泊松分布的概念及表和查表方法
- 格式:doc
- 大小:135.00 KB
- 文档页数:9
泊松分布的概念及表和查表方法目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。
应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。
泊松分布的概念及表和查表方法目录1命名原因2分布特点3关系4应用场景5应用示例6推导7形式与性质命名原因泊松分布实例泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点泊松分布的概率函数为:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为关系泊松分布与二项分布泊松分布当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。
应用示例泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。
每天一点统计学——泊松分布公式在生活中的应用泊松分布的定义泊松概率分布是考虑在连续时间和空间单位上发生的随机事件的概率。
通俗解释:基于过去的经验,预测该随机事件在新的同样长的时间或同样大的空间中发生N次的概率。
泊松分布包括以下条件:1.单独事件在给定区间内随机、独立地发生,给定区间可以是时间或空间,例如可以是一个星期,也可以是一公里;2.已知该区间的事件平均发生次数,且为有限数值,该事件平均发生次数通常用希腊字母λ(lambda)表示。
泊松分布公式某事件在给定区间内平均发生λ次,在求给定区间内发生r次事件的概率时,使用以下公式:泊松分布公式泊松分布公式用到了指数函数ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828。
泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。
如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。
泊松分布公式的应用已知某家小杂货店,平均每周售出2个水果罐头。
请问该店水果罐头的最佳库存量是多少?解:假定不存在季节因素,可以近似认为,这个问题满足以下三个条件:(1)顾客购买水果罐头是小概率事件。
(2)购买水果罐头的顾客是独立的,不会互相影响。
(3)顾客购买水果罐头的概率是稳定的。
各个参数的含义:•P:每周销售r个罐头的概率;•X:水果罐头的销售变量;•r:每周销售罐头数的取值(0,1,2,3…);•λ:每周水果罐头的平均销售量(数学期望),是一个常数,本题为2;根据公式,计算得到每周销售不同数量罐头数的概率及累计概率:从上表可见,如果存货4个罐头,95%的概率不会缺货(5%=1/20,即平均19周发生一次);如果存货5个罐头98%的概率不会缺货(2%=1/50,即平均49周发生一次)。
泊松分布1. 引言泊松分布是概率论和统计学中一种常见的离散概率分布,由法国数学家西蒙·泊松于1838年首次提出。
泊松分布适用于描述特定时间段内某个事件发生的次数,例如一段时间内客户到达的数量、电话呼叫的次数或人员受伤的次数等。
本文将详细介绍泊松分布的定义、性质、用途和计算方法。
2. 定义泊松分布是指在一定时间段或空间区域内,事件发生的次数服从离散分布的概率模型。
它具有以下特点:- 定义域为非负整数集合。
- 事件在任意时间段内相互独立。
- 事件在不同时间段内的发生概率相等。
- 事件的平均发生率是已知的。
3. 概率质量函数泊松分布的概率质量函数表示某个事件发生k次的概率。
设λ为单位时间内该事件的平均发生率,则泊松分布的概率质量函数可表示为:P(k;λ) = (λ^k * e^(-λ)) / k!其中,k表示事件发生的次数,e是自然对数的底数约等于2.71828,!表示阶乘运算。
4. 期望值和方差泊松分布的期望值和方差可以通过发生率λ来计算。
期望值E(X)等于λ,方差Var(X)也等于λ。
这意味着,在一个给定的时间段内,事件的平均发生次数和方差相等。
5. 用途泊松分布在实际中有广泛的应用,例如:- 模拟客流量:在公共交通系统中,可以使用泊松分布来模拟乘客到达的数量,从而评估和优化运输系统。
- 预测事故发生率:在保险业中,可以使用泊松分布来预测车祸的发生率,从而进行合理的保险费用评估。
- 网络流量建模:在计算机网络领域,可以使用泊松分布来建模和分析网络流量,以便更好地管理和优化网络资源。
- 生物学分析:在生物学研究中,可以使用泊松分布来描述细胞分裂或突变事件的发生。
6. 计算方法泊松分布的计算方法主要有两种:- 使用概率质量函数:根据泊松分布的概率质量函数,可以直接计算某个事件发生k次的概率。
通过遍历所有可能的k值,可以得到泊松分布的概率分布情况。
- 使用近似方法:在一些情况下,计算泊松分布的概率质量函数可能较为繁琐。
标准泊松分布表
介绍
标准泊松分布是概率论和统计学中常用的一种离散性概率分布。
它描述了在一定时间内一个事件发生的次数的概率分布情况,适用
于一些与时间相关的事件,如电话的呼叫次数、邮件的收件次数等。
计算方法
计算标准泊松分布的概率可以借助泊松分布表来进行。
泊松分
布表是一个包含了不同事件发生次数的概率值的表格,可以用于计
算特定事件发生次数的概率。
标准泊松分布表一般以参数λ表示,其中λ为单位时间内该事
件平均发生的次数。
通过查表,可以找到给定λ值和特定事件发生
次数的概率。
使用示例
假设某项事件在一分钟内平均发生5次,我们想要知道在该分
钟内发生0次、1次、2次等事件的概率。
我们可以通过标准泊松
分布表来找到相应的概率。
使用该表格,我们可以快速找到特定事件发生次数的概率,从而对事件发生的概率进行分析和预测。
注意事项
在使用标准泊松分布表时,需要确保所使用的λ值符合标准泊松分布的要求。
此外,使用该表格进行计算时,需要注意查找正确的事件发生次数和相应的概率值。
总结
标准泊松分布表是一种用于计算标准泊松分布概率的工具。
通过查表,可以快速找到特定事件发生次数的概率,从而进行概率分析和预测。
在使用该表格时,需要注意参数λ的正确性和查找准确的概率值。
泊松分布是一种离散概率分布,常用于描述在给定时间间隔或空间内发生的事件的数量。
以下是泊松分布表格,其中λ表示事件发生的平均发生率,表格中的数字表示在给定λ值下,不同k值(事件发生的次数)的概率。
k λ=1 λ=2 λ=3 λ=4 λ=5
0 0.3679 0.2706 0.1821 0.1253 0.0864
1 0.2419 0.3477 0.2704 0.1888 0.1309
2 0.135
3 0.2453 0.2987 0.2446 0.1868
3 0.0732 0.1599 0.2362 0.2675 0.2353
4 0.041
5 0.1118 0.1849 0.2562 0.2684
... ... ... ... ... ...
以上表格中的数字是泊松分布的概率值,这些数字可以用来说明在给定λ值下,不同k值所对应的概率。
例如,当λ=2时,k=1时的概率为0.3477。
需要注意的是,泊松分布在一些情况下可能不适用。
例如,当事件的发生不是相互独立时,或者当事件发生的概率随时间变化时,泊松分布可能不准确。
在这种情况下,可能需要使用其他概率模型来描述事件的发生。
目录
1命名原因
2分布特点
3关系
4应用场景
5应用示例
6推导
7形式与性质
命名原因
泊松分布实例
泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。
泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。
这个分布在更早些时候由贝努里家族的一个人描述过。
分布特点
泊松分布的概率函数为:
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。
泊松分布适合于描述单位时间内随机事件发生的次数。
泊松分布的期望和方差均为特征函数为
关系
泊松分布与二项分布
泊松分布
当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。
通常当n≧20,p≦时,就可以用泊松公式近似得计算。
事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。
应用场景
在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。
因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。
应用示例
泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。
如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。
观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:
例如采用㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。
实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:
……
是未产生二体的菌的存在概率,实际上其值的5%与采用㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。
由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。
推导
泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。
在一定时间内某交通路口所发生的事故个数,是一个典型的例子。
泊松分布的产生机制可以通过如下例子来解释。
为方便记,设所观察的这段时间为[0,1),取一个很大的自然数n,把时间段[0,1)分为等长的n段:
我们做如下两个假定:
1. 在每段内,恰发生一个事故的概率,近似的与这段时间的长成正比,可
设为。
当n很大时,很小时,在这么短暂的一段时间内,要发生两次或者更多次
事故是不可能的。
因此在这段时间内不发生事故的概率为。
2.各段是否发生事故是独立的
把在[0,1)时段内发生的事故数X视作在n个划分之后的小时段内有事故的时段数,则按照上述两个假定,X应服从二项分布。
于是,我们有
注意到当取极限时,我们有
因此
从上述推导可以看出:泊松分布可作为二项分布的极限而得到。
一般的说,若,其中n 很大,p很小,因而不太大时,X的分布接近于泊松分布。
这个事实有时可将较难计算的二项分布转化为泊松分布去计算。
形式与性质
阶乘特点以及泰勒公式使得一类期望的计算十分简便
泊松分布——概率分布表
F(x)=P{X<=x}=(k=0~x)Σ[λ^k*e^(-λ)]/k!,也就是泊松分布的分布率从0加到x的和。
我想你的问题应该是问如何在泊松分布表中找到P{X=x}=
我们知道P{X=x}=P{X<=x}-P{X<=x-1}(因为泊松分布是离散型的)。
所以如果知道λ的值,在列表中找到对应的P{X<=x}与P{X<=x-1},相减就得到P{X=x}。
举个例子:
参数λ=时,P{X=8}是多少。
我们可以在泊松分布表中找到
P{X<=8}=,P{X<=7}=;
那么P{X=8}= P{X<=8}-P{X<=7}=。