为A .13B .12C .23D .346.若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x -π4)D .y =2sin(2x -π3)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 8.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log cC .a c <b cD .c a >c b 9.函数y =2x 2-e |x |在[-2,2]的图像大致为10.执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足n=n +1结束输出x,y x 2+y 2≥36?x =x+n-12,y=ny 输入x,y,n 开始A .y =2xB .y =3xC .y =4xD .y =5x11.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为A .32B .22 C .33D .1312.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是A .[ -1,1]B .[-1,13]C .[-13,13]D .[-1,-13] 二、填空题13.设向量a =(x ,x +1),b =(1,2),且a b ,则x =___________. 14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)=___________.15.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为_________.16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为_____元.三.解答题17.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(I)求{a n }的通项公式; (II)求{b n }的前n 项和.18.如图,在已知正三棱锥P-ABC的侧面是直角三角形,P A=6,顶点P在平面ABC内的正投影为点D,D在平面P AB内的正投影为点E,连接PE并延长交AB于点G.PABD CGE(I)证明:G是AB的中点;(II)在答题卡第(18)题图中作出点E在平面P AC内的正投影F(说明作法及理由),并求四面体PDEF 的体积.19.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与x的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.已知函数f (x )=a (x -1)2+(x -2)e x . ⑴.讨论f (x )的单调性;⑵.若f (x )有两个零点,求a 的取值范围.23.选修4—4:[坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .2016年普通高等学校招生全国统一考试文科数学参考答案一、选择题(1)B (2) A (3)C 解析 (1)将4种颜色的花任选2种种在花坛中,余下的2种花种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一花坛的种数有4种,故概率为23.(4)D 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去).(5)B 【解】解析 法一 不妨设直线l 过椭圆的上顶点(0,b )和左焦点(-c ,0),b >0,c >0,则直线l 的方程为bx -cy +bc =0,由已知得bcb 2+c 2=14×2b ,解得b 2=3c 2,又b 2=a 2-c 2,所以c 2a 2=14,即e 2=14,所以e =12(e =-12舍去). 法二 不妨设直线l 过椭圆的上顶点(0,b )和左焦点(-c ,0),b >0,c >0,则直线l 的方程为bx -cy +bc =0,由已知得bcb 2+c 2=14×2b ,所以bc a =14×2b ,所以e =c a =12. (6)D 解析:函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝⎛⎭⎫2x +π6的图像向右平移14个周期即π4个单位长度,所得图像对应的函数为y =2sin ⎣⎡⎦⎤2 ⎝⎛⎭⎫x -π4 +π6=2sin ⎝⎛⎭⎫2x -π3. (7)由题知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S =78×4π×22+3×14π×22=17π. (8)B 解析:对于A ,log a c =1log c a ,log b c =1log c b.∵0<c <1,∴对数函数y =log c x 在(0,+∞)上为减函数,∴若0<b <a <1,则0<log c a <log c b ,1log c a >1log c b ,即log a c >log b c ;若0<b <1<a ,则log c a <0,log c b >0,1log c a <1log c b ,即log a c <log b c ;若1<b <a ,则log c a <log c b <0,1log c a>1log c b,即log a c >log b c .故A 不正确;由以上解析可知,B 正确;对于C ,∵0<c <1,∴幂函数y =x c 在(0,+∞)上为增函数.∵a >b >0,∴a c >b c ,故C 不正确;对于D ,∵0<c <1,∴指数函数y =c x 在R 上为减函数.∵a >b >0,∴c a <c b ,故D 不正确.(9)D 【解】令f (x )=2x 2-e |x |(-2≤x ≤2),则f (x )是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B ;当x >0时,令g (x )=2x 2-e x ,则g ′(x )=4x -e x ,又g ′(0)<0,g ′(2)>0,所以g (x )在(0,2)内至少存在一个极值点,故f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C .(10)C (11)A 解析:如图,延长B 1A 1至A 2,使A 2A 1=B 1A 1,延长D 1A 1至A 3,使A 3A 1=D 1A 1,连接AA 2,AA 3,A 2A 3,A 1B ,A 1D .易证AA 2∥A 1B ∥D 1C ,AA 3∥A 1D ∥B 1C . ∴平面AA 2A 3∥平面CB 1D 1,即平面AA 2A 3为平面α.于是m ∥A 2A 3,直线AA 2即为直线n .显然有AA 2=AA 3=A 2A 3,于是m 、n 所成的角为60°,其正弦值为32.选A. (12)根据选项特点验证a =1,a =-1是否符合题意.当a =1时,f (x )=x +sin x -13sin 2x ,则f ′(x )=1+cos x -23cos 2x ,当x =π时,f ′(π)=-23<0,不符合题意,排除选项A .当a =-1时,f (x )=x-sin x -13sin 2x ,则f ′(x )=1-cos x -23cos 2x ,当x =0时,f ′(0)=-23<0,不符合题意,排除选项B ,D .只有选项C 满足.解析:f (x )=x -13sin 2x cos x +a sin x 知,f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.因为f (x )在R 上单调递增,所以f ′(x )=-43cos 2x +a cos x +53≥0在R 上恒成立.解法一:由题意可得,当cos x =1时,f ′(x )≥0,当cos x =-1时,f ′(x )≥0,即⎩⎨⎧-43+a +53≥0,-43-a +53≥0,解得-13≤a ≤13.解法二:令t =cos x ∈[-1,1],当t =0时,53>0恒成立;当0<t ≤1时,a ≥43t -53t .令h (t )=43t-53t ,则h ′(t )=43+53t 2>0,所以h (t )在(0,1]上单调递增,所以h (t )max =h (1)=-13,所以a ≥-13.当-1≤t <0时,a ≤43t -53t .令g (t )=43t -53t ,则g ′(t )=43+53t 2>0,所以g (t )在[-1,0)上单调递增,所以g (t )min =g (-1)=13,所以a ≤13.综上,a 的取值范围为⎣⎡⎦⎤-13,13. 二、填空题 (13) -23(14) 【解】由题意知sin ⎝⎛⎭⎫θ+π4=35,且θ是第四象限角,所以cos ⎝⎛⎭⎫θ+π4>0,所以cos ⎝⎛⎭⎫θ+π4=45,又tan ⎝⎛⎭⎫θ-π4=tan ⎣⎡⎦⎤⎝⎛⎭⎫θ+π4-π2=sin ⎝⎛⎭⎫θ+π4-π2cos ⎝⎛⎭⎫θ+π4-π2=-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-43. (15)【解】圆C 的标准方程为x 2+(y -a )2=a 2+2,圆心为C (0,a ),点C 到直线y =x +2a 的距离为d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以圆C 的面积为π(a 2+2)=4π.(16) 【解】设生产产品A 、产品B 分别为x 件、y 件,利润之和为z 元,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数为z =2 100x +900y .作出不等式组表示的平面区域为图中阴影部分内(包括边界)的整点,即可行域.由图可知当直线z =2 100x +900y 经过点M 时,z 取得最大值.联立方程组⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,得M 的坐标为(60,100),所以当x =60,y =100时,z max =2 100×60+900×100=216 000(元). 三、解答题(17) (1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,∴a 1=2,所以数列{a n }是首项为2,公差为3的等差数列,因此{a n }的通项公式a n =2+3(n -1)=3n -1. (2)由(1)和a n b n +1+b n +1=nb n ,得b n +1=nb n 1+a n =b n3≠0,则b n +1b n =13,因此数列{b n }是首项为1,公比为13的等比数列,设数列{b n }的前n 项和为S n ,则S n =1-⎝⎛⎭⎫13n1-13=32-12×3n -1. (18(1)证明 因为P 在平面ABC 内的正投影为D ,所以AB ⊥PD .因为D 在平面P AB 内的正投影为E ,所以AB ⊥DE ,且PD ∩DE =D ,所以AB ⊥平面PED ,又PG ⊂平面PED ,故AB ⊥PG .又由已知可得,P A =PB ,从而G 是AB 的中点.(2)解 在平面P AB 内,过点E 作PB 的平行线交P A 于点F ,F 即为E 在平面P AC 内的正投影.理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC ,又P A ∩PC =P ,因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面P AB ,DE ⊥平面P AB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且P A =6,可得DE =2,PE =2 2.在等腰直角三角形EFP 中,可得EF =PF =2.所以四面体PDEF 的体积V =13×12×2×2×2=43.(19)解析:(1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700,所以y与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100 (4 000×90+4 500×10)=4050.比较两个平均数可知,购买一台机器的同时应购买19个易损零件. (20) 解 (1)如图,由已知得M (0,t ),P ⎝⎛⎭⎫t22p ,t ,又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,故直线ON 的方程为y =pt x ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其它公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp (y-t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其它公共点. (21)【解】⑴.f ′(x )=(x -1)(e x +2a ).①.当a ≥0时,则当x >1时,f ′(x )>0;当x <1时,f ′(x )<0,故函数f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.②.当a <0时,由f ′(x )=0解得,x =1或x =ln(-2a )(i).若ln(-2a )=1,即a =-e2,则∀x ∈R ,f ′(x )=(x -1)(e x +e)≥0,故f (x )在(-∞,+∞)单调递增.(ii).若ln(-2a )<1,即a >-e2,则当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x ∈(ln(-2a ),1)时,f ′(x )<0,故函数在(-∞,ln(-2a )),(1,+∞)上单调递增;在(ln(-2a ),1)上单调递减.(iii).若ln(-2a )>1,即a <-e2,则当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0;故函数在(-∞,1),(ln(-2a ),+∞)单调递增;在(1,ln(-2a ))单调递减. ⑵.①.当a >0时,由⑴知,函数f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=e ,f (2)=a ,取实数b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a (b 2-32b )>0,故f (x )有两个零点.②.若a =0,则f (x )=(x -2)e x ,故f (x )只有一个零点.③.若a <0,由⑴知,当a ≥-e2,则f (x )在(1,+∞)单调递增,又当x ≤1时,f (x )<0,故f (x )不存在两个零点;当a <-e2,则函数在(ln(-2a ),+∞)单调递增;在(1,ln(-2a ))单调递减.又当x ≤1时,f (x )<0,故不存在两个零点.综上所述,a 的取值范围是(0,+∞).(23)⑴.消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.⑵.曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2得,16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.2016年普通高等学校招生全国统一考试(新课标I 理)二. 选择题1.设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A .(-3,-32) B .(-3,32) C .(1,32) D .(32,3)2.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B . 2 C . 3 D .23.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13B .12C .23D .345.已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π 7.函数y =2x 2–e |x |在[–2,2]的图像大致为( )8.若a >b >1,0<c <1,则A .a c <b cB .ab c <ba cC .a log b c <b log a cD .b log a c <log b c 9.执行右面的程序图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足 A .y =2x B .y =3x C .y =4x D .y =5x10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的标准线于D ,E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A .32 B .22 C .33 D .1312.已知函数f (x )=sin(ωx +φ)(ω>0,|φ|≤π2),x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在(π18,5π36)上单调,则ω的最大值为( )A .11B .9C .7D .5 二、填空题:本题共4小题,每小题5分13.设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 14.(2x +x )5的展开式中,x 3的系数是 .(用数字填写答案)15.设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . (I)求C ;(II)若c =7,ΔABC 的面积为332,求ΔABC 的周长.18.(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°. (1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元,在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:。
专题01 集合-三年高考(2016-2018)数学(文)试题分项版解析(解析版)分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.学#科网3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2019年高考全景展示1.【2019年新课标I卷文】已知集合,,则A. B. C. D.【答案】A点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2.【2019年全国卷Ⅲ文】已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。
3.【2019年全国卷II文】已知集合,,则A. B. C. D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C学%科网点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.【2019年北京卷文】已知集合A={(x||x|<2)},B={−2,0,1,2}, 4.则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:,,,故选A.点睛:此题考查集合的运算,属于送分题.5.【2019年天津卷文】设集合,,,则A. B. C. D.【答案】C点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.6.【2019年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】试题分析:分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 7.【2019年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2019年高考全景展示1.【2019课表1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A【考点】集合运算.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 2.【2019课标II ,文1】设集合{1,2,3},{2,3,4}A B ==则AB =A. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 【答案】A 【解析】由题意{1,2,3,4}AB =,故选A.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.3.【2019课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为()A.1 B.2 C.3 D.4 【答案】B【解析】由题意可得:{}A B=,A B中元素的个数为2,2,4所以选B.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.4.【2019天津,文1】设集合{1,2,6},{2,4},{1,2,3,4}===,则A B C()A B C=(A){2}(B){1,2,4}(C){1,2,4,6}(D){1,2,3,4,6}【答案】B【解析】试题分析:由题意可得:{}(){}=∴=.本题选A B A B C1,2,4,6,1,2,4择B选项.【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.5.【2019北京,文1】已知U=R,集合{|22}或,则U A==<->A x x x(A)(2,2)-(B)-∞-+∞(,2)(2,)(C)[2,2]-(D)-∞-+∞(,2][2,)【答案】C【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.6.【2019浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P A .)2,1(- B .)1,0( C .)0,1(- D .)2,1( 【答案】A 【解析】试题分析:利用数轴,取Q P ,所有元素,得=Q P )2,1(-.学&科网【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 7.【2019山东,文1】设集合{}11M x x =-<,{}2N x x =<,则MN =A.()1,1-B. ()1,2-C. ()0,2D. ()1,2 【答案】C【考点】 不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.8.【2019江苏,1】已知集合{1,2}A =,2{,3}B a a=+,若{1}A B =则实数a 的值为 .【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件. (2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2019年高考全景展示1. 【2019高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =,则A B =( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}【答案】B【解析】试题分析:集合A 与集合B 公共元素有3,5,}5,3{=B A ,故选B. 学*科网考点:集合的交集运算2.【2019高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则A B =( )(A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】试题分析:由29x<得,33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =,故选D.考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.3. [2019高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则A B=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【答案】C考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.4.【2019高考天津文数】已知集合}3,2,1{=A,yB∈-=,则A B=()=xy,1x2}|{A(A)}3,1{(B)}2,1{(C)}3,2{(D)}3,2,1{【答案】A【解析】{1,3,5},{1,3}==,选A.B A B考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.5.【2019高考四川文科】设集合{|15}=≤≤,Z为整数集,A x x则集合A∩Z中元素的个数是( )(A)6 (B) 5 (C)4 (D)3【答案】B【解析】试题分析:由题意,{1,2,3,4,5}A Z=,故其中的元素个数为5,选B.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.6. 【2019高考浙江文数】已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()=( ) A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5} 【答案】C考点:补集的运算. 【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.7.【2019高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =( )A.{|25}x x << B .{|4x x <或5}x > C.{|23}x x << D.{|2x x <或5}x >【答案】C【解析】试题分析:由题意得,(2,3)AB =,故选C.考点: 集合交集 【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.学@科网8.【2019高考山东文数】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B===,则()A B=()U(A){2,6}(B){3,6}(C){1,3,4,5}(D){1,2,4,6}【答案】A考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.9.【2019江苏卷】已知集合{1,2,3,6},{|23},=-=-<<则A B x xA B____________.=【答案】{}-1,2【解析】试题分析:{1,2,3,6}{|23}{1,2}=--<<=-A B x x考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。
2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为错误!未找到引用源。
,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=错误!未找到引用源。
,c=2,cos A=错误!未找到引用源。
,则b等于( D )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×错误!未找到引用源。
,解得b=3(b=-错误!未找到引用源。
舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!未找到引用源。
,则该椭圆的离心率为( B )(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
2016年高考试题分类汇编(集合)考点1 集合的基本概念1.(2016·四川卷·文科)设集合{|15}A x x =≤≤,Z 为整数集,则A Z 中元素的个数是A.3B.4C.5D.62.(2016·四川卷·理科)设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是A.3B.4C.5D.6考点2 集合的基本关系考点3 集合的基本运算考法1 交集1.(2016·江苏卷·理科)已知集合{}1,2,3,6A =-,{}23B x x =-<<,则 A B = ___ __.2.(2016·全国卷Ⅰ·文科)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =A. {1,3}B. {3,5}C. {5,7}D. {1,7}3.(2016·天津卷·文理)已知集合{}1,2,3,4A =,{}32,B y y x x A ==-∈,则 A B =A. {}1B. {}4C. {}13,D. {}14,4.(2016·北京卷·理科)已知集合{}2A x x =<,{}1,0,1,2,3B =-,则A B =A. {}0,1B. {}0,1,2C. {}1,0,1-D. {}1,0,1,2-5.(2016·北京卷·文科)已知集合{}24A x x =<<,{}35B x x x =<>或,则A B = A.{}25x x << B.{}45x x x <>或 C.{}23x x << D.{}25x x x <>或6.(2016·全国卷Ⅰ·理科)设集合{}2430A x x x =-+<,{}230B x x =->,则A B = A. 3(3,)2-- B. 3(3,)2- C. 3(1,)2 D. 3(3)2, 7.(2016·全国卷Ⅱ·文科)已知集合{}1,2,3A =,{}29B x x =<,则A B =A.{}210,1,2,3--,,B.{}21012--,,,,C. {}123,,D. {}12, 考法2 并集1.(2016·全国卷Ⅲ·理科)设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T =IA. []23,B. (][),23-∞+∞,UC. [)3+∞,D.(][)0,23+∞,U 2.(2016·全国卷Ⅱ·理科)已知集合{}1,2,3A =,{|(1)(2)0,}B x x x x =+-<∈Z , 则A B =A.{}1B. {}1,2C. {}0,1,2,3D. {}1,0,1,2,3-3.(2016·山东卷·理科)设集合{}2,x A y y x R ==∈,{}210B x x =-<, 则 A B = A. (1,1)- B. (0,1) C. (1,)-+∞ D. (0,)+∞考法3 补集1.(2016·全国卷Ⅲ·文科)设集合{}0,2,4,6,8,10A =,{}4,8B =,则A C B =A.{}4,8B. {}0,2,6C. {}0,2,6,10D. {}0,2,4,6,8,10 考法4 交、并不混合运算1.(2016·浙江卷·理科)已知集合{}13P x R x =∈≤≤, {}24Q x R x =∈≥,则()R P C Q =A .[]23,B .(]2,3-C .[)1,2D .(,2][1,)-∞-+∞2.(2016·浙江卷·文科)已知全集{}123456U =,,,,,,{}135P =,,,{}1,2,4Q =, 则()R C P Q =A. {}1B. {}35,C. {}1246,,,D. {}12345,,,,3.(2016·山东卷·文科)设集合{}123456U =,,,,,,{}135A =,,,{}345B =,,, 则 ()U C A B =A. {}26,B. {}36,C. {}1345,,,D. {}124,6,,。
考点1 集合一、选择题1.(2016年全国卷Ⅰ高考理科·T1)设集合A ={x|x 2-4x +3<0},B ={x|2x-3>0},则A ∩B = ( )A.33,2⎛⎫-- ⎪⎝⎭B. 33,2⎛⎫- ⎪⎝⎭C.33,2⎛⎫-- ⎪⎝⎭D.3,32⎛⎫ ⎪⎝⎭【试题解析】选D.A ={x|x 2-4x +3<0}={x|1<x <3}, B ={x|2x-3>0}=3x x2⎧⎫⎨⎬⎩⎭. 所以A ∩B =3x |x 32⎧⎫<<⎨⎬⎩⎭. 2.(2016年全国卷Ⅰ高考文科·T1)设集合A ={1,3,5,7},B ={x|2≤x ≤5},则A ∩B = ( )A.{1,3} B .{3,5} C .{5,7} D .{1,7} 【试题解析】选B.因为B ={x|2≤x ≤5},而A ={1,3,5,7}, 所以A ∩B ={3,5}.3.(2016年全国卷Ⅱ理科·T2)已知集合A ={1,2,3},B ={x|(x +1)(x-2)<0,x ∈Z },则A ∪B = ( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}【解题指南】先求出集合B ,再利用Venn 图求出A ∪B.【试题解析】选C.B ={x|(x +1)(x-2)<0,x ∈Z }={x|-1<x <2,x ∈Z },所以B ={0,1},所以A ∪B ={0,1,2,3}.【误区警示】平时练习,求交集较多,本题要求的是并集,审题时要注意.4.(2016年全国卷Ⅱ文科·T1)已知集合A ={1,2,3},B ={x|x 2<9},则A ∩B = ( )A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,2}C.{1,2,3}D.{1,2}【解题指南】先化简集合B ,再求A ∩B.【试题解析】选D.由x 2<9,得-3<x <3, 所以B ={x|-3<x <3},所以A ∩B ={1,2}.5.(2016年全国卷Ⅲ·理科·T1)设集合S ={x|(x-2)(x-3)≥0},T ={x|x >0},则S ∩T = ( ) A.[2,3] B .(-∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞)【解题指南】根据集合的运算法则进行集合的交集运算.【试题解析】选D.在集合S 中()()x 2x 3--≥0,解得x ≥3或x ≤2,所以S ∩T ={}x |0x 2或x 3<≤≥. 6.(2016年全国卷Ⅲ·文科·T1)设集合A ={0,2,4,6,8,10},B ={4,8},则AB = ( )A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}【解题指南】把握好这里的全集是集合A ,直接求集合B 关于集合A 的补集. 【试题解析】选C.AB ={}0,2,6,10.7.(2016年浙江高考理科·T1)已知集合P ={x ∈R|1≤x ≤3},Q ={x ∈R|x 2≥4},则P ∪(RC Q )=( )A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞) 【解题指南】先计算RC Q ,再求P ∪(RC Q ).【试题解析】选B.R C Q ={x|x 2<4}=(-2,2),所以P ∪(RC Q )=(-2,2)∪[1,3]=(-2,3].8.(2016年浙江高考文科·T1)已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则(UC P )∪Q = ( )A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5} 【解题指南】根据集合的补集与并集的定义计算. 【试题解析】选C.(UC P )∪Q ={2,4,6}∪{1,2,4}={1,2,4,6}.9.(2016年山东高考理科·T2)设集合A ={y|y =2x ,x ∈R },B ={x|x 2-1<0},则A ∪B = ( ) A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)【解题指南】把每个集合化为“最简形式”,弄清每个集合所表示的具体含义,就容易求解了.【试题解析】选C.因为A={y|y=2x,x∈R},B={x|x2-1<0},所以集合A表示大于0的实数,而集合B表示在-1与1之间的实数,所以A∪B=(-1,+∞)10.(2016年山东高考文科·T1)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则()CAUBU=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}【解题指南】先求出集合A,B的并集,然后再求补集.【试题解析】选A.A∪B={}C={2,6}.1,3,4,5,所以()AUBU11.(2016年四川高考理科·T1)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是()A.3B.4C.5D.6【解题指南】先求集合A与集合Z的交集,再写出交集中元素个数.【试题解析】选C.由题意,A∩Z={-2,-1,0,1,2},故其中的元素个数为5.12.(2016年四川高考文科·T2)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.3【解题指南】先求集合A与集合Z的交集,再写出交集中元素个数.【试题解析】选B.由题意,A∩Z={1,2,3,4,5},故其中的元素个数为5.13.(2016年天津高考理科·T1)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}【解题指南】列举法表示出集合B,再利用交集的定义求解.【试题解析】选D.因为A={}1,4,7,10,所以A∩B={}1,2,3,4,B={}1,4.14.(2016年天津高考文科·T1)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}【解题指南】列举法表示出集合B,再利用交集的定义求解.【试题解析】选A. B={1,3,5},A∩B={1,3}.15.(2016年北京高考理科·T1)已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=()A,{0,1} B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}【解题指南】解A中不等式后,再求交集.【试题解析】选C.A={x|-2<x<2},所以A∩B={-1,0,1}.16.(2016年北京高考文科·T1)同(2016年北京高考文科·T1)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}【解题指南】利用数轴求解.【试题解析】选C.作出数轴如下,由图可知选C.二、填空题17.(2016年江苏高考T1)已知集合A={-1,2,3,6},B={x|-2<x<3},则A∩B =.【解题指南】根据交集的运算性质进行计算.【试题解析】由集合A,B及交集的运算可知A∩B={-1,2}.答案:{-1,2}18.(2016年北京高考文科·T14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有种;②这三天售出的商品最少有种.【解题指南】利用韦恩图解决问题.【试题解析】①如左图所示,第一天售出但第二天未售出的商品有19-3=16;②如右图所示,这三天售出的商品最少有19+13-3=29.。
一、填空1. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】已知集合},0{a A =,}3,1,0{=B ,若}3,2,1,0{=B A ,则实数a 的值为 .【答案】2 【解析】试题分析:由题意得,2B ∉,则2A ∈,则2a =2. 【江苏省淮阴中学2015-2016学年度第一学期期中考试】集合{}{}3,2,,a A B a b ==,若{}2AB =,则a+b= .【答案】33. 【江苏省启东中学2015~2016学年度第一学期第一次阶段测试】已知集合{}1,2,4A =,{}|(1)(3)0B x x x =--≤,则AB = .【答案】{}1,2 【解析】试题分析:由已知{|13}B x x =≤≤,所以{1,2}AB =.4. 【江苏省启东中学2015~2016学年度第一学期第一次阶段测试】命题“[0,)x ∃∈+∞,23x >”的否定是 .【答案】[0,)x ∀∈+∞,23x ≤【解析】试题分析:命题“[0,)x ∃∈+∞,23x >”的否定是“[0,)x ∀∈+∞,23x ≤”5. 【江苏省清江中学数学模拟试卷】设集合{1,2,3,4,5}U =,{1,2,3}A =,{2,3,4}B =,则()U C AB = .【答案】{5}试题分析:{1,2,3,4}AB =,所以(){5}UC AB =.6. 【江苏省清江中学2016届高三上学期周练数学试题】已知全集{}U 1,3,5,7,9=,{}1,5,9A =,{}3,5,9B =,则()U A B ð的子集个数为 .【答案】2 【解析】试题分析:因为{}U 1,3,5,7,9=,{}1,5,9A =,{}3,5,9B =, 所以{}(){}U 1,3,5,9=2AB =∴A B ð,,故()U A B ð的子集个数为2个.7. 【江苏省如东高级中学2016届高三上学期期中考试数学试题】若集合{12},{32}a A B ==,,,且}2{=B A ,则实数a 的值为________【答案】1【解析】试题分析:因为}2{=B A ,所以2{32}22 1.a aB a ∈=⇒=⇒=, 8. 【江苏省如东高级中学2016届高三上学期期中考试数学试题】已知命题02,:2≤++∈∃a x x R x p 是真命题,则实数a 的取值范围是________【答案】 1.a ≤ 【解析】试题分析:由题意得:440 1.a a ∆=-≥⇒≤9. 【扬州市2015—2016学年度第一学期期末检测试题】已知集合{}02|2<x x x A -=,{}0,1,2B =,则=B A ▲ .【答案】{}110. 【镇江市2016届高三年级第一次模拟考试】若全集为U =R ,A ={x |x 2-x >0},则U C A =________.【答案】[0,1].【解析】由题可得{}{}2010A x x x x x x =->=><或,[]0,1U C A =.11. 【南京市、盐城市2016届高三年级第一次模拟考试数学】已知集合{}210A x x =-=,{}1,2,5B =-,则A B = ▲ .【答案】{}1- 【解析】 试题分析:{}{}{}210=|11,1A x x x x =-==±=-,{}1A B =-12. 【苏州市2016届高三年级第一次模拟考试】设全集U ={x | x ≥2,x ∈N },集合A ={x| x 2≥5,x ∈N },则U A ð= ▲ . 【答案】{2} 【解析】试题分析:由题意得2{|2,5,}{|2}{2}U C A x x x x N x x x N =≥≤∈=≤≤∈=13. 【泰州市2016届高三第一次模拟考试】已知集合{}21A x x =≤,集合{}2,1,0,1,2B =--,则A B = ▲ .【答案】}{1,0,1-14. 【泰州市2016届高三第一次模拟考试】若命题“存在20,4R x ax x a ∈++≤”为假命题,则实数a 的取值范围是 ▲ . 【答案】(2,)+∞【解析】试题分析:由题意得 20,1640a a >=-<V ,解得2a >15. 【江苏省通东中学2015-2016第一阶段高三数学月考试卷】设集合{|31,}M x x m m Z ==+∈,{|32,}N x x n n Z ==+∈,若a M ∈,b N ∈,则a b - N ;ab N.【答案】a b N -∈,ab N ∈【解析】试题分析:∵a M ∈,b N ∈,∴31a m =+,32b n =+,∴3()13(1)2a b m n m n -=--=--+,∵1m n Z--∈,∴a b N -∈,而(31)(32)(963)23(32)a b m n m n m n m n m n =++=+++=+++,∵32mn m n Z ++∈,∴ab N ∈. 16. 【江苏省通东中学2015-2016第一阶段高三数学月考试卷】a ,b 为实数,集合{,1}bMa=,{,0}N a =,:f x x →表示把集合M 中的元素x 映射到集合N 中仍为x ,则a b += .【答案】1 【解析】试题分析:∵:f x x →表示把集合M 中的元素x 映射到集合N 中仍为x ,∴10a b a=⎧⎪⎨=⎪⎩,∴10a b =⎧⎨=⎩,∴1a b +=.17. 【江苏省通东中学2015-2016第一阶段高三数学月考试卷】已知2{|430,}A x x x x R =-+<∈,12{|20,2(7)50,}x B x a x a x x R -=+≤-++≤∈,若A B ⊆,则实数a 的取值范围是 . 【答案】41a -≤≤-18. 【江苏歌风中学(如皋办学)高三数学九月月考】设集合{}2,0,M x =,集合{}0,1N =,若N M ⊆,则x = ▲ . 【答案】1 【解析】试题分析:由题意1M ∈,所以1x =.19. 【江苏歌风中学(如皋办学)高三数学九月月考】命题P :“2,230x R x x ∀∈+-≥”,命题P 的否定:_____ 【答案】2,230x R x x ∃∈+-< 【解析】试题分析:命题P :“2,230x R x x ∀∈+-≥”的否定是“2,230x R x x ∃∈+-<”.20. 【江苏省扬州中学高三数学月考试卷】已知集合M ={x |x <1},N ={x |lg(2x +1)>0},则M ∩N = . 【答案】(0,1) 【解析】试题分析:由题意{|211}{|0}N x x x x =+>=>,所以{|01}MN x x =<<.21. 【江苏省扬州中学高三数学月考试卷】函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的 条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写). 【答案】充要 【解析】试题分析:f (x )=13x -1+a 为奇函数,则()()0f x f x -+=,即1103131x x a a -+++=--,12a =,此时11(1)1312f =+=-,反之也成立,因此填“充要”. 二、解答1. 【江苏省淮阴中学2015-2016学年度第一学期期中考试】(本小题满分14分)设集合U=R ,{}{}2||1|1,|20A x x B x x x =-<=+-<;(1)求:AB ,()UC A B ;(2)设集合{}|2C x a x a =-<<,若()C A B ⊆,求a 的取值范围.【答案】(1)()0,1A B =,()(,1[2,)U C A B =-∞+∞);(2)2a ≤。
2016年高考数学复习参考题1、集合一、选择题:1.已知集合{|32,}==+∈N A x x n n ,{6,8,10,12,14}=B ,则集合 A B 中元素的个数为( )A .5B .4C .3D .2【试题解析】答案D .集合A 是由所有除以3余2(或3的自然数倍数加2)的正整数组成的集合,所以集合B 中有相同属性的元素为8322=⨯+和14342=⨯+,所以{8,14}= A B ,故答案选D .【选题意图】本小题主要考查集合中元素的公共属性和集合的交集运算,是基础题.解决本题的关键是抓住一个重点——集合的表示方法,即抓住集合中元素的性质特征,明确集合中的元素的构成是解决集合问题的基础.全国Ⅰ卷对集合的基本运算(特别是交集运算)的考查频次较高.2.已知集合{|12}=-<<A x x ,{|03}=<<B x x ,则= A B( ) A .(1,3)- B .(1,0)- C .(0,2) D .(2,3)【试题解析】答案A .集合(1,2)=-A ,(0,3)=B ,所以(1,3)=- A B ,故答案选A .【选题意图】本小题主要考查用区间表示集合,集合的并集运算,是基础题.3.已知集合{2,1,0,1,2}=--A ,{|(1)(2)0}=-+<B x x x ,则= A B( ) A .{1,0}- B .{0,1} C .{1,0,1}- D .{0,1,2}【试题解析】答案A .集合{|21}=-<<B x x ,所以{1,0}=- A B ,故答案选A .【选题意图】本小题主要考查一元二次不等式的解集和集合的交集运算.可以用直接法,也可以代入验证,找出公共元素.4.已知集合{|13}=-<<M x x ,{|21}=-<<N x x ,则= M N( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-【试题解析】答案B .【选题意图】本小题主要考查集合交集运算,借助数轴可以方便得出正确答案.5.已知集合{2,0,2}=-A ,2{|20}=--=B x x x ,则= A B( ) A .∅ B .{2} C .{0} D .{2}-【试题解析】答案B .2{|20}{1,2}B x x x =--==-,所以{2}A B = ,故答案选B .【选题意图】本小题主要考查一元二次方程的解和交集的概念.可以用直接法,也可以代入验证,找出公共元素.6.已知集合{1,2,3,4}=A ,2{|,}==∈B x x n n A ,则= A B( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2}【试题解析】答案A .因为∈n A ,所以当1,2,3,4=n 时,21,4,9,16=n ,于是{1,4,9,16}=B .所以{1,4}= A B ,故答案选A .【选题意图】本小题主要考查对描述法表示集合时元素的公共属性的理解,能够用列举法表示集合以及集合的交集运算.7.已知集合}13|{<<-=x x M ,}1,0,1,2,3{---=N ,则=N M( ) A .}1,0,1,2{-- B .}0,1,2,3{--- C .}0,1,2{-- D .}1,2,3{---【试题解析】答案C .【选题意图】本小题主要考查集合交集运算.8.已知集合}02|{2<--=x x x A ,}11|{<<-=x x B ,则( ) A .A B B .B A C . B A = D .∅=B A【试题解析】答案B .}21|{}02|{2<<-=<--=x x x x x A ,}11|{<<-=x x B ,所以B A ,故答案选B .【选题意图】本小题主要考查一元二次不等式的解集,集合的基本关系.9.已知集合}4,3,2,1,0{=M ,}5,3,1{=N ,N M P =,则P 的子集共有( )A .2个B .4个C .6个D .8个 【试题解析】答案B .}3,1{==N M P ,故P 的子集共有个,即:∅,{1},{3},3},{1,故答案选B .【选题意图】本小题主要考查集合的交集运算,子集的概念,注意空集是任何集合的子集的规定.10.已知集合}02|{2>-=x x x A ,}55|{<<-=x x B ,则( ) A . ∅=B A B .R =B A C .A B ⊆ D .B A ⊆【试题解析】答案B .集合0|{}02|{2<=>-=x x x x x A 或}2>x ,所以0|{<=x x B A 或}2>x R =<<-}55|{x x ,故答案选B .【选题意图】本小题主要考查一元二次不等式的解集,由不等式表示的实数的集合的基本运算和基本关系,借助数轴可以比较方便得出正确答案.11.已知集合}2,1,0{=M ,2{|320}≤=-+N x x x ,则=N M( ) A .{1} B .}2{C .{0,1}D .{1,2} 【试题解析】答案D .2{|320}{|12}≤≤≤=-+=N x x x x x ,}2,1,0{=M ,所以{1,2}=N M ,故答案选D .【选题意图】本小题主要考查一元二次不等式的解集和集合的交集运算.可以用直接法,也可以代入验证,找出公共元素.12.已知集合},4)1(|{2R ∈<-=x x x M ,}3,2,1,0,1{-=N ,则=N M ( )4⊂ ≠ ⊂ ≠ ⊂ ≠A .1,2},{0B .1,2},1,0{-C .2,3},1,0{-D .2,3},,10{【试题解析】答案A .}31|{},4)1(|{2<<-=∈<-=x x x x x M R ,所以=N M 1,2},{0,故答案选A .【选题意图】本小题主要考查一元二次不等式的解集和集合的交集运算.可以用直接法,也可以代入验证,找出公共元素.二、填空题:13.已知集合A ={1,2,3},B ={2,4,5},则= A B _______________.【试题解析】答案{1,2,3,4,5}.【选题意图】本小题主要考查集合的并集运算,元素的互异性.15.设全集{|110}≤≤=∈N U n n ,A ={2,3},B ={2,6,8},则()= C U A B _______________.【试题解析】答案{6,8}.U ={1,2,3,4,5,6,7,8,9,10},所以}10,9,8,7,6,5,4,1{=A C U ,又B ={2,6,8},所以(){6,8}U A B = C .【选题意图】本小题主要考查集合的并集和补集运算,集合中元素的互异性.14.已知全集U =R ,{|0}≤=A x x ,{|1}≥=B x x ,则=)(B A C U _____________.【试题解析】答案{|01}x x <<.{|0≤= A B x x 或1}≥x ,所以(){|01}=<< C U A B x x .【选题意图】本小题主要考查集合的补集和交集运算,注意补集中端点值的取舍.16.已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中元素的个数为____.【试题解析】答案10.列举可得集合)}4,5(),3,5(),3,4(),2,5(),2,4(),2,3(),1,5(),1,4(),1,3(),1,2{(=B 共含有10个元素.【选题意图】本小题主要考查集合中元素的公共属性,用列举法一一列举集合中的元素.说明:全国Ⅰ卷对集合的考查是必考内容,以选择题的形式呈现,通常是试卷的第1道题,重点考查集合的基本运算和基本关系,属于容易题,此处的填空题也都是由选择题型改编而来.。
集合专题复习(2016年高考题)1.(2016-卷1文)已知集合{}1,2,3A =,{}2|9B x x =<,则=B A I ( ).A.{}2,1,0,1,2,3-- B.{}2,1,0,1,2-- C.{}1,2,3 D.{}1,2 2.(2016-卷1理)已知集合{123}A =,,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B =U ( ). A.{}1 B.{12}, C.{}0123,,, D.{10123}-,,,, 3.(2016-卷2文)设集合{}1,3,5,7A =,{}52≤≤=x x B ,则A B =I ( ).A .{}1,3B .{}3,5C .{}5,7D .{}1,74.(2016-卷2理)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( ). A.33,2⎛⎫-- ⎪⎝⎭ B.33,2⎛⎫- ⎪⎝⎭ C.31,2⎛⎫ ⎪⎝⎭ D.3,32⎛⎫ ⎪⎝⎭5.(2016-卷3文)设集合{0,2,4,6,8,10}A =,{4,8}B =,则=B C A ( ).A.{}4,8B.{}0,2,6C.{}0,2,6,10D.{}0,2,4,6,8,106.(2016-卷3理)设集合{}{}0,0)3)(2(>=≥--=x x T x x x S ,则S T I =( )A.[]2,3B.(][),23,-∞+∞UC.[)3,+∞D.(][)0,23,+∞U7.(2016-北京卷文)已知集合{}24A x x =<<,{}35B x x x =<>或,则A B =I ( ). A. {}25x x << B. {}45x x x <>或 C. {}23x x << D.{}25x x x <>或8.(2016-北京卷理)已知集合{}2A x x =<,{}1,0,1,2,3B =-,则A B =IA. {}0,1B. {}0,1,2C. {}1,0,1-D. {}1,0,1,2-9.(2016-天津卷文)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B I =( ).A.}3,1{B.}2,1{C.}3,2{D.}3,2,1{ 10.(2016-天津卷理)已知集合{1,2,3,4}A =,{|32}B y y x x A ==-∈,,则A B =I ( ).A. {1}B.{4}C.{1,3}D.{1,4}11.(2016-山东卷文)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则=)(B A C U Y ( ).A .{2,6}B .{3,6}C .{1,3,4,5}D .{1,2,4,6}12.(2016-山东卷理)设集合2{|2,},{|10}x A y y x B x x ==∈=-<R ,则A B =U ( ).A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞13.(2016-浙江卷文)已知全集{}12,3456U =,,,,,集合{}13,5P =,,{}124Q =,,,则()=Q P C U Y ( ). A.{}1 B.{}3,5 C.{}1,2,4,6 D.{}1,2,3,4,514.(2016-浙江卷理)已知集合{}13P x x =∈R ≤≤,{}24Q x x =∈R ≥,则=)(Q C P R Y ( ). A.[]2,3 B.(]2,3- C.[)1,2 D.(,2][1,)-∞-+∞U15.(2016-四川卷文)设集合{}51≤≤=x x A ,Z 为整数集,则Z A I 中元素的个数是( ).A.6B.5C.4D.316.(2016-四川卷理)设集合{}22≤≤-=x x A ,Z 为整数集,则Z A I 中元素的个数是( ). A.3 B.4 C.5 D.617.(2016-江苏卷)已知集合{}1,2,3,6A =-,{}23B x x =-<<,则A B =I . 18.(2016-上海卷文理)设x ∈R ,则不等式31x -<的解集为 .。