水热法生长晶体(精选)
- 格式:ppt
- 大小:827.00 KB
- 文档页数:22
当今,在高新技术材料领域中,人工晶体作为一种特种功能材料,在材料学、光学、光电子、医疗生物领域有着广泛的作用。
用于人工晶体生长的方法有多种,如:物理气相沉淀、水热法、低温溶液生长、籽晶提拉、坩埚下降等。
其中水热法晶体生长可以使晶体在非受限的条件下充分生长,可以长出形态各异、结晶完好的晶体而受到广泛应用。
水热法可用于生长各种大的人工晶体,制备超细、无团聚或少团聚、结晶完好的微晶[1]。
适合生长熔点较高,具有包晶反应或非同成分融化,而在常温下又不溶解各种溶剂或溶解后即分解,不能再结晶的晶体材料。
与其他的合成方法相比,水热法合成的晶体具有纯度高、缺陷少,热应力小质量好等特点。
近年来随着科学技术的不断发展,水热法合成技术得到广泛应用,该技术已成功地应用于人工水晶的合成、陶瓷粉末材料的制备和人工宝石的合成等领域。
1水热法晶体生长的基本原理及影响因素1.1晶体生长的基本原理水热法又称热液法,晶体的热液生长是一种在高温高压下过饱和溶液中进行结晶的方法。
它实质上是一种相变过程,即生长基元从周围环境中不断地通过界面而进入晶格座位的过程,水热条件下的晶体生长是在密闭很好的高温高压水溶液中进行的。
利用釜内上下部分的溶液之间存在的温度差,使釜内溶液产生强烈对流,从而将高温区的饱和溶液放入带有籽晶的低温区,形成过饱和溶液。
根据经典的晶体生长理论,水热条件下晶体生长包括以下步骤:(1)营养料在水热介质里溶解,以离子、分子团的形式进入溶液(溶解阶段);(2)由于体系中存在十分有效的热对流及溶解区和生长之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段);(3)离子、分子或离子团在生长界面上吸附、分解与脱附;(4)吸附物质在界面上的运动;(5)结晶(3、4、5统称为结晶阶段)。
同时利用水热法生长人工晶体时由于采用的主要是溶解—再结晶机理,因此用于晶体生长的各种化合物在水溶液中的溶解度是采用水热法进行晶体生长时必须首先考虑的。
水热法生长KBBF单晶唐鼎元;叶宁;浦小掦;仲维卓【期刊名称】《人工晶体学报》【年(卷),期】2008(37)6【摘要】氟代硼鈹酸钾KBe2BO3F2(KBBF)晶体是至今发现的可相位匹配的倍频波长最短的晶体。
但是,由于该晶体具有很大的面间距,层状生长习性十分明显,因此,至今采用熔盐法生长的晶体厚度较薄,无法按照相位匹配方向切割成倍频器件。
我们尝试了采用水热法生长KBBF晶体并获得了成功。
我们采用水热法已成功地生长出了厚度达10mm以上的透明单晶体。
本文概述了水热法生长KBBF晶体的实验方法和生长条件(如矿化剂种类,温度,压力,温度梯度,充满度,开孔率等)对晶体生长的影响。
最后,用负离子配位多面体生长基元理论模型讨论了晶体的生长机制与形状。
【总页数】4页(P1321-1324)【关键词】KBBF晶体;水热法生长;负离子配位多面体模型【作者】唐鼎元;叶宁;浦小掦;仲维卓【作者单位】中国科学院福建物质结构研究所;中国科学院上海硅酸盐研究所【正文语种】中文【中图分类】O78【相关文献】1.RbBe2 BO 3 F2单晶的水热法生长晶体形态和表面微形貌的研究 [J], 卢福华;刘心宇;李东平;霍汉德2.水热法生长宽禁带氧化锌单晶研究进展 [J], 王金亮;任孟德;左艳彬;何小玲;张昌龙3.水热法生长单晶二氧化钛纳米棒 [J], 汪汉斌;汪宝元;刘向;向晶晶4.磷酸铁锂单晶水热法生长及其表征 [J], 张梦雪;任孟德;王金亮;周海涛;雷威;柳成荫5.水热法生长纯相磷酸铁锂单晶 [J], 任孟德;周海涛;何小玲;张昌龙因版权原因,仅展示原文概要,查看原文内容请购买。
水热法生长晶体新发展姓名:孙帆学号:21101711041摘要:在本篇论文中讲述了水热法晶体生长的基本原理以及水热法应用的最新发展。
水热法在发展中出现了许多新方法,有微波水热法、水热晶化法、水热沉淀法以及其他的一些方法,并且利用这些方法,一些研究者做了一系列的实验并取得了一些成果。
关键词:水热法微波水热法水热晶化法水热沉淀法在现在的高科技领域中,人工晶体作为一种功能材料被广泛用于光学、医疗生物、光电子等领域。
而用于生长晶体的方法多种多样,例如水热法,这是在高温高压下从饱和热水溶液中培养晶体的方法;还有提拉法,是一种直接从熔体中拉出单晶的方法;焰熔法也是晶体生长的一种方法,它是用氢氧火焰熔化粉料并使之结净的方法。
此外还有物理气相沉淀、低温溶液生长、坩埚下降等各种方法,都能够使得晶体生长。
其中水热法晶体生长可以使晶体在非受限的条件下充分生长,能够长出各种形态的、结晶完好的晶体,从而水热法得到了广泛的应用。
1 水热法晶体生长的基本原理水热法又称为水热反应法,它是以水为反应介质,在高压釜内高温高压条件下进行化学反应来制备所需要的晶体的一种方法。
用水热法得到的晶体位错密度较低,可以生长出极少缺陷、去想好、完美的晶体,并且能够合成与开发一系列特种介稳结构、特种凝聚态的新合成产物,此外,水热法晶体具体有较快的生长速率等等优点。
水热法的实质就是一种相变过程,也就是说生长基元从周围环境中不断的通过界面而进入晶格座位的过程,水热条件下的晶体生长是在密闭很好的高温高压水溶液中进行的。
利用釜内上下部分的溶液之间存在的温度差,使釜内溶液产生强烈对流,从而将高温区的饱和溶液放入带有籽晶的低温区,形成过饱和溶液。
水热条件下晶体生长包括以下几个步骤:(1)营养料在水热介质中溶解,以离子、分子团的形式进入溶液(溶解阶段);(2)由于体系中存在十分有效的热对流及溶解区和生长区之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段);(3)离子、分子或离子团在生长界面上的吸附、分解与脱附;(4)吸附物质在界面上的运动;(5)结晶((3),(4),(5)统称为结晶阶段)。
水热法生长晶体新发展姓名:孙帆学号:041摘要:在本篇论文中讲述了水热法晶体生长的基本原理以及水热法应用的最新发展。
水热法在发展中出现了许多新方法,有微波水热法、水热晶化法、水热沉淀法以及其他的一些方法,并且利用这些方法,一些研究者做了一系列的实验并取得了一些成果。
关键词:水热法微波水热法水热晶化法水热沉淀法在现在的高科技领域中,人工晶体作为一种功能材料被广泛用于光学、医疗生物、光电子等领域。
而用于生长晶体的方法多种多样,例如水热法,这是在高温高压下从饱和热水溶液中培养晶体的方法;还有提拉法,是一种直接从熔体中拉出单晶的方法;焰熔法也是晶体生长的一种方法,它是用氢氧火焰熔化粉料并使之结净的方法。
此外还有物理气相沉淀、低温溶液生长、坩埚下降等各种方法,都能够使得晶体生长。
其中水热法晶体生长可以使晶体在非受限的条件下充分生长,能够长出各种形态的、结晶完好的晶体,从而水热法得到了广泛的应用。
1 水热法晶体生长的基本原理水热法又称为水热反应法,它是以水为反应介质,在高压釜内高温高压条件下进行化学反应来制备所需要的晶体的一种方法。
用水热法得到的晶体位错密度较低,可以生长出极少缺陷、去想好、完美的晶体,并且能够合成与开发一系列特种介稳结构、特种凝聚态的新合成产物,此外,水热法晶体具体有较快的生长速率等等优点。
水热法的实质就是一种相变过程,也就是说生长基元从周围环境中不断的通过界面而进入晶格座位的过程,水热条件下的晶体生长是在密闭很好的高温高压水溶液中进行的。
利用釜内上下部分的溶液之间存在的温度差,使釜内溶液产生强烈对流,从而将高温区的饱和溶液放入带有籽晶的低温区,形成过饱和溶液。
水热条件下晶体生长包括以下几个步骤:(1)营养料在水热介质中溶解,以离子、分子团的形式进入溶液(溶解阶段);(2)由于体系中存在十分有效的热对流及溶解区和生长区之间的浓度差,这些离子、分子或离子团被输运到生长区(输运阶段);(3)离子、分子或离子团在生长界面上的吸附、分解与脱附;(4)吸附物质在界面上的运动;(5)结晶((3),(4),(5)统称为结晶阶段)。
水热法生长ZnO∶Ga晶体过程及性能研究张一骐;王金亮;任孟德;雷威;左艳彬【摘要】采用水热法于36#水热反应釜中在四种条件下制备了ZnO:Ga晶体,对比了四种参数条件下晶体的生长速度及生长质量,深入分析了过快生长速度工艺下晶体产生微孔的原因.在D工艺条件下(4MKOH +0.25M LiOH+1.25mlH2O2,360-340℃)获得了生长速度适宜、高质量的ZnO:Ga单晶,晶体最大尺寸达到32.36 mm×27.46 mm×5.52 mm.Ga:ZnO晶体的生长习性为形成一个单锥六棱具有显露p锥面即(101-1)和负极面(0001-)的柱体,而柱显露m面(101-0)发生退化.测试ZnO:Ga晶体的双晶摇摆曲线显示晶体具有优良的结晶质量,其中+c[002]晶面的FWHM为11arc sec,而-c晶面的结晶质量略低于+c方向,FWHM为17arc sec.较之纯ZnO晶体,Ga:ZnO晶体在750nm处透过率曲线开始下降,其在大于750nm 波长的可见及红外光区的特异吸收性能将具有广泛的应用前景.【期刊名称】《超硬材料工程》【年(卷),期】2016(028)003【总页数】6页(P57-62)【关键词】ZnO∶Ga;水热法;晶体;过程;性能【作者】张一骐;王金亮;任孟德;雷威;左艳彬【作者单位】中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004;桂林理工大学地球科学学院,广西桂林 541006;中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004;中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004;桂林理工大学地球科学学院,广西桂林 541006;中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004【正文语种】中文【中图分类】TQ174氧化锌作为一种重要的金属氧化物半导体陶瓷材料,在光电、压电、气敏等方面的性能和应用受到了相关领域研究人员的广泛关注。
第三章水热法生长宝石晶体与鉴别☐一、水热法生长宝石晶体概述☐二、影响宝石晶体生长的因素☐三、水热法生长水晶、红宝石、祖母绿、海蓝宝石晶体☐四、水热法生长宝石晶体的鉴别一、水热法生长宝石晶体概述☐1、定义水热法也称热液法,是在密封的高压容器内,从水溶液中生长出晶体的方法,在一定程度上再现了地下热液矿床矿物结晶的过程。
☐2、原理是利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。
3、水热法宝石晶体生长的分类☐(1)等温法等温法主要利用物质的溶解度差异来生产晶体。
所用原料为亚稳定相物质,籽晶为稳定相物质。
高压釜内上、下无温差,是这一方法的特色。
此法的缺点是无法生长出晶形完整的大晶体。
(2)摆动法摆动法的装置由A、B两个圆筒组成,其中A筒放置培养液,B筒放置籽晶,两筒间保持一定的温度差。
定时地摆动A、B两个圆筒以加速它们之间的对流,利用两筒之间的温差在高压环境下生长出晶体,此法也曾用于水晶的生长。
(3)温差法温差法是在立式高压釜内生产晶体,高压釜内部的对流挡板将釜腔分成上、下两部分,籽晶挂在生长区的培育架上,晶体在籽晶上逐步生长;对流挡板的下部为培养料区(也称溶解区),溶解区内放人适量的高纯度原料和矿化剂。
加热,使高压釜的上、下部分形成一定的温差。
4、水热法宝石晶体生长所需的设备☐水热法宝石晶体生长所需的基本设备有:高压釜、炉子、热电偶、温度控制器和温度记录器。
高压釜☐高压釜为可承高温高压的钢制釜体。
一般可承受1100oC的温度和109Pa的压力,具有可靠的密封系统和防爆装置。
由于内部要装酸、碱性的强腐蚀性溶液,当温度和压力较高时,在高压釜内要装有耐腐蚀的贵金属内衬,如铂金或黄金内衬,以防与釜体材料发生反应。
也可利用在晶体生长过程中釜壁上自然形成的保护层来防止进一步的腐蚀和污染。
5、水热法生长宝石晶体的优缺点☐(1)优点a、能够生长存在相变(如a石英等)和在接近熔点时蒸汽压高的材料(如ZnO)或要分解的材料(如V02)。
水热法生长磷酸铁锂单晶及其性质研究摘要橄榄石结构的磷酸铁锂作为一种极为重要的高级锂离子电池正极材料被广泛的应用于高能量,高功率系统例如插入式充电混合电动力汽车(PHEV)[1,2]。
尽管其展现了优秀的特性例如电化学活性,高热稳定性,环境友好等[3-6],但是电子/离子导电率低的瓶颈仍难以克服,因而很难在高功率器件中推广使用[3,7,8]。
过去的几十年,大量的尝试集中于提高导电性到应用级别,最成功的方法是制备LiFePO4–C复合材料:即将LiFePO4颗粒用碳网包裹,可将体系的导电性能达到LiCoO2的级别。
另外一种已经证明可行的方法就是在LiFePO4晶格的Li(M1)位或Fe(M2)位掺入二价(Mg2+, Mn2+, Ni2+,Cu2+)或超价离子(Al3+, Cr3+, Zr4+, Nb5+),但是直到现在为止对其机理解释仍存在很大争议[9-12]。
制备亚微米或纳米尺度的磷酸亚铁锂被证明可提高电化学性能因为缩短了锂离子与电子的迁移路径,另外减小晶格尺寸也对电极-电解液界面接触尤为重要,可以减少锂离子插入(脱出)晶格的机械应力。
但随之也会出现许多亟待解决的问题,例如磷酸铁锂由于被纳米化了,继而增强他的活性,所以被纳米化的磷酸铁,在磷酸铁锂表面的亚铁离子就很容易被氧化,从而形成了三价的铁离子,这样杂质被引入而且材料失去以往的活性[10-12]。
纳米级的LiFePO4结构中,由于LiFePO4晶格的非高晶化致使不能得到平稳的电压。
在尺寸是是纳米的情况下,LiFePO4生产的批次常常不稳定,不一致。
严重的团聚现象在充放电中经常会出现,纳米级的LiFePO4振实密度很难提高,因而体单晶是很有前景的生长方法。
运用桂林水热法成功制备出了毫米级磷酸铁锂体晶体,单晶呈六棱柱结构或者晶体呈圆形,等长的外观,等大的外表。
通过实验得到毫米级磷酸铁锂晶体的XRD衍射峰谱图,10-40°范围内的主强峰相较于低纬磷酸锂铁材料多出(020)面,说明在晶体生长后期主要由(020)面控制,主要成六棱柱属性终止于(010),(200),(101)这三个表面,这些优势面有望在材料的电化学和表面交换性能中发挥重要作用。
第31卷第2期人 工 晶 体 学 报Vol.31 No.2 2002年4月JOURNAL OF SYNTHETIC C RYSTALS April,2002水热法合成 Al2O3晶体韦志仁,董国义,李志强,张华伟,王立明,佟鑫刚(河北大学物理科学与技术学院,保定071002)摘要:本文研究了不同矿化剂,不同温度对水热条件下合成 Al2O3晶体的大小、形貌和晶体质量的影响。
发现在矿化剂浓度为0.1M KOH和1M KBr条件下,填充度为35%,温度为380 时Al(OH)3只转化成薄水铝石,无 Al2O3晶体生成;388 时只是部分转化成 Al2O3;在395 以上时完全能转化成 Al2O3,晶体形状为六棱柱形。
在矿化剂浓度为1M KOH时,填充度35%,温度为380 时,即有部分Al(OH)3转化成 Al2O3,390 以上完全转化成 Al2O3,晶面主要显露菱面。
关键词:水热合成法;刚玉;晶体;矿化剂中图分类号:O782.2 文献标识码:A 文章编号:1000 985X(2002)02 0090 04Hydrothermal Synthesis of Al2O3CrystalWE I Zhi ren,DO NG Guo yi,LI Zhi qiang,Z HANG Hua wei,WANG Li ming,TONG Xin gang(College of Physics Science&Technol ogy,Hebei Univers ity,Baoding071002,Chi na)(Rece ived24Dece mbe r2001)Abstract:This paper is to study the effects of different mineralizer,temperature on the size,shape and quality of Al2O3crystal.It is found that when0.1M KOH and1M KBr are used as mineralizer at380 and the fill factor is approximately35%,Al(OH)3is not transformed into Al2O3but boehmite.Whereas under the same conditions at388 ,some of Al(OH)3is transfor med into Al2O3.W hen the temperature is above395 ,the synthesized crystal is entirely Al2O3whose shape is hexagonal prism.When only1M KOH is used as mineralizer and the fill factor is approximately35%at380 ,some of Al(OH)3is transformed into Al2O3.When the temperature is above395 ,all Al(OH)3is transformed into Al2O3whose shape is diamond.Key words:hydrothermal synthesis;c orundum;crystal;mineralizer1 引 言刚玉即 Al2O3是一种熔点很高的(2040 )氧化物晶体,有非常优良的物理化学性能,如仅次于金刚石的硬度,小摩擦系数,低电导率,高导热性。