材料成型技术 3-塑性加工技术-2
- 格式:pdf
- 大小:11.81 MB
- 文档页数:330
机械工程中的材料成型技术机械工程是一门对材料、工艺、力学等知识有着高要求的学科,而材料成型技术是机械工程中至关重要的一个环节。
材料成型技术经历了几千年的发展,现代的材料成型技术不仅仅只是制造简单的器具和物件,而是拥有更广泛的应用。
本文将探讨机械工程中的材料成型技术,包括铸造、锻造、热处理、塑性加工等几个方面。
一、铸造技术铸造技术是常用的一种材料成型方法,在机械工程中,因其具有低成本、模具制造方式灵活、适用于生产大批量同性能的部件等特点而被广泛应用。
在铸造技术中,常用的材料有铝、铜、铁、钢、锌等。
铸造过程主要包括制模、熔炼、浇注、冷却、脱模等环节。
其中制模环节是非常关键的环节之一。
有机、无机、水玻璃等多种材料可以被用于制作模具,具体的选择需要根据铸造件的要求而定。
为了提高铸造品的质量,再浇注前应该根据铸造件的要求制作相应的温度计和重量称等器械,以确保铸造后达到规格和质量要求。
二、锻造技术锻造技术是将高温下的金属材料通过工具的冲击、力量和加压等作用压缩成型。
在锻造中,材料的显微结构会受到改变,因此可使铸造的性能得到提高,同时还可以获得稳定的尺寸和更多细节的表现。
根据锻造的过程和条件的不同,锻造技术可以分成多种类型。
例如,钩锻、模锻、粉末冲压和拉伸锻等。
钩锻是最传统的锻造技术,在这种锻造过程中,先将金属材料预热,然后在模具中进行加压,直至材料成型。
但是,在这种方法中,材料的形状和尺寸是不能够得到精确控制的,因此,更精确的方式是采用模锻。
三、热处理技术在材料成型后,通常需要进行热处理,以使得金属材料的性能得到提高和消除加工形变等缺陷。
热处理技术广泛应用于制造工具、汽车、航空器、重型机械等领域中,可以使得材料经受更高的压力和负荷。
在热处理技术中,常用的加工过程包括淬火处理、回火处理、正火处理等。
具体处理方式根据要求和具体的应用而定。
四、塑性加工技术塑性加工技术是用来对金属材料进行各种形状的塑性变形,从而用来制造各种不同的产品。
《材料成形技术基础》总复习思考题一、基本概念加工硬化、轧制成形、热塑性成形、冷塑性成形、变形速度、塑性变形能力(可锻性)、自由锻造、模型锻造、敷料(余块)、锻造比、镦粗、拔长、冲孔、落料、拉深、拉深系数、反挤压成形、正挤压。
二、是非判断1、塑性是金属固有的一种属性,它不随变形方式或变形条件的变化而变化。
()2、对于塑性较低的合金材料进行塑性加工时拟采用挤压变形方式效果最好。
()3、自由锻是生产单件小批量锻件最经济的方法,也是生产重型、大型锻件的惟一方法。
()4、锻件图上的敷料或余块和加工余量都是在零件图上增加的部分,但两者作用不同。
()5、模膛深度越深,其拔模斜度就越大。
()6、对正方体毛坯进行完全镦粗变形时,可得到近似于圆形截面的毛坯。
()7、对长方体毛坯进行整体镦粗时,金属沿长度方向流动的速度大于横向流动的速度。
()8、塑性变形过程中一定伴随着弹性变形。
()9、金属在塑性变形时,压应力数目越多,则表现出的塑性就越好。
()10、金属变形程度越大,纤维组织越明显,导致其各向异性也就越明显。
()11、金属变形后的纤维组织稳定性极强,其分布状况一般不能通过热处理消除,只能通过在不同方向上的塑性成形后才能改变。
()12、材料的变形程度在塑性加工中常用锻造比来表示。
()13、材料的锻造温度范围是指始锻温度与终锻温度之间的温度。
()14、加热是提高金属塑性的常用措施。
()15、将碳钢加热到250℃后进行的塑性变形称为热塑性变性。
()16、自由锻造成形时,金属在两砧块间受力变形,在其它方向自由流动。
()17、镦粗、拔长、冲孔工序属于自由锻的基本工序。
()18、模锻件的通孔可以直接锻造出来。
()19、可锻铸铁可以进行锻造加工。
()20、始锻温度过高会导致锻件出现过热和过烧缺陷。
()21、热模锻成形时,终锻模膛的形状与尺寸与冷锻件相同。
()22、金属的锻造性与材料的性能有关,而与变形的方式无关。
()23、模锻件的精度取决于终锻模膛的精度。
机械工程中的材料加工与成型技术机械工程是一门研究机械设备设计、制造和运行的学科,而材料加工与成型技术则是机械工程中至关重要的一部分。
材料加工与成型技术涉及到将原材料转化为最终产品的过程,它对于产品质量、成本和效率都有着重要的影响。
在机械工程中,材料加工是指通过各种加工方法将原材料进行形状、尺寸和性能上的改变。
常见的材料加工方法包括切削、锻造、焊接、铸造、冲压等。
切削是最常见的加工方法之一,它通过将切削工具与工件相对运动,将工件上的材料切削掉来实现加工目的。
切削方法适用于各种材料,如金属、塑料、木材等。
锻造是通过将金属材料加热至一定温度,然后施加压力使其发生塑性变形,从而得到所需形状的加工方法。
焊接是将两个或多个工件通过加热或施加压力使其相互连接的方法,常用于金属材料的加工。
铸造是将熔化的金属或其他材料倒入预先制作好的铸型中,待其冷却凝固后得到所需形状的加工方法。
冲压是通过将金属板材放置在冲压机上,利用冲压模具对其进行冲压、弯曲、拉伸等加工的方法。
与材料加工相对应的是材料成型技术,它是指通过将材料加工成所需形状的方法。
材料成型技术广泛应用于各个领域,如汽车制造、航空航天、电子设备等。
常见的材料成型技术包括挤压、拉伸、压铸、注塑等。
挤压是将金属材料加热至一定温度,然后通过挤压机将其挤压成所需截面形状的加工方法。
拉伸是将金属材料加热至一定温度,然后通过拉伸机将其拉伸成所需形状的加工方法。
压铸是将熔化的金属注入铸型中,然后施加压力使其充填整个铸型并冷却凝固的加工方法。
注塑是将熔化的塑料注入模具中,然后冷却凝固得到所需形状的加工方法。
在机械工程中,材料加工与成型技术的选择对产品的性能和质量有着重要的影响。
不同的加工方法和成型技术适用于不同的材料和产品,需要根据具体情况进行选择。
同时,材料加工与成型技术的发展也在不断推动着机械工程的进步。
随着科技的发展,新的材料和加工技术不断涌现,为机械工程师提供了更多的选择和可能性。
材料成型技术基础材料成型技术基础材料成型技术是现代工业的核心技术之一,是将材料加工成所需形状、结构和性能的过程。
材料成型技术分为传统成型技术和先进成型技术两种。
前者包括热加工、冷加工、焊接等,后者则包括快速成型、激光加工、注塑成型等。
无论是哪种成型技术,都需要掌握材料成型技术基础知识才能熟练地操作和完成任务。
1.材料成型技术原理材料成型技术在原理上是通过施加压力,改变材料外观和性质。
采用不同的成型方法和工艺流程,可获得所需的形态和性能。
例如,金属冷加工依靠的是材料的塑性变形,而激光切割则是利用激光的高能量和热量来割断材料。
因此,不同成型技术的原理不同,工艺流程也不同。
2.材料成型技术分类材料成型技术主要可以分为常规材料成型技术和高级材料成型技术两类。
常规材料成型技术包括热加工、冷加工、铸造、焊接、切削等。
这些技术在工业生产中应用广泛,可以制造出各种形态的零部件和产品。
高级材料成型技术是在常规成型技术基础上,运用现代科技和工程技术发展起来的成型技术。
例如,金属材料的选择性激光烧结技术(SLS)、三维打印技术、激光切割技术和注塑成型技术等。
这些技术通常被用于制造高性能、高单价、高品质的工业产品。
3.常规材料成型技术热加工热加工技术是利用高温对材料进行塑性变形的加工方式。
通过热处理,可以使金属变得更加容易软化和延展。
热加工适合于制造大量的同样尺寸和形状的零件,例如轴、齿轮等机械元件。
冷加工冷加工技术是不需要高温处理的制造加工方法。
冷加工一般用于金属加工,由于没有热变形,冷加工一般具有更好的精度和表面光洁度。
冷加工应用广泛,例如冷拔、冷轧、冷环等。
铸造铸造是利用熔化的金属,将其注入模具中成型制品的加工方法。
铸造可以生产出各种不同尺寸和形状的零件,应用范围广泛,例如钢铁、铝合金、铜、铜合金等材料。
焊接焊接是将两个物体连接在一起的加工方式。
焊接广泛应用在车辆工业、建筑工业、航空航天工业等领域,例如电弧焊、气体保护焊、激光焊等技术。
材料成型技术基础第2章铸造1、铸造的定义、优点、缺点:铸造指熔融金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成型方法。
优点:铸造的工艺适应性强,铸件的结构形状和尺寸几乎不受限制;工业上常用的合金几乎都能铸造;铸造原材料来源广泛,价格低廉,设备投资少;铸造适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。
缺点:铸件的质量取决于成形工艺、铸型材料、合金的熔炼与浇注等诸多因素,易出现浇不到、缩孔、气孔、裂纹等缺陷,且往往组织疏松,晶粒粗大。
2、充型能力的定义、影响它的三个因素:金属液的充型能力指金属液充满铸型型腔,获得轮廓清晰、形状准确的铸件的能力。
影响因素:①金属的流动性;②铸型条件;③浇注条件。
3、影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的铸型的三个条件;浇注温度和压力对充型能力是如何影响的:影响流动性的因素:①合金成分:纯金属和共晶成分的合金,结晶过程呈逐层凝固方式,流动性好;非共晶成分的合金,呈中间凝固方式,流动性较差;凝固温度范围过大,铸件断面呈糊状凝固方式,流动性最差。
结晶温度范围越窄,合金流动性越好。
②合金的质量热容、密度和热导率:合金质量热容和密度越大、热导率越小,流动性越好。
影响充型能力的铸型的三个条件:①铸型的蓄热系数:铸型从其中金属液吸收并储存热量的能力。
蓄热系数越大,金属液保持液态时间短,充型能力越低。
(在型腔喷涂涂料,减小蓄热系数)②铸型温度:铸型温度越高,有利于提高充型能力。
③铸型中的气体:铸型的发气量过大且排气能力不足,就会使型腔中气压增大,阻碍充型。
浇注温度和压力对充型能力的影响:①浇注温度:提高浇注温度,延长保持液态的时间,从而提高流动性。
温度不能过高,否则金属液吸气增多,氧化严重,增大了缩孔、气孔、粘砂等缺陷倾向。
②充型压力(流动方向上的压力):充型压力越大,流动性越好。
名词解释一、二章(绪论+铸造成型):1缩孔、缩松:液态金属在凝固的过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,细小而分散的孔洞称为缩松。
2顺序凝固:指采用各种措施保证铸件结构各部分,从远离冒口部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固再向冒口方向顺序凝固的凝固方式。
3同时凝固:由顺序凝固的定义可得。
4偏析:铸件凝固后截面上不同部位晶粒内部化学成分不均匀的现象称为偏析。
5:宏观偏析:其成分不均匀现象表现在较大尺寸范围,也称为区域偏析。
6微观偏析:指微小范围内的化学成分不均匀现象。
7流动性:液态金属自身的流动能力称为“流动性”。
8充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力叫充型能力。
9正偏析:当溶质的分配系数K>1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越低,这种成分偏析称之为正偏析。
10逆偏析:当溶质的分配系数K<1的合金进行凝固时,越是后来结晶的固相,溶质的浓度越高,这种成分偏析称之为逆偏析。
11:自由收缩:铸件在铸型中收缩仅受到金属表面与铸型表面的摩擦阻力时,为自由收缩。
12:受阻收缩:如果铸件在铸型中的收缩除了受到金属表面与铸型表面的摩擦阻力,还受到其他阻碍,则为受阻收缩。
13:析出性气孔:溶解于熔融金属中的气体在冷却和凝固的过程中,由于溶解度的下降而从合金中析出,当铸件表面已凝固,气泡来不及排除而保留在铸件中形成的气孔。
14:反应性气孔:浇入铸型的熔融金属与铸型材料、芯撑、冷铁或熔渣之间发生化学反应所产生的气体在、铸件中形成的孔洞,称为反应气孔。
15:侵入性气孔:浇注过程中熔融金属和铸型之间的热作用,使型砂和型芯中的挥发物挥发生成,以及型腔中原有的空气,在界面上超过临界值时,气体就会侵入金属液而不上浮逸出而形成的气孔。
三章(固态材料塑性成型)1金属塑性变形:是指在外力作用下,使金属材料产生预期的变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。
材料成型技术基础材料成型技术是指通过一系列的加工方法,将原材料加工成所需形状和尺寸的工件的技术。
它是制造业中最基础、最重要的一环,直接影响着产品的质量、成本和生产效率。
材料成型技术包括铸造、锻造、焊接、切削加工、塑性加工等多种加工方法,本文将对这些方法进行简要介绍。
首先,铸造是指将金属或非金属熔化后,借助重力或压力,注入模具中,冷却后得到所需形状的工件的一种加工方法。
铸造方法简单、成本低,适用于制造大型、复杂形状的零件,但其工件的力学性能一般较差。
其次,锻造是指将金属加热至一定温度后,放入模具中进行挤压、冲击或冲裁等加工方法,得到所需形状的工件。
锻造工件的晶粒结构致密,力学性能优良,适用于制造高强度、高耐磨的零件。
接下来,焊接是指利用高温将金属或非金属熔化,使两个或多个工件连接在一起的方法。
焊接方法种类繁多,包括电弧焊、气体保护焊、激光焊等。
焊接工艺灵活,适用于各种形状、材质的工件连接,但焊接工件的热影响区较大,容易产生焊接变形和裂纹。
再者,切削加工是指利用刀具对工件进行切削、镗削、铣削等加工方法,得到所需形状和尺寸的工件。
切削加工精度高,表面质量好,适用于制造高精度、复杂形状的零件,但加工过程中产生的废屑多,效率较低。
最后,塑性加工是指利用金属材料的塑性变形特性,通过压力、拉力或弯曲力等加工方法,将金属板材或棒材加工成所需形状的工件。
塑性加工适用范围广泛,适用于各种形状、材质的工件加工,但工件的尺寸精度和表面质量较难控制。
总的来说,不同的材料成型技术各有优势和局限,应根据具体的工件要求和生产条件选择合适的加工方法。
在实际生产中,还可以通过组合应用多种加工方法,充分发挥各种加工方法的优点,实现工件的高效加工和优质制造。
希望本文对材料成型技术有所帮助,谢谢阅读。
Technological Innovation26材料成型及控制工程模具制造技术韩宝瑜(天津中新药业集团股份有限公司中新制药厂,天津 300457)摘要:随着我国工业生产水平不断提升,模具在现代工业制造中得到广泛的利用。
模具是工业生产的基础,具有很高的技术含量和附加值,模具技术水平与国家的工业制造水平息息相关,更直接决定了产品的质量与生产效益。
为了进一步提高材料的性能,改变材料的结构,就要加强对材料成型与控制技术的研究。
在制造工业中,模具制造技术会直接影响到工业的制造水平与工艺水平的提升,将材料成型和控制工程模具相结合,就能提高生产质量和生产效率。
关键词:材料成型;控制工程;模具制造技术材料成型技术主要是依据图纸的要求和设计方案的内容对固定的模型进行压制,最终将会获得与图纸要求相符的模型。
为了尽快完成组装,就要采用材料成型技术与控制工程模具技术对金属材料或非金属材料进行加工,提高材料的利用率。
1 材料成型及控制工程模具制造技术概述材料成型技术及控制工程模具制造技术主要用于提高材料的性能,确保材料表面的形状发生变化。
将该技术与其他技术有机结合,就能确保金属材料实现一次成型,将生产成本控制在合理范围内。
设计人员要对原材料进行合理的设计,明确影响材料质量的相关因素,选择合适的加工方法,运用相应的理论知识进行设计。
材料成型与控制工程技术主要是通过热加工的方式改变材料的结构、性能和形状,可以解决成型工艺和设备方面的问题。
模具是一种基础性工艺设备类型,在传统的模具制造中所使用的主要材料是钢板。
随着时间的不断推移,性能完善的改性材料越来越多,而且成本较低,工艺简洁,生产效率较高,比如,塑料模具。
目前,模具制造技术在许多行业中发挥出至关重要的作用。
2 模具制造技术发展方向首先,模具制造技术正逐渐迈向自动化发展方向。
在该技术中主要包含人机一体化技术、集成技术和系统技术, 可确保模具制造更加规范, 具有较高的技术含量, 充分满足人们的多元化需求。
材料成型技术基础模拟试题参考答案一、填空题:1、合金的液态收缩和凝固收缩是形成铸件缩孔和缩松的基本原因。
2、铸造车间中,常用的炼钢设备有电弧炉和感应炉。
3、按铸造应力产生的原因不同可分为热应力和机械应力。
4、铸件顺序凝固的目的是防止缩孔。
5、控制铸件凝固的原则有二个,即同时凝固和顺序凝固原则。
6、冲孔工艺中,周边为产品,冲下部分为废料。
7、板料冲裁包括冲孔和落料两种分离工序。
8、纤维组织的出现会使材料的机械性能发生各向异性,因此在设计制造零件时,应使零件所受剪应力与纤维方向垂直,所受拉应力与纤维方向平行。
9、金属的锻造性常用塑性和变形抗力来综合衡量。
10、绘制自由锻件图的目的之一是计算坯料的质量和尺寸。
二、判断题:1、铸型中含水分越多,越有利于改善合金的流动性。
F2、铸件在冷凝过程中产生体积和尺寸减小的现象称收缩。
T3、同一铸件中,上下部分化学成份不均的现象称为比重偏折。
T4、铸造生产中,模样形状就是零件的形状。
F5、模锻时,为了便于从模膛内取出锻件,锻件在垂直于分模面的表面应留有一定的斜度,这称为锻模斜度。
T6、板料拉深时,拉深系数m总是大于1。
F7、拔长工序中,锻造比y总是大于1。
T8、金属在室温或室温以下的塑性变形称为冷塑性变形。
F9、二氧化碳保护焊由于有CO2的作用,故适合焊有色金属和高合金钢。
F10、中碳钢的可焊性比低强度低合金钢的好。
F三、多选题:1、合金充型能力的好坏常与下列因素有关A, B, D, EA. 合金的成份B. 合金的结晶特征C. 型砂的退让性D. 砂型的透气性E. 铸型温度2、制坯模膛有A, B, D, EA. 拔长模膛B. 滚压模膛C.预锻模膛 D. 成形模膛 E. 弯曲模膛 F. 终锻模膛3、尺寸为φ500×2×1000的铸铁管,其生产方法是A, CA. 离心铸造B. 卷后焊接C.砂型铸造 D. 锻造四、单选题:1、将模型沿最大截面处分开,造出的铸型型腔一部分位于上箱,一部分位于下箱的造型方法称A. 挖砂造型B. 整模造型C.分模造型 D. 刮板造型2、灰口铸铁体积收缩率小的最主要原因是由于A. 析出石墨弥补体收缩B. 其凝固温度低 C. 砂型阻碍铸件收缩D. 凝固温度区间小3、合金流动性与下列哪个因素无关A. 合金的成份B. 合金的结晶特征C. 过热温度D. 砂型的透气性或预热温度4、下列合金中,铸造性能最差的是A. 铸钢B. 铸铁C. 铸铜D. 铸铝5、确定分型面时,尽量使铸件全部或大部分放在同一砂箱中,其主要目的是A. 利于金属液充填型腔B. 利于补缩铸件C. 防止错箱 D. 操作方便6、各中铸造方法中,最基本的方法是A. 金属型铸造B. 熔模铸造C.砂型铸造 D. 压力铸造7、合金化学成份对流动性的影响主要取决于A. 熔点B. 凝固温度区间C.凝固点 D. 过热温度8、确定浇注位置时,将铸件薄壁部分置于铸型下部的主要目的是A. 避免浇不足B. 避免裂纹C.利于补缩铸件 D. 利于排除型腔气体9、确定浇注位置时,应将铸件的重要加工表面置于A. 上部B. 下部C. 竖直部位D. 任意部位10、铸件形成缩孔的基本原因是由于合金的A. 液态收缩B. 固态收缩C.凝固收缩D. 液态收缩和凝固收缩11、单件生产直径1米的皮带轮,最合适的造型方法是A. 整模造型B. 分开模造型C.刮板造型 D. 活块造型12、控制铸件同时凝固的主要目的是A. 减少应力B. 消除缩松C.消除气孔防止夹砂13、自由锻件控制其高径比(H/D)为1.5-2.5的工序是A. 拨长B. 冲孔C. 镦粗D. 弯曲14、金属材料承受三向压应力的压力加工方法是A. 轧制B. 挤压C. 冲压D. 拉拔15、绘制自由锻锻件图时,为简化锻件形状,需加上A. 敷料B. 余量C. 斜度D. 公差16、锻造前加热时应避免金属过热和过烧,但一旦出现,A. 可采取热处理予以消除B. 无法消除C. 过热可采取热处理消除,过烧则报废。