泊松分布
- 格式:pdf
- 大小:178.25 KB
- 文档页数:10
泊松分布的概念及表和查表方法Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。
中文名泊松分布外文名poisson distribution 分类数学时间1838年台译卜瓦松分布提出西莫恩·德尼·泊松目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。
应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。
如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。
泊松分布的计算
一、泊松分布的计算
泊松分布是随机事件在一个固定时间段内发生的概率分布,其中每个事件的发生是相互独立的,且发生概率不受其他事件发生的影响。
泊松分布的参数是一个独立的,由全体可能事件的概率总和决定的形态。
计算泊松分布的公式为:
P(x) = ((λ^x)* e^(-λ))/x!
其中,λ是每个事件发生的期望值,x是事件发生的次数,e是
自然常数,x!是x的阶乘。
二、通过泊松分布计算概率
例如,若给定一个λ=4,计算在一个可能事件中发生两次的概率。
在这种情况下,x=2,因此可以将上面的公式应用于此:
P(x) = ((4^2) * e^(-4))/2!
P(x) = (16 * 0.018315638) / 2
P(x) = 0.2945
因此,在一个有可能的事件中发生两次的概率为0.2945。
- 1 -。
泊松分布的概率分布泊松分布是概率论中一种重要的离散型概率分布,它描述了在一定时间或空间范围内,某一事件发生的次数的概率分布情况。
泊松分布常被用来描述单位时间内某事件发生的次数,例如在单位时间内电话接到的次数、某个网站每天收到的访问次数等。
本文将从泊松分布的定义、特点、应用等方面进行介绍。
一、泊松分布的定义泊松分布是一种离散型概率分布,它表示在一个固定时间或空间内,某事件发生的次数的概率分布情况。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,X为事件发生的次数,k为非负整数,λ为单位时间或空间内事件的平均发生次数,e为自然对数的底。
二、泊松分布的特点1. 独立性:泊松分布假设事件的发生是相互独立的,即一个事件的发生不会影响到其他事件的发生。
2. 稀有性:泊松分布适用于事件发生的概率较小的情况,即当λ很小时,泊松分布可以近似描述事件的发生情况。
3. 均值和方差相等:泊松分布的均值和方差都等于λ,即E(X) = Var(X) = λ。
三、泊松分布的应用1. 电话呼叫中心:泊松分布可以用来描述电话呼叫中心在单位时间内接到的呼叫次数。
通过分析呼叫的泊松分布,可以确定合理的客服人员数量,以满足客户的需求。
2. 网络流量:泊松分布可以用来描述网络上的数据包到达的情况。
通过分析网络流量的泊松分布,可以预测网络负载,优化网络性能。
3. 事故发生:泊松分布可以用来描述事故发生的次数。
例如,在某个工厂每月发生的事故次数符合泊松分布,可以通过对泊松分布的分析,制定相应的安全措施,减少事故发生的概率。
4. 遗传突变:泊松分布可以用来描述遗传突变的发生情况。
通过对遗传突变的泊松分布进行分析,可以研究突变的规律,为相关疾病的治疗提供理论依据。
四、泊松分布的优缺点1. 优点:泊松分布具有简单、易于计算的特点,适用于描述稀有事件的发生情况。
在实际应用中,泊松分布通常用来近似描述一些复杂的实际问题。
泊松分布超几何分布泊松分布和超几何分布是概率论中常见的两种离散概率分布,它们在实际问题中具有广泛的应用。
本文将分别介绍泊松分布和超几何分布的定义、特点以及应用领域。
一、泊松分布泊松分布是一种描述单位时间内随机事件发生次数的概率分布。
它的定义如下:在单位时间内随机事件发生的次数服从泊松分布,如果事件发生的概率在不同时间段内相等,并且相互独立。
泊松分布的特点是只有一个参数λ,表示单位时间内事件平均发生的次数。
泊松分布的概率质量函数为:P(X=k)=e^(-λ)*(λ^k)/k!,其中e为自然对数的底数。
泊松分布的应用非常广泛。
例如,在电话交换机的研究中,可以使用泊松分布来描述单位时间内呼叫到达的次数;在客流量预测中,可以使用泊松分布来描述单位时间内到达某个地点的人数;在信号传输中,可以使用泊松分布来描述单位时间内出现的误码数等。
二、超几何分布超几何分布是描述从有限总体中抽取固定数量样本中成功次数的概率分布。
它的定义如下:从总体中随机抽取n个样本,其中包含m 个成功的样本和N-m个失败的样本,那么超几何分布表示样本中成功次数的概率分布。
超几何分布的特点是有三个参数:总体中成功的样本数m,总体中失败的样本数N-m,以及抽取的样本数量n。
超几何分布的概率质量函数为:P(X=k)=(C(m,k)*C(N-m,n-k))/C(N,n),其中C(a,b)表示从a个元素中选取b个元素的组合数。
超几何分布的应用也非常广泛。
例如,在质量控制中,可以使用超几何分布来描述从一批产品中抽取固定数量的样本中不合格品的数量;在样本调查中,可以使用超几何分布来描述从总体中抽取一定数量的样本中满足某个条件的样本数量等。
泊松分布和超几何分布在实际问题中的应用是相互补充的。
泊松分布适用于描述单位时间内事件发生的次数,而超几何分布适用于描述从有限总体中抽取样本中成功次数。
在实际问题中,可以根据具体情况选择使用泊松分布还是超几何分布来建立概率模型。
泊松分布的计算方法泊松分布是统计学中的一种重要概率分布,广泛应用于各类随机事件的计数分析。
本文将详细介绍泊松分布的计算方法,帮助读者更好地理解和应用这一概念。
一、泊松分布的定义泊松分布描述了在固定时间或空间内,随机事件发生次数的概率分布。
其概率质量函数为:[ P(X=k) = frac{e^{-lambda} lambda^k}{k!} ]其中,( X ) 表示随机事件发生的次数,( k ) 为非负整数,( lambda ) 为事件在单位时间(或单位空间)内发生的平均次数,( e ) 为自然对数的底数。
二、泊松分布的计算方法1.确定参数( lambda )在实际应用中,首先需要确定事件在单位时间(或单位空间)内发生的平均次数( lambda )。
可以通过历史数据、实验观察等方法来估计( lambda ) 的值。
2.计算概率根据泊松分布的概率质量函数,可以计算出事件发生特定次数的概率。
例如,计算事件恰好发生( k ) 次的概率:[ P(X=k) = frac{e^{-lambda} lambda^k}{k!} ]3.计算累积概率有时候,我们需要计算事件发生次数小于等于某个值( k ) 的概率,即累积概率。
可以通过以下公式计算:[ P(X leq k) = sum_{i=0}^{k} frac{e^{-lambda} lambda^i}{i!} ]4.计算期望和方差泊松分布的期望和方差分别为:[ E(X) = lambda ][ Var(X) = lambda ]三、泊松分布的应用泊松分布广泛应用于以下领域:1.生物学:描述基因突变、病毒感染等随机事件的发生次数。
2.工程学:分析产品缺陷、故障等随机现象。
3.通信工程:计算信号传输过程中的错误码率。
4.保险业:评估保险事故发生的概率。
5.其他领域:如排队论、库存管理、质量控制等。
四、总结泊松分布是一种重要的概率分布,适用于描述随机事件发生次数的概率。
泊松分布的概念及表和查表方法目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。
应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。