泊松分布表
- 格式:doc
- 大小:176.50 KB
- 文档页数:2
泊松分布表计算
泊松分布是一种描述随机事件发生次数的概率分布,通常用于描述事件的稀有性,如单位时间内发生的交通事故数、电话呼叫数等。
泊松分布的概率密度函数为:
P(X=k)= e^(-λ) * λ^k / k!
其中,X为事件发生的次数,λ为单位时间内该事件的平均发生次数,k为发生次数。
为了方便计算,可以使用泊松分布表,该表列出了不同λ和k值下的概率值。
使用泊松分布表进行计算时,只需查找对应的λ和k值,即可得到相应的概率值。
例如,当λ=2,k=3时,从泊松分布表中查找,可得概率值为
0.180.
需要注意的是,泊松分布适用于事件发生次数很少的情况,当λ较大时,正态分布更为适用。
在实际应用中,泊松分布可用于预测和控制随机事件的发生次数,如交通事故发生率、银行柜员的服务时间等。
- 1 -。
泊松分布的概念及表和查表方法Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松〔Siméon-Denis Poisson〕在1838年时发表。
中文名泊松分布外文名poisson distribution 分类数学时间1838年台译卜瓦松分布提出西莫恩·德尼·泊松目录1命名原因2分布特点3关系4应用场景5应用例如6推导7形式与性质命名原因泊松分布实例泊松分布〔Poisson distribution〕,台译卜瓦松分布〔法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等〕,是一种统计与概率学里常见到的离散机率分布〔discrete probability distribution〕。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松〔Siméon-Denis Poisson〕命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关局部。
应用场景在实际事例中,当一个随机事件,例如某交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ〔或称密度〕随机且独立地出现时,那么这个事件在单位时间〔面积或体积〕内出现的次数或个数就近似地服从泊松分布P(λ)。
泊松分布的概念及表和查表方法Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩•德目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布(Poisson distribution),台译卜瓦松分布(法语: loi de Poisson ,英语:Poisson distributio n,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discreteprobability distribution)。
泊松分布是以 18〜19世纪的法国数学家西莫恩•德尼•泊松(Sim eon-Denis Poisson )命名的,他在1838年时发表。
这个分布在更早些时候由贝努 里家族的一个人描述过。
分布特点泊松分布的概率函数为:卩(X 二k)二厉旷—斤二0 1 (I)泊松分布的参数入是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为丸特征函数为岸⑴二即|川凸-1}}「关系当二项分布的n 很大而p 很小时,泊松分布可作为二项分布的近似,其中入为 常当n 120,p 再.05时,就可以用泊松公式近似得计算。
np 。
通泊松分布与二项分布事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率入(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(力。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。
泊松分布是一种离散概率分布,常用于描述在给定时间间隔或空间内发生的事件的数量。
以下是泊松分布表格,其中λ表示事件发生的平均发生率,表格中的数字表示在给定λ值下,不同k值(事件发生的次数)的概率。
k λ=1 λ=2 λ=3 λ=4 λ=5
0 0.3679 0.2706 0.1821 0.1253 0.0864
1 0.2419 0.3477 0.2704 0.1888 0.1309
2 0.135
3 0.2453 0.2987 0.2446 0.1868
3 0.0732 0.1599 0.2362 0.2675 0.2353
4 0.041
5 0.1118 0.1849 0.2562 0.2684
... ... ... ... ... ...
以上表格中的数字是泊松分布的概率值,这些数字可以用来说明在给定λ值下,不同k值所对应的概率。
例如,当λ=2时,k=1时的概率为0.3477。
需要注意的是,泊松分布在一些情况下可能不适用。
例如,当事件的发生不是相互独立时,或者当事件发生的概率随时间变化时,泊松分布可能不准确。
在这种情况下,可能需要使用其他概率模型来描述事件的发生。