数学建模入门 适合参加数学建模的同学初步认识建模过程并学习讲解
- 格式:ppt
- 大小:5.49 MB
- 文档页数:67
数学建模基础教程数学建模新手“必读教程”第一部分基本知识:一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
数学建模的初步认识数学建模是一种运用数学方法和技巧来解决现实世界问题的过程。
它是数学和现实世界之间的桥梁,通过将现实世界中的问题抽象化为数学模型,再利用数学工具进行分析和求解,得出相关结论和解决方案。
数学建模已经成为许多领域的重要工具,包括工程、经济、生物学、环境科学等等。
在本文中,我们将对数学建模进行初步的认识,并探讨其在现实世界中的重要性和应用价值。
数学建模的过程可以分为几个关键步骤。
首先是问题的定义和分析,即对现实世界中的问题进行深入的调研和分析,了解问题的背景和相关信息。
然后是建立数学模型,即将问题抽象化为数学形式,包括数学方程、图论、概率论等。
接着是模型的求解与分析,即利用数学工具和技巧对模型进行求解和分析,得出相关结论和解决方案。
最后是模型的验证和优化,即对模型的结果进行验证和优化,确保其准确性和实用性。
这些步骤需要数学建模者具备深厚的数学功底和对现实世界问题的深刻理解,才能够进行有效的数学建模工作。
数学建模的重要性在于它可以帮助我们更好地理解和解决现实世界中复杂的问题。
许多现实世界中的问题都是非常复杂和多变的,很难用传统的方法和技巧来解决。
而数学建模可以将这些复杂的问题进行抽象化和形式化,通过数学工具和技巧进行求解和分析,得出相关结论和解决方案。
通过数学建模,我们可以对现实世界中的问题进行深入的分析和思考,找出其中的规律和关联,从而更好地解决这些问题。
数学建模的应用价值也非常广泛。
在工程领域,数学建模可以帮助工程师们设计和优化复杂的系统和结构,提高工程的效率和性能。
在经济领域,数学建模可以帮助经济学家们预测和分析市场的走势和波动,制定更好的经济政策和战略。
在生物学和医学领域,数学建模可以帮助科学家们研究和分析生物系统和疾病的规律,发现潜在的治疗方法和药物。
在环境科学领域,数学建模可以帮助科学家们预测和分析气候变化和环境污染的影响,制定更好的环境保护政策和措施。
数学建模是一种非常重要和有价值的工具。
1 数学建模竞赛是什么?数学建模竞赛,确实是在每一年叶子黄的时候(长沙的树叶仿佛一年到头都是绿的)开始的一项数学应用题竞赛。
大伙儿都做过数学应用题吧,不明白此刻的教育改革了没有,若是没有大转变,大伙儿都应该做过。
比如说,树上有十只鸟,开枪打死一只,还剩几只,如此的问题确实是一道数学应用题(应该是小学生的吧)。
正确答案应该是9 只,是吧?如此的题照样是数学建模题,只是答案就不重要了,重要的是进程。
2 建模中的分工与合作(有些同窗感觉,参加数学建模竞赛的目的确实是为了提高一下自己的数学水平,或是别的水平,我不以为然。
既然参加数学建模竞赛,其目的就应该是,而且是强烈的目的,去拿一等奖。
)我们应该如何分工?传统的标准答案是|数学、编程、写作。
但是对于每一个参加过数学建模竞赛的同学来说,感悟各不相同,所以答案也各不相同。
下面是我的一家之言,有经验的朋友也可以一起讨论一下。
分工不用那么明确。
但有个前提是大家关系很好。
不然的话,很容易产生矛盾。
提醒一点,在搞竞赛的那几天,睡不好觉,心情急躁,很容易与搭档们发生冲突。
分工太明确了,会让人产生依赖思想,不愿去动脑子。
假如写手只是实现一个打字员的功能,把数模高手的思想表达出来,那是不够的,写手要有自己的思想,能够检查对方的错误,能够提出自己的思想。
按我的想法,理想的分工是这样的。
数学建模竞赛小组中的每一个人,都能胜任其他人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。
在竞赛中的分工,只是为了提高工作的效率,做出更好的结果,并不是由于能力不适合做别的工作我一直都这么认为,只有能够独当一面的人,才能更好的与他人合作。
其实想想也应该是这样的,在以后的学习、工作、研究中,数学能力、编程能力、论文写作能力,哪一项是可以缺少的呢?当然,现实并非如此。
我们很难找到三个这样的人凑到一起。
所以,凑合着吧。
我给一点儿建议,三个人中,一定要有一个人脑子比较活,善于思考问题,这个人,嗯,勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法,这就够了。
数学建模课教案数学建模的基本步骤与方法一、教学内容本节课我们将学习《数学建模》的第一章“数学建模的基本步骤与方法”。
具体内容包括数学模型的构建、数学模型的求解、数学模型的检验和优化等。
二、教学目标1. 理解数学建模的基本概念,掌握数学建模的基本步骤。
2. 学会运用数学方法解决实际问题,培养解决问题的能力。
3. 培养学生的团队协作能力和创新精神。
三、教学难点与重点教学难点:数学模型的构建和求解。
教学重点:数学建模的基本步骤及方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:数学建模教材、计算器、草稿纸。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的数学问题,激发学生的兴趣,引入数学建模的概念。
2. 理论讲解(15分钟)讲解数学建模的基本步骤:问题分析、模型假设、模型建立、模型求解、模型检验和优化。
3. 例题讲解(20分钟)以一个简单的实际问题为例,带领学生逐步完成数学建模的过程。
4. 随堂练习(15分钟)学生分组讨论,针对给定的问题,完成数学建模的练习。
5. 小组展示与讨论(15分钟)6. 知识巩固(10分钟)六、板书设计1. 数学建模的基本步骤1.1 问题分析1.2 模型假设1.3 模型建立1.4 模型求解1.5 模型检验和优化2. 例题及解答七、作业设计1.1 问题:某城市现有两个供水厂,如何合理调配水源,使得居民用水成本最低?1.2 作业要求:列出模型的假设、建立模型、求解模型并检验。
2. 答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对数学建模的基本步骤和方法掌握程度如何?哪些环节需要加强?2. 拓展延伸:引导学生关注社会热点问题,尝试用数学建模的方法解决实际问题。
重点和难点解析1. 实践情景引入2. 例题讲解3. 教学难点:数学模型的构建和求解4. 作业设计一、实践情景引入情景:某城市准备举办一场盛大的音乐会,门票分为三个档次:VIP、一等座和二等座。
数学建模的初步认识数学建模是一个抽象而又具体化的过程,它将实际问题通过数学方法进行抽象和归纳,从而建立数学模型,解决实际问题。
数学建模是数学的应用,也是数学与其他学科的交叉学科,它具有广泛的应用范围,在工程、物理、经济、生物等领域都有着重要的作用。
有人把数学建模称为“数学的艺术”,因为数学建模需要将实际问题转化为数学问题,这需要一定的抽象和思维能力。
数学建模也需要一定的实际问题理解和分析能力,因为只有对实际问题有深刻的理解,才能够准确地进行数学建模。
数学建模的基本流程一般包括以下几个环节:实际问题的分析和选择、数学模型的建立、模型的求解和分析、对模型结果的验证和应用。
下面我们将一一介绍这几个环节。
首先是实际问题的分析和选择。
在实际问题的分析中,需要对问题有一个深刻的理解,包括问题的背景、目标、以及影响因素。
同时也需要对问题的约束条件进行分析,这些约束条件可能来自于技术、经济、社会等方面。
在实际问题的选择中,需要根据实际情况和需求选择适合的数学方法和技术。
需要考虑问题的复杂度、数据的可获得性、模型的可行性等因素。
其次是数学模型的建立。
在实际问题的基础上,需要对问题进行抽象和简化,然后根据问题的特点选择适合的数学模型。
数学模型可以是各种数学形式,如代数方程、微分方程、统计模型等。
在模型的建立中,需要考虑模型的适用性、精确性和可行性,同时也需要考虑模型的可解性和解的稳定性。
接下来是模型的求解和分析。
在模型的求解中,需要选择适合的数学方法和技术进行求解。
这可能包括数值计算、仿真、优化等方法。
在模型的分析中,需要对求得的结果进行分析和检验,验证模型的有效性和可靠性。
这可能包括对结果的灵敏度分析、参数的优化、对比实际数据等方法。
最后是对模型结果的验证和应用。
在模型结果的验证中,需要对模型的结果进行对比实际数据,确定模型的有效性和可靠性。
在模型结果的应用中,需要将模型的结果转化为实际问题的解决方案,这可能包括对策、决策、控制等方面。
数学建模的初步认识
数学建模是将实际问题转化为数学模型的过程,运用数学知识分析问题并得出解决方案。
它是数学与实际之间的桥梁,具有广泛的应用领域,如自然科学、社会科学、经济学、金融学、工程学等。
数学建模具有三个基本要素:实际问题、数学模型和解决方案。
实际问题是指需要解
决的具体问题,数学模型是将实际问题转化为数学形式并建立的数学模型,解决方案则是
基于数学模型得出的解决方案。
数学建模的过程可以分为以下几个步骤:
1.问题的分析与理解:了解问题背景、要求及限制条件,对问题进行梳理和分析。
2.建立数学模型:根据问题实际情况,选择适当的数学工具、建立数学模型,可以是
代数模型、几何模型、统计模型等。
3.模型的求解:根据建立的数学模型,运用数学工具和方法进行求解。
4.模型的验证与优化:对求得的解进行验证,评价优缺点,并对模型进行优化,改进
模型的精度和效率。
5.方案的实施与评估:将模型的解决方案实施,对结果进行评估和反馈,不断完善模型。
数学建模具有许多优点。
首先,它可以提高对实际问题的认识和理解,从而更好地制
定解决方案。
其次,它可以将抽象概念转化为具体可计算的数学模型,便于运用数学知识
解决问题。
另外,数学建模可以提高分析问题和解决问题的能力,培养创造性思维和团队
合作能力,有利于培养学生的综合素质。
总之,数学建模是现代科学技术发展中不可缺少的部分,具有重要的应用和推广价值。
对于数学科学专业的学生,学习数学建模可以提高他们运用数学知识解决实际问题的能力,对于其他专业的学生,也可以通过学习数学建模来了解和应用数学在实际中的应用。
数学建模的初步认识数学建模是一种将现实问题抽象化、数学化、规范化的过程,通过建立数学模型来描述和解决实际问题的方法。
数学建模是数学的一个重要应用领域,也是一种将数学知识和技能应用到实际问题中的能力。
数学建模不仅在科学技术领域有着广泛的应用,也在工程、经济、管理等各个领域中有着重要的作用。
本文将介绍数学建模的基本概念、方法和应用,并通过具体例子来说明数学建模在实际问题中的应用。
一、数学建模的基本概念数学建模是一个相对抽象的概念,可以简单理解为通过数学方法来解决实际问题。
在数学建模中,首先需要对实际问题进行分析和抽象,将问题转化为数学模型。
数学模型是对实际问题的数学描述,它包括问题的描述、假设条件、变量、参数和约束条件。
通过建立数学模型,可以利用数学方法来分析、求解和优化问题,从而得到对实际问题的深入理解和有效解决方案。
数学建模的过程通常包括以下几个阶段:问题分析、数学模型建立、模型分析和求解、结果验证和应用。
在问题分析阶段,需要对实际问题进行深入理解和分析,确定问题的关键要素和需求,找出问题的规律和联系。
在数学模型建立阶段,需要根据实际问题的特点和需求,选择合适的数学方法和工具,建立数学模型。
在模型分析和求解阶段,需要利用数学知识和技能来分析和求解数学模型,得到解的结论和结论。
在结果验证和应用阶段,需要将数学模型和解的结论与实际问题相联系,验证模型的有效性和可靠性,并将解决方案应用到实际问题中。
二、数学建模的方法和技术数学建模涉及到多个数学学科和领域,包括数学分析、微积分、线性代数、概率统计、优化理论等。
在数学建模中,常用的方法和技术包括:微分方程模型、差分方程模型、概率统计模型、优化模型等。
微分方程模型适用于描述动态系统的变化规律和动力学过程,常用于物理、生物、工程等领域。
差分方程模型适用于描述离散系统的演化规律和动态行为,常用于经济、管理、信息等领域。
概率统计模型适用于描述随机变量和随机过程的规律性和特征,常用于风险评估、决策分析等领域。
数学建模的一般步骤和案例数学建模是将实际问题转化为数学问题,并通过数学方法解决问题的过程。
下面将介绍数学建模的一般步骤,并结合一个实际案例进行说明。
一般步骤如下:1.理解问题:首先需要全面理解问题的背景和要解决的核心问题。
这包括收集相关数据和文献,与相关领域的专家进行沟通等。
2.建立数学模型:在理解问题的基础上,将问题转化为数学问题。
这包括选择适当的数学方法和工具,并确定模型的输入、输出和决策变量。
3.假设和简化:为了简化问题,通常需要进行一些假设。
这些假设应该是合理的,并能够准确地描述问题的主要特征。
4.构建数学模型:根据问题的特点,选择适当的数学方法构建数学模型。
常见的数学方法包括优化、方程组、概率统计等。
通常需要根据模型的特点进行变量的定义、函数关系的建立和约束条件的添加等。
5.求解数学模型:使用适当的数学工具和软件对模型进行求解。
根据问题的要求,可以使用手工计算或计算机程序求解。
在求解过程中,需要对结果进行验证和分析。
6.模型评价与优化:对模型的结果进行评价,并根据评价结果对模型进行进一步优化。
评价可以包括对模型结果的合理性、鲁棒性和稳定性等。
如果模型结果不理想,可以对模型进行调整和改进。
7.结果解释与应用:根据模型的结果进行解释,并将结果应用于实际问题中。
对于实际问题的决策和预测,需要权衡模型结果、背景知识和实际情况的差异。
下面以城市的交通问题为例进行说明:假设一座城市拥有多个公交路线,每条路线有固定的车辆数量和发车时间表。
每辆车上可以搭载一定数量的乘客,每个乘客有特定的上下车站点和时间。
城市的交通管理部门希望通过优化公交路线和车辆的调度,提高乘客的出行效率和服务质量。
1.理解问题:收集该城市的公交线路、车辆运行数据和乘客出行数据,了解公交运营的现状和问题。
与交通管理部门的相关人员进行访谈,明确问题的关键点。
2.建立数学模型:将公交路线和车辆调度问题转化为优化问题。
选择整数规划方法,以最小化总乘客等待时间为目标函数,确定模型的输入为各条公交线路的行车时间、车辆容量和乘客的出行需求。