低温管道的保冷设计_李珏
- 格式:pdf
- 大小:298.47 KB
- 文档页数:5
浅谈乙烯项目国产低温管道材料质量控制刘诗渝(中国寰球工程公司采购部)摘要:根据乙烯装置国产低温管道材料技术要求,从设计和采买阶段、制造厂生产阶段、材料到项目现场出库前阶段来说明产品质量控制的要点。
关键词:低温管道、材料类别、质量控制、三个阶段1 引言乙烯装置管道材料品种规格多,技术要求各异。
其中低温管线技术要求比较特殊,对制造厂的生产和质量管理要求较高,同时也是乙烯装置管道材料质量控制的重中之重。
下面我将结合四川乙烯装置管道材料采购情况来谈谈国产低温管道材料的质量控制。
2 乙烯装置用国产低温管道材料类别乙烯装置用国产低温管道材料主要有低温碳钢有缝钢管(A671CC60)、不锈钢钢管(TP304、TP 304L、TP 316、TP 316L)、低温碳钢有缝管件(A420WP L6和A516GR60)、不锈钢管件(WP304、WP304L、WP316、WP316L)、低温碳钢法兰(A350GR.LF2)、不锈钢法兰(A182F304/F304L/F316/F316L)、低温碳钢锻制阀门(阀体A350GR.LF2)、低温碳钢铸钢阀门(阀体A352GR.LCB)、不锈钢锻制阀门(阀体A182F304/F304L/F316/F316L)和不锈钢铸钢阀门(阀体CF3/CF3M /CF8/CF8M)。
从上述情况可以看出,低温管线分为低温碳钢管线和低温不锈钢管线。
低温碳钢管线可用于-50摄氏度,低温不锈钢管线可用于-196摄氏度,这对于低温管道材料质量控制提出了较高要求。
3 管道材料质量控制可分为三个阶段,一是设计和采买阶段,二是制造厂生产阶段,三是材料到项目现场出库前阶段。
3.1设计和采买阶段从设计角度,设计所提MR文件、请购单以及同制造厂签订的技术协议需简洁、清晰,做到让人一看便能明白生产该产品所需满足的所有技术要求。
四川乙烯装置管道专业设计与制造厂所签的技术协议数量较多,这对于制造厂理解技术协议的内容往往带来很多不便,容易导致制造厂忽略了其中部分要求,出现质量问题。
鲤鱼尾油库改造丁二烯输气管道保冷工程施工方案编制:审核:批准:目录一、工程概况 (3)二、施工技术方案………………………………………………………。
4三、施工组织体系……………………………………………………。
..5四、质保体系及质量控制措施……………………………………….。
6五、主要施工机具及施工用料………………………………………。
.8六、确保工期的措施…………………………………………………。
.9七、HSE管理体系 (10)一、工程概述1。
1福建炼油乙烯项目鲤鱼尾油库改造丁二烯输气管道保冷工程由中国石化集团北京石油化工工程公司设计,工程由中化六公司总承包,管道保冷工程由安徽省防腐工程公司福建分公司分包。
现在装置的管道主体安装试压和防腐底漆已全部完工,外保冷工程将交付施工。
工程施工包括脚手架搭设和保冷层及外护层安装.根据甲方提供的图纸和数据可知(工程量见后附表1),共有2种规格的管道需要保冷。
其中,P005号φ168管道6262m,弯头379个需包60mm厚的聚氨酯管壳,防潮层为沥青玛碲脂玻璃布,外护0.5mm厚的铝合金板;另一条φ300管道6224m,弯头382个需包60mm 厚的聚氨酯管壳,防潮层为沥青玛碲脂玻璃布,外护0。
5mm厚的铝合金板。
两条管道聚氨酯工程量为543。
4立方米、防潮层14370.6平方米、外护层14370.6平方米。
施工用料见附表2。
工程特点是福建炼油乙烯项目位于我国东南沿海,常年高温高湿、台风暴雨、空气中含盐份较高、石油化工企业的化工大气腐蚀和对我们施工的管道保冷结构提出更高要求。
另外,施工工期紧、施工工序复杂、施工质量要求高、HSE管理严格。
工程重点是保冷前管道试压、气密试验、防腐层施工必须验收合格才能交付保冷施工;施工用脚手架必须搭设合格,安全可靠;保冷层施工时必须捆绑牢靠,防潮层必须密实不透气,外护层接缝必须避开此地常年东北主风向、搭接必须严密、固定牢靠美观;立管、立式设备必须按规定设置支撑托,开口处必须有防潮防雨措施,防止潮气、雨水进入保冷层。
1.范围本文件概括了最低温度至-200°C的液化天然气(LNG)液化工厂、LNG储配站、LNG 加注站以及其它如液态乙烯、液化空气、丙烷、丙烯等相关介质的低温设备和管道外表面绝热系统的材料及施工要求。
2.概要保冷绝热系统的设计是为了减少大量的热量输入.以保证达到装置需要的正常工艺操作条件。
另外.对于正常操作温度低于0℃而结冰的那些低温操作管道和管道支架会导致人员或设备的损伤.因此需要对其进行绝热保护。
3.标准及规范3.1.本节所述的规范及标准是指保冷材料及保冷施工中需满足的最低标准。
3.2.也可采用与本技术规范所指定的标准相当或更高的标准。
3.3.标准选用的版本应是正在执行的有效版本。
3.4.本技术规范使用的中国标准及规范:GB/T 50126 《工业设备及管道绝热工程施工规范》GB/T 50264 《工业设备及管道绝热工程设计规范》GB/T 50185 《工业设备及管道绝热工程施工质量验收规范》GB/T 11790 《设备及管道保冷技术通则》GB/T 4272 《设备及管道绝热技术通则》GB/T 8175 《设备及管道绝热设计导则》GB/T 6343 《泡沫塑料及橡胶表观密度的测定》GB/T 10294 《绝热材料冷态热阻及有关特性的测定防护热板法》GB/T 8813 《硬质泡沫塑料压缩性能的测定》GB/T 8810 《硬质泡沫塑料吸水率的测定》GB/T 10799 《硬质泡沫塑料开孔和闭孔体积百分率的测定》GB/T 1036 《塑料 -30°C ~ 30°C线膨胀系数的测定石英膨胀计法》GB/T 17146 《建筑材料水蒸气透过性能试验方法》JC/T 618 《绝热材料中可溶出氯化物、氟化物、硅酸盐及钠离子的化学分析方法》GB/T 2406 《塑料用氧指数法测定燃烧行为》3.5.本技术规范使用的国际标准及规范:ASTM C591 Unfaced Preformed Rigid Cellular PolyISOcyanurate Thermal InsulationASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-PlateApparatusASTM C303 Test Method for Density of Preformed Block-Type Thermal InsulationASTM D1621 Test Method for Compressive Properties of Rigid Cellular PlasticsASTM D1622 ASTM D1623 Test Method for Apparent Density of Rigid Cellular PlasticsTest Method for Tensile and Tensile Adhesion Properties of Rigid Cellular PlasticsASTM D2856 Test Method for Open-Cell Content of Rigid Cellular Plastics by theAir PycnometerASTM E84 Standard Test Method for Surface Burning Characteristics of Building MaterialsCini 2.7.01 PolyISOcyanurate (PIR) Slabs, Sections, Segments, for thermal insulation of piping and equipment3.6.当文件内容有冲突时.应当遵循的优先顺序如下:1)中国的标准和规范2)本技术规定3)项目规定4)国际标准及规范4.保冷厚度4.1.绝热系统外表面的冷损失应小于25 W/m²。
LNG船舶管道保冷绝热施工新工艺简述发布时间:2022-04-25T04:32:51.386Z 来源:《工程建设标准化》2022年1月1期作者:陈小毛[导读] 由于LNG船舶在-163℃储存输送天然气的超低温性,对LNG管道保冷绝热施工提出了想当高的要求。
为陈小毛舟山惠生海洋工程有限公司,浙江舟山 316200)摘要:由于LNG船舶在-163℃储存输送天然气的超低温性,对LNG管道保冷绝热施工提出了想当高的要求。
为了规范施工流程,减少绝热材料的浪费,提高施工效率和质量,本文创新提出LNG管道保冷绝热的施工工艺,为同类型的工程项目的保冷施工提供参考。
关键词:LNG船;低温运输;保冷绝热;管道施工0 引言天然气作为一种清洁高效的能源,已日益受到人们的关注。
1959年,世界第一艘LNG船舶“甲烷先锋号”改装建成并成功运送液化天然气,揭开了LNG海上运输的篇章。
LNG船舶作为国际公认的高技术、高难度、高附加值的“三高”产品,被誉为造船业“皇冠上的明珠”,逐渐被各国视为开展海运贸易不可或缺的新型节能船舶。
LNG船可在-163℃把天然气“压”成液态,体积缩小到六百分之一,更方便运输。
研究保冷绝热施工新工艺,对于促进国内LNG建设具有一定的意义。
有效提高LNG船保冷效率和质量,减少绝热材料的浪费,从而保障LNG系统运行的安全性和经济性。
1、低温保冷类型低温保冷的绝热方法通常有堆积绝热和真空绝热两大类。
堆积绝热是一种传统绝热方法,即在管道的外表面敷设一定厚度的多孔型绝热材料,因孔泡中充满常压空气(或其它气体)而实现绝热。
真空绝热包括高真空绝热、真空多孔绝热及真空多层绝热三类,其原理是将绝热结构做成密闭的夹层,内部空间抽至一定真空度,以减少热量传入。
在绝热效率方面,堆积绝热不及真空绝热,但其结构简单,造价较低,运行维护方便,因此,目前国内外LNG船管道保冷多采用堆积绝热。
2、低温保冷材料及性能低温保冷材料类型。
目前LNG船中采用的保冷材料主要有两种:日本、韩国等主要采用硬质聚氨酯泡沫(PUR),欧美国家多采用PIR。
国家自然科学基金项目名称低温管焊接Title: Exploring the Depths of Low-Temperature Tube Welding in National Natural Science Foundation Projects1. Introduction低温管焊接(Low-temperature tube welding)is an essential and challenging aspect of modern manufacturing, especially in industries such as aerospace, automotive, and energy. The technology and techniques involved in low-temperature tube welding have been a subject of interest and research, attracting the attention of scholars and researchers around the world. In this article, we will delve into the depths of low-temperature tube welding, exploring its significance, challenges, and the latest advancements in the field, with a focus on projects funded by the National Natural Science Foundation.2. Significance of Low-Temperature Tube Welding低温管焊接 plays a crucial role in the manufacturing of various products, including heat exchangers, refrigeration systems, and cryogenic equipment. The ability to weld tubes at low temperatures is essential for preserving the integrity andperformance of the materials, ensuring that they can withstand extreme operating conditions. With the increasing demand for efficient and durable products in these industries, the significance of low-temperature tube welding cannot be overstated.3. Challenges in Low-Temperature Tube WeldingDespite its importance, low-temperature tube welding presents significant challenges. Traditional welding techniques are often unsuitable for use at low temperatures, as they can lead to material embrittlement and structural weaknesses. Moreover, the differences in thermal expansion and contraction between the materials being welded can result in residual stresses and distortions, further complicating the welding process. Overcoming these challenges requires innovative approaches and a deep understanding of the underlying principles of low-temperature tube welding.4. Latest Advancements in Low-Temperature Tube WeldingIn recent years, research funded by the National Natural Science Foundation has led to notable advancements in the field of low-temperature tube welding. Projects have focused on developing novel welding processes, such as friction stir welding and laserwelding, that are specifically tailored for low-temperature applications. These advanced techniques offer improved control over the welding parameters, resulting in higher quality welds with minimal distortion and residual stresses. Furthermore, the use of advanced materials and coatings has been explored to enhance the performance and durability of low-temperature welds. The integration of robotics and automation has also played a significant role in improving the precision and efficiency of low-temperature tube welding processes.5. Personal PerspectiveAs a writer specializing in technical and scientific topics, I find the research and development of low-temperature tube welding to be both fascinating and promising. The collaborative efforts of researchers and scholars supported by the National Natural Science Foundation have paved the way for groundbreaking advancements in this field. The potential applications of low-temperature tube welding extend to various industries, including space exploration, renewable energy, and medical devices, where reliable and high-performance materials are crucial. I am optimistic about the continued progress and innovation in low-temperature tube welding, and I look forward to witnessing its impact on the future of manufacturing andtechnology.6. ConclusionIn conclusion, the exploration of low-temperature tube welding in the context of National Natural Science Foundation projects has provided valuable insights into the significance, challenges, and latest advancements in this field. The efforts of researchers and the support of funding agencies have accelerated the development of innovative techniques and materials for low-temperature welding, offering immense potential for practical applications. As we continue to unravel the complexities of low-temperature tube welding, it is evident that the contributions of the scientific community are driving progress and shaping the future of manufacturing technologies. With a solid understanding of the principles and advancements in low-temperature tube welding, we are well-equipped to aress the evolving needs of diverse industries and propel the boundaries of what is achievable.。