数学模型试B卷答案
- 格式:doc
- 大小:105.43 KB
- 文档页数:3
数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,则f(t)(t)在[]是连续函数。
作辅助函数F(t)(t)(t),它也是连续的,则由f(a)=0(b)>0和g(a)>0(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x (3分)记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =(k u ,k v )定义为决策。
综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题)(1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明支球队“各队每两场比赛最小相隔场次n r 的上界”(如=5时上界为1)是n ⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是,i j 两队, 队参加的下一场比赛是,两队(≠i i k k j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,以外的2k r 支球队参赛,于是,注意到32+≥r n r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的编排出达到该上界的赛程.如对于n =8, =9可以得到: n n 1A 2A 3A 4A 5A 6A 7A 8A 每两场比赛相隔场次数 相隔场次总数1A× 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 193A 5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 9 6 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 18 7 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 177A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 178A25 16 2 19 7 22 12 × 4,4,3,2,2,2 17w w w .k h d a w .c o m 课后答案网1A 2A 3A 4A 5A 6A 7A 8A 9A 每两场比赛相隔场次数 相隔场次总数1A× 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A 6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 234,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 193,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 144,4,3,3,3,3 23 7A16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A21 17 25 13 29 9 33 × 53,3,3,3,3,3,3, 21 9A 1 32 10 23 19 14 28 5 × 3,4,3,4,3,4,3 24 可以看到, =8时每两场比赛相隔场次数只有2,3,4, =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即为偶数时每两场比赛相隔场次数只有n n n 22-n ,12-n ,2n ,n 数时只有为奇23-n ,21-n . 量赛程优劣其他指标如(4)衡的平均相隔场次 记第i 队第j 个ij c ,2,2,1,,,2,1-==n j n i ,间隔场次数为则平均相隔场次为∑∑=n i 1-=n r 21 =-j n n 1)2(ij c r 是赛程整体意义下的指标,它越大越好.可以计算=8,=9的n n r ,并讨论它是否达到上界. 相隔场次的最大偏差 定义||,r c Max f ij j i -=∑---=2)2(|n r n c Max g =1|j ijw w w .k h d a w .c o m 课后答案网f 为整个赛程相隔场次的最大偏差, 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算=8,=9的,g ,并讨论它是否达到上界.g n n f 参考文献工程数学学报第20卷第5期20032. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,取尽量简单的形式,h 如αα=)(g ;0)(=βh (),030≤β0)(h h =β)30(0>β.(1)可将作为必要条件,以030≤βα最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到 ⎪⎭⎫ ⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫ ⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处.又通过计算或分析可知030=βα也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔(如0.5m), l x 从0(或处)到030≤βd D -按离散,对于计算l )20~0(00θα的平均值,得时其值最大. 020=θ(3)可设地板线是x 的二次曲线,寻求,b 使2bx ax +a α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线. 3.节水洗衣机(1996年全国大学生数学建模竞赛B 题) 该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和. w w w .k h da w .c o m 课后答案网假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数.~初始污水量,第轮加水量,~第k 轮脱水量c 0x ~k u k k x ),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x u c x n n n =+==--111,,, c x 2c x +21u x 10, 得到)()(210c u c u u c x x n n n ++= . 在最终污物量与初始污物量之比小于给定的清洁度条件下,求各轮加水量,使总用水量最小,即0/x x n k u ),,1(n k =∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n 等价于)()(21c u c u u Min n u k +++++ α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第轮加水量n ~2u u k =(常数),第1轮加水量.c u u +=1令,问题简化为cx u =nx Min u n , ε<⎪⎭⎫ ⎝⎛+n x t s 11.. 其解为,即,而0→x 0→u ∞→n n .这与实际上是不合理的.应该加上对u 的限制:.则得n ,其中 21v u v ≤≤max min n n ≤≤max min n n ≤≤,1+)/1ln(2min ⎥⎦⎤⎢⎣⎡+=c v n αn 这样,为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,1997w w w .k h d a w .c o m 课后答案网4.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxI d .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的. 按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,20015. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题)设为第i 架飞机与第j 架飞机的碰撞角(即ij a )8arcsin(ij ij r a =其中为这两架飞机连线的长度),ij r ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量. 本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:w w w .k h d a w .c o m 课后答案网∑=61i i Min θ s.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i 为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL :1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J)));8] );9] @FOR(LINK(I,J)|I#NE#J: 10] (@SIN(alpha*3.14159265/180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endataEND计算结果如下:w w w .k h d a w .c o m 课后答案网ij a j=1 2 3 4 5 6i=1 0.000 0 5.3912 32.231 05.091 8 20.963 4 2.234 5 2 5.391 2 0.000 0 4.8046.613 5 5.807 9 3.815 9 3 32.231 0 4.804 0 0.0004.364 7 22.833 7 2.125 5 45.091 86.613 5 4.36470.000 0 4.4.537 2.989 8 5 20.963 4 5.807 922.8337 4.537 70.000 0 2.309 8 6 2.234 5 3.815 9 2.125 5 2.989 82.309 80.000 0 ij β也可类似地利用LINGO 求得,计算结果如下: ij β j=1 2 3 4 5 6 i=1 0.000 0 109.263 6 -128.250 0 24.1798173.065 1 14.474 9 2 109.263 6 0.000 0-88.871 1 -42.2436-92.304 8 9.000 03 -128.250 0 -88.871 1 0.000 012.4763-58.786 2 0.310 84 24.179 8 -42.243 6 12.476 30.000 0 5.969 2-3.525.65 173.065 1 -92.304 8 -58.78625.969 20.000 0 1.914 4614.474 9 9.000 00.310 8-3.5256 1.914 4 0.000 0w w w .k h d a w .c o m 课后答案网于是,该飞机管理的数学规划模型可如下输入LINGO 求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2….. …2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddata END[注] alpha,beta 中数据略去,见上面表格. 求解结果如下: OPTIMUM FOUND AT STEP 197 SOLUTION OBJECTIVE V ALUE= 3.630 V ARIABLE V ALUE REDUCED COST CITA(1) 0.2974033E-06 -1.000 000 CITA(2) -0.1424833E-05 -0.715 033 4 w w w .k h d a w .c o m 课后答案网CITA(3) 2.557 866 1.000 000 CITA(4) -0.3856641E-04 0.0000000E+00CITA(5) 0.2098838E-05 -1.000 000CITA(6) 1.071 594 0.0000000E+00………. (以下略)由此可知最优解为: (其它调整角度为0). ︒︒≈≈07.1,56.263θθ 评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,19966. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整. 目标函数之降落伞的费用,可以根据表1数据拟合伞面费用与伞的半径r 的关系。
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
交巡警服务平台的设置与调度优化分析摘要本文综合应用了Floyd算法,匈牙利算法,用matlab计算出封锁全市的时间为1.2012小时。
并在下面给出了封锁计划。
为了得出封锁计划,首先根据附件2的数据将全市的道路图转为邻接矩阵,然后根据邻接矩阵采用Floyd算法计算出该城市任意两点间的最短距离。
然后从上述矩阵中找到各个交巡警平台到城市各个出口的最短距离,这个最短距离矩阵即可作为效益矩阵,然后运用匈牙利算法,得出分派矩阵。
根据分派矩阵即可制定出封锁计划:96-151,99-153,177-177,175-202,178-203,323-264,181-317, 325-325,328-328,386-332,322-362,100-387,379-418,483-483, 484-541,485-572。
除此以外,本人建议在编号为175的路口应该设置一个交巡警平台,这样可以大大减少封锁全市的时间,大约可减少50%。
关键词: Floyd算法匈牙利算法 matlab一、问题重述“有困难找警察”,是家喻户晓的一句流行语。
警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。
为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。
每个交巡警服务平台的职能和警力配备基本相同。
由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。
试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:警车的时速为60km/h, 现有突发事件,需要全市紧急封锁出入口,试求出全市所有的交巡警平台最快的封锁计划,一个出口仅需一个平台的警力即可封锁。
二、模型假设1、假设警察出警时的速度相同且不变均为60/km h 。
2、假设警察出警的地点都是平台处。
3、假设警察接到通知后同时出警,且不考虑路面交通状况。
三、符号说明及一些符号的详细解释A 存储全市图信息的邻接矩阵 D 任意两路口节点间的最短距离矩阵X 01-规划矩阵ij a ,i j 两路口节点标号之间直达的距离 ij d 从i 路口到j 路口的最短距离 ij b 从i 号平台到j 号出口的最短距离ij x 取0或1,1ij x =表示第i 号平台去封锁j 号出口在本文中经常用到,i j ,通常表示路口的编号,但是在ij d ,ij b ,ij x 不再表示这个意思,i 表示第i 个交巡警平台,交巡警平台的标号与附件中给的略有不同,如第21个交巡警平台为附件中的标号为93的交巡警平台,本文的标号是按照程序的数据读取顺序来标注的,在此声明;j 表示第j 个出口,如:第5个出口对应于附件中的路口编号为203的出口。
2.设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1)参加展览会的人数n ;(2)气温T 超过10℃;(3)冰淇淋的售价由此建立的冰淇淋销量的比例模型应为 。
二、简答题:(25分)1、建立数学模型的基本方法有哪些?写出建模的一般步骤。
(5分)2、 写出优化模型的一般形式和线性规划模型的标准形式。
(10分) 三、(每小题15分,共60分)1、设某产品的供给函数)(p ϕ与需求函数)(p f 皆为线性函数: 9)(,43)(+-=+=kp p f p p ϕ其中p 为商品单价,试推导k 满足什么条件使市场稳定。
2、1968年,介壳虫偶然从澳大利亚传入美国,威胁着美国的柠檬生产。
随后,美国又从澳大利亚引入了介壳虫的天然捕食者——澳洲瓢虫。
后来,DDT 被普通使用来消灭害虫,柠檬园主想利用DDT 进一步杀死介壳虫。
谁料,DDT 同样杀死澳洲瓢虫。
结果,介壳虫增加起来,澳洲瓢虫反倒减少了。
试建立数学模型解释这个现象。
3.建立捕鱼问题的模型,并通过求解微分方程的办法给出最大的捕捞量数学建模 参考答案2.约40.18763.p T Kn N /)10(-=,(T ≥10℃),K 是比例常数 二、1、建立数学模型的基本方法:机理分析法,统计分析法,系统分析法2、优化模型的一般形式将一个优化问题用数学式子来描述,即求函数 ,在约束条件下的最大值或最小值,其中 为设计变量(决策变量), 为目标函数为可行域三、1、解:设Pn 表示t=n 时的市场价格,由供求平衡可知:)()(1n n p f p =-ϕ9431+-=+-n n kp p即: kp k p n n 531+-=- .,...,,,)(m i h i 210==x )(x f u =.,...,,),)(()(p i g g i i 2100=≥≤x x x)(x f Ω∈x Ω∈=x x f u )(max)min(or .,...,,,)(..m i h t s i 210 ==x .,...,,),)(()(p i g g i i 2100=≥≤x x经递推有:kk p kkk k p k p n nn nn n 5)3()3(5)53(31102⋅-+⋅-=++-⋅-=-=-∑Λ0p 表示初始时的市场价格:∞→时当n 若即市场稳定收敛则时,,30,13n p k 即k<<<-。
全国大学生数学建模B题官方答案提示Prepared on 21 November 20212016高教社杯全国大学生数学建模竞赛B题评阅要点本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅本题要求通过建立数学模型,讨论小区开放对周边道路通行的影响,并根据研究结果向城市规划和交通管理部门提出小区开放的合理化建议。
本题目主要考察学生在复杂环境因素下,针对小区开放的实际情况,建立合理简化的交通流模型。
第1问评价小区开放对车辆通行的影响的指标体系一般应包括以下三类指标:高效性、安全性和稳健性。
如何合理地选取评价指标,以及如何度量指标值,是本问的主要考察点。
评价指标可以有各种定义方式,依据其合理性与可计算性判断其价值。
第2问本问要求建立交通流模型研究小区开放对周边道路通行的影响,重点考虑因素有交通流量及流量分配、车辆的行驶规则、小区开放规则等。
尤其需要注意小区开放对道路通行的特殊影响因素,例如,小区道路与主路形成的交叉路口一般无交通信号设置,主路与小区内部道路的车速不同,小区内部车辆进出等。
未考虑这类特殊影响的交通模型,对本问题的价值不大。
第3问根据小区开放对周边道路通行的影响不同,小区应分类型讨论,主要分类因素有小区的大小、居住人口的密集度、进出小区路口的数量等,另外,周边道路上车流量的分布状况也会影响小区开放的效果。
评判时应注意,本问是否根据第二问所建立的模型进行计算,是否根据第一问的指标体系进行效果评价。
第4问本问主要考察:1.论文的合理化建议是否来自于模型计算结果;2.合理化建议是否充实。
参考文献:李向朋,城市交通拥堵对策一封闭型小区交通开放研究,长沙理工大学硕士论文,2014王爽,微观交通仿真及分析技术在交通影响评价中的应用研究,吉林大学硕士论文,2005芦欣,城市区域交通微循环系统优化研究,北京建筑大学硕士论文,2015李健华,住宅小区的交通影响分析,华南理工大学硕士论文,2005王浩苏,基于多目标决策的城市交通微循环系统功能优化研究,西南交通大学硕士论文,2014张海明,城市居住片区交通微循环系统研究,西安建筑科技大学硕士论文,2011钟媚,基干可持续发展的城市交通微循环路网优化研究,西南交通大学硕士论文,2013李文权等,无信号交叉口主车流服从移位负指数分不下支路多车型混合车流的通行能力,系统工程理论与实践,2001袁绍欣等,无信号交叉口车流通行状况的混杂Petri网模型,中国公路学报,2010.蔡军,城市路网结构体系研究,同济大学博士论文,2005。
2023本科数学建模b题
2023年本科数学建模竞赛B题
B题交通流量分配优化
问题:
交通流量分配是交通工程领域的重要研究内容,对于提高道路使用效率、缓解交通拥堵具有重要意义。
请你们建立数学模型,解决以下问题:
1. 对于一个城市的道路网络,如何进行最优的交通流量分配,使得总的行驶时间最短?
2. 如果在某些路段实施了交通限制措施(例如限行、限速等),如何调整交通流量分配,以使得总的行驶时间最短?
3. 如何评估交通流量分配的优化效果?
要求:
1. 请根据以上问题,建立数学模型。
模型应包括目标函数、约束条件和决策变量。
2. 在模型中,应考虑实际的道路网络特性,如道路的长度、宽度、车流量等。
3. 对于第二个问题,应考虑不同限制措施对交通流量分配的影响,并给出相应的优化方案。
4. 对于第三个问题,应提出一种有效的评估方法,以量化优化效果。
5. 最后,请根据给定的数据(见附件),对模型进行验证和求解,并给出相应的结果分析。
2023高教数学建模b题数学建模作为一门学科,旨在通过数学工具和技巧解决实际问题,为各行各业提供科学的决策依据。
2023年高教数学建模B题是一道典型的数学建模题目,要求我们基于给定的数据和条件,利用数学模型分析和解决实际问题。
本文将按照题目的要求,对其进行分析和解答。
题目要求我们研究一种疾病的传播规律,并设计措施来控制疾病的传播。
首先,我们需要对疾病的传播过程进行建模和分析。
其次,我们需要设计一种有效的控制措施来降低疾病的传播速度。
最后,我们需要通过模型的求解和分析,对疾病的传播过程和控制措施进行评估和优化。
在疾病的传播过程中,人群的行为和接触是至关重要的因素。
我们可以将人群分为易感者、感染者和康复者三类。
易感者指的是尚未感染的人群,感染者指的是已经感染疾病的人群,康复者指的是已经康复并具有免疫力的人群。
疾病的传播可以通过接触和空气传播等方式进行,我们需要确定传播速率和传播方式的数学模型。
一种常见的疾病传播模型是SIR模型,即易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)模型。
该模型基于传染病的传播机制和人群行为,可以对疾病的传播过程进行建模和分析。
我们可以利用微分方程来描述SIR模型的动力学。
假设疾病的传播速率为β,康复速率为γ,人群总数为N,易感者的数量为S,感染者的数量为I,康复者的数量为R。
根据SIR模型的假设,易感者的变化率与感染者和易感者的接触率有关,感染者的变化率与易感者和感染者的接触率有关,康复者的变化率与感染者的康复速率有关。
因此,我们可以得到以下的微分方程组:dS/dt = -βSI/NdI/dt = βSI/N - γIdR/dt = γI其中,t表示时间,β和γ分别表示传播速率和康复速率。
通过求解上述微分方程组,我们可以得到疾病传播过程中易感者、感染者和康复者的数量随时间的变化情况。
我们可以通过调整传播速率和康复速率,来观察不同参数下的传播过程和结果。
西安邮电大学2011-2012第一学期《数学建模》选修课试题卷班级:软件1003班姓名:学号:成绩:一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:模型:所研究的系统、过程、事物或概念的一种表达形式,也可指根据实验、图样放大或缩小而制作的样品,一般用于展览或实验或铸造机器零件等用的模子。
例如飞机模型,用压制或浇灌方法使材料成为一定形状的工具。
通称“模型”。
2.数学模型答:数学模型:用数学语言描述的一类模型。
数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。
除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。
需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。
3.抽象模型答:抽象模型:是三维建模里这么称呼的就跟抽象雕塑的一样的。
实际不存在,理论上却存在,并用思维对事物进行客观认识的理论或者框架。
对获得的感性材料和感性经验,运用理性思维进行一番老粗取梢、去伪存真、由此及彼、由表及里的改造制作工夫,去掉事物非本质的、表面的、偶然的东西,抽取出事物本质的、内在的、必然的东西,揭示客观对象的本质和规律而建立的模型。
二、简答题(每小题满分8分,共24分)1.模型的分类答:按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类,形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型,数学模型等。
2.数学建模的基本步骤答:(1)建模准备:数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。
建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对;(2)建模假设:根据实际对象的的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。
2023高教杯数学建模b题
在一个城市的公交车站,每天早上7点到9点之间,每10分钟就有一辆公交车到达。
如果一个人在7点钟到达车站,那么他最早能在几点之前乘上公交车?
A. 7点30分
B. 8点
C. 8点15分
D. 8点45分
一辆汽车以每小时60公里的速度行驶,从A地到B地需要2小时。
如果这辆汽车以每小时80公里的速度行驶,那么从A地到B地需要多长时间?
A. 1小时
B. 1小时30分钟
C. 1小时45分钟
D. 2小时30分钟
一家公司的年度销售额为100万美元。
如果每个季度的销售额都是前一个季度的1.5倍,那么第四个季度的销售额是多少?
A. 150,000美元
B. 225,000美元
C. 337,500美元
D. 506,250美元
一个长方形花园的长度是宽度的2倍,周长为24米。
这个花园的面积是多少平方米?
A. 12平方米
B. 24平方米
C. 36平方米
D. 48平方米
一辆火车以每小时80公里的速度行驶,从A地到B地需要4小时。
如果这辆火车以每小时100公里的速度行驶,那么从A地到B地需要多长时间?
A. 2小时
B. 2小时30分钟
C. 3小时
D. 3小时30分钟
一家餐厅每天的顾客数量是前一天的1.2倍。
如果第一天有100位顾客,那么第五天有多少位顾客?
A. 144位
B. 172位
C. 204位
D. 245位。
交巡警服务平台的设置与调度优化分析摘要本文以实现警察的刑事执法、治安管理、交通管理、服务群众四大职能为宗旨,利用有限的警务资源,根据城市的实际情况与需求合理地设置了交巡警服务平台、分配各平台的管辖范围及调度警务资源。
并分别对题目的各问,作了合理的解答。
问题一:(1)、根据题目所给数据,确定各节点之间的相邻关系和距离,利用Floyd 算法及matlab编程求出两点之间的最短距离,使其尽量满足能在3分钟内有交巡警平台警力到达案发结点的原则,节点去选择平台,把节点分配给离节点距离最近的平台管辖,据此,我们得到了平台的管辖区域划分。
(2)、我们对进出该区的13条交通要道实现快速全封锁的问题,我们认定在所有调度方案中,某种方案中耗时最长的的围堵时间最短即最佳方案,利用0-1变量确定平台的去向,并利用线性规划知识来求解指派问题,求得了最优的调度方案。
(3)、在确定增添平台的个数和具体位置的问题中,我们将尽量保证每个节点都有一个平台可以在三分钟内到达作为主要原则来求解。
我们先找出到达每个平台的时间都超过三分钟的节点,并尝试在这些节点中选取若干个作为新的平台,求出合理的添加方案。
问题二:(1)、按照设置交巡警服务平台的原则和任务,分析现有的服务平台的设置是否合理,我们以各区覆盖率作为服务平台分布合不合理的评价标准,得到C、D、E、F区域平台设置不合理。
并尝试一些新的设置方案使得设置更为合理,最后以覆盖率最低的E区为例,使用一种修改方案得到一个比原方案更合理的交巡警服务平台的设置方案。
(2)、追捕问题要求在最快的时间内抓到围堵罪犯,在罪犯和警察的行动速度一致的前提假设下,我们先设定一个具体较小的时间,编写程序检验在这个时间内是否可以成功抓捕罪犯,不行则以微小时间间隔增加时间,当第一次成功围堵时,这个时间即为最佳围堵方案。
关健字: MATLAB软件,0-1规划,最短路,Floyd算法,指派问题一、问题重述“有困难找警察”,是家喻户晓的一句流行语。
数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。
由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。
面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。
题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。
椅子能在不平的地面上放平吗
在书上给出了正方形椅子能放平的证明,现在证明长方形椅子也能放平。
一模型假设:(与书上正方形椅子假设一样)。
二模型构成:(与书上正方形椅子一样)。
三变量定义:
P i:宇宙率;∠AOB为两对角线夹角;
同样函数f(a)与g(a),a与书上正方形椅子的意思也一样,因此证明的命题也一样(如下):
已知f(a)与g(a)是a的连续函数的非负函数,任意a,f(a )*g(a)=0,且g(0)=0,f(0)>0.证明存在a0,使f(a0)=g(a0)=0;
证明:
将椅子逆向旋转a1=pi-∠AOB,则有对角线BD重合到对角线AC位子上了,则有f(a1)=0了,又由于g(a)为非负函数,即g(a0)>0;
故,构造函数h(a)=f(a)-g(a),有h(0)>0,而h(a1)<0;又h(a)很明显也为连续函数,故一定存在a0使得h(a0)=0,则有f(a0)=g(a0),又f(a)*g(a)=0
故f(a0)=g(a0)=0;
所以可以在旋转角在0到a1间可以至少找到一个a0使得长方形能放稳定。
A卷2009-2010学年第2学期《数学建模》试卷专业班级姓名分组号与学号开课系室数学与计算科学学院考试日期 2010 年7月题号一二三四五六七八总分得分阅卷人数学建模试卷(1007A)一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
(2)建立数学模型的一般方法是什么?在建模中如何应用这些方法,结合实例加以说明。
二(10分)、(1).简述数学建模的一般步骤,分析每个步骤的主要内容和注意事项。
(2)简述数学模型的表现形态,并举例说明。
第一页三(10分)、(1)简述合理分配席位的Q-值方法,包括方法的具体实施过程,简述分配席位的理想化原则。
(2)建立录像机记数器读数与录像带转过时间之间的关系模型,包括模型假设与模型建立全过程。
四(15分)(1)建立不允许缺货情况下的存储模型,确定订货周期和订货量(包括问题叙述,模型假设和求解过程).(2)建立不允许缺货的生产销售存贮模型.设生产速率为常数k,销售速率为常数r,k r.在每个生产周期T内,开始的一段时间(0 t T0)一边生产一边销售,后来的一段时间(T0t T)只销售不生产.设每次生产开工费为c1,单位时间每件产品贮存费为c2,(a)求出存储量q(t) 的表示式并画出示意图。
(2)以总费用最小为准则确定最优周期T,讨论kr的情况.第二页五(15分)、(1)建立传染病传播的SIS模型并求解(简述假设条件和求解过程),(2)建立SIR模型,并用相平面方法求解,在相平面上画出相轨线并进行分析。
六(15分)(1)建立一般的战争模型,分析各项所表示的含义。
(2)在假设x0y0,b 9a条件下对正规战争模型(忽略增援和非战斗减员)进行建模求解,确定战争结局和结束时间。
第三页七(15分)设渔场鱼量的自然增长服从模型x rxln N,又单位时间捕捞量为xh Ex.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量hm及获得最大产量的捕捞强度E m 和渔场鱼量水平x0.八(10分)假设商品价格y k和供应量x k满足差分方程y k1 y0(xk1x k x0), 02xk1 x0(y k y0) 0求差分方程的平衡点,推导稳定条件第四页A卷2009-2010学年第2学期《数学模型》试题参考答案与评分标准专业班级开课系室数学与计算科学学院考试日期2010年7月数学建模试卷(1007A)参考答案与评分标准一(10)(1)简述数学模型的概念,分析数学模型与数学建模的关系。
大学数学模型试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项是线性方程的解?A. x = 2B. x = 3C. x = 4D. x = 5答案:A2. 函数f(x) = 2x + 3在x = 1处的导数是:A. 1B. 2C. 3D. 4答案:B3. 以下哪个选项是二阶线性微分方程?A. y'' - 2y' + y = 0B. y'' + y' = 0C. y'' - y = 0D. y'' + 2y' + y = 0答案:A4. 积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A5. 以下哪个选项是正态分布的概率密度函数?A. f(x) = 1/√(2πσ^2) * e^(-(x-μ)^2/2σ^2)B. f(x) = 1/√(2π) * e^(-x^2/2)C. f(x) = 1/(σ√(2π)) * e^(-(x-μ)^2/2σ^2)D. f(x) = 1/(2πσ) * e^(-(x-μ)^2/2σ^2)答案:C二、填空题(每题4分,共20分)1. 如果一个函数是奇函数,那么它的图象关于______对称。
答案:原点2. 函数y = x^3 - 3x + 2的极值点是______。
答案:13. 微分方程dy/dx = y + x的通解是______。
答案:y = Ce^(-x) + x4. 圆的面积公式是______。
答案:πr^25. 矩阵A = [1 2; 3 4]的行列式是______。
答案:-2三、解答题(每题15分,共30分)1. 证明函数f(x) = x^3 - 6x^2 + 9x + 15在区间[1,3]上是单调递增的。
答案:首先计算f(x)的导数f'(x) = 3x^2 - 12x + 9。
然后找出导数的零点,解方程3x^2 - 12x + 9 = 0,得到x = 1和x = 3。
内蒙古大学创业学院期末考试试卷 第 1 页 共 3 页
内蒙古大学创业学院
2011~2012学年(第一学期) 《数学模型》试卷(B ) (闭 卷 120分钟)
姓名 学号 年级 专业 班级 □重修标记
总分 题号 一 二 三 四 五
核分人 得分 复查人
得分
装 订 线
一 简答题 (每题5分,共20分)
1 数学建模有几个步骤?
模型假设, 模型构成, 模型求解 模型分析 模型检验
2 数学模型的分类?
确定性和随机性,连续性和离散型,线性和非线性
3 什么是动力系统?
{
B Aa a c
a n n +==+11
4 插值函数的分类
分段线性插值,多项式插值
二、计算题(每题10分,共30分)
1 X 0.1 0.
2 0.15 0 -0.2 0.
3 Y 0.95
0.84
0.86
1.06
1.50
0.72
用二次函数拟合. Polyfit(x,y,2)
2 样条法的程序 Interp1(x,y,xi,'spline') 3
X 1 2 3 7 8 9 Y
74
58
69
36
25
14
写出用三次样条函数拟合上述数据的程序
Interp1(x,y,xi,'spline')
内蒙古大学创业学院期末考试试卷 第 2 页 共 3 页
8,2
,0,0,4,0,05432121=======y y y y y x x ,最小费用为560元,既每天可以减少820-560=260元。
2
大陆上物种数目可以看作常数,各物种独立地从大陆向附近一岛屿迁移,岛上物种数量的增加与
尚未迁移的物种数目有关,而随着迁移物种的增加又导致岛上物种的减少,在适当假设下建立岛
上物种数的模型,并讨论稳定状况。
记岛上物种数为()t x ,大陆上物种数为N 。
设()t x 的增加率与尚未迁移的物种数x N -成正比,
同时()t x 的减少率与已迁移的物种数x 成正比,则
()()(),0,>--=βαβαx x N t x
稳定状态时β
αα+=N
x 0
三、模型题 (每题15分,共30分)
1
某储蓄所每天的营业时间是上午9:00到下午5:00,根据经验,每天不同时间段所需要的服务员数
量如下:
时间段(时) 9—10 10—11 11—12 12—1 1—2 2—3 3—4 4—5
服务员数量 4
3 4 6 5 6 8 8 储蓄所可以雇佣全时和半时两类服务员,全时服务员每天报酬100元,从上午9:00到下午5:00
工作,但中午12:00到下午2:00之间必须安排1小时的午餐时间,储蓄所每天可以雇佣不超过3
名的半时服务员,每个半时服务员必须连续工作4小时,报酬40元,问该储蓄所应该如何雇佣全时和半时两类服务员?如果不能雇佣半时服务员,每天至少增加多少费用?如果雇佣半时服务员的数量没有限制,每天可以减少多少费用?
解
设储蓄所每天雇佣的全时服务员中以12:00~为午餐时间的有1x 名,以1:00~2:00为午餐时间的有2
x 名;半时服务员中从9:00,10:00,11:00,12:00,1:00开始工作的分别为
54321,,,,y y y y y 名,列出模型: 54321214040404040100100y y y y y x x Min
++++++
⎪⎪⎪⎪⎪
⎪⎪⎩⎪⎪⎪⎪
⎪⎪⎪⎨
⎧≥≤+++++≥++≥+++≥++++≥+++++≥++++≥++++≥+++≥++且为整数
0,,,,,,388
6564
3
4.
.54321215432152
154215432
1543211
43212321212121
121y y y y y x x y y y y y y x x y y x x y y y x x y y y y y x y y y y x y y y x x y y x x y x x t s (1) 求解得到最优解1,0,2,0,0,4,35432121=======y y y y y x x ,最小费用为820元。
(2) 如果不能雇佣半时服务员,则最优解为0,0,0,0,0,6,55432121=======y y y y y x x ,
最小费用为1100远,即每天至少增加1100-820=280元。
(3) 如果雇佣半小时服务员的数量没有限制,则最优解为
内蒙古大学创业学院期末考试试卷 第 3 页 共 3 页
、、、
四 matlab 命令 (20分)
1 写出用匿名函数和符号计算两种方法定义函数:x e x x y +-=sin 32,并求解
Syms x
Fun=3*x^2-sinx+e^x
2 写出将屏幕分成9幅图,并将第一幅图命名图1,在图(1,3)
的位置起名'数学模型考试'
Text()。