深入浅出博弈论共49页文档
- 格式:ppt
- 大小:4.39 MB
- 文档页数:49
博弈论知识总结博弈论概述:1、博弈论概念:博弈论:就是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题。
博弈论研究的假设:1、决策主体是理性的,最大化自己的收益。
2、完全理性是共同知识3、每个参与人被假定为可以对所处环境以及其他参与者的行为形成正确的信念与预期2、和博弈有关的变量:博弈参与人:博弈中选择行动以最大化自己受益的决策主体。
行动:参与人的决策选择战略:参与人的行动规则,即事件与决策主体行动之间的映射,也是参与人行动的规则。
信息:参与人在博弈中的知识,尤其是其他决策主体的战略、收益、类型(不完全信息) 等的信息。
完全信息:每个参与人对其他参与人的支付函数有准确的了解;完美信息:在博弈过程的任何时点每个参与人都能观察并记忆之前各局中人所选择的行动,否则为不完美信息。
不完全信息:参与人没有完全掌握其他参与人的特征、战略空间及支付函数等信息,即存在着有关其他参与人的不确定性因素。
支付:决策主体在博弈中的收益。
在博弈中支付是所有决策主题所选择的行动的函数。
从经济学的角度讲,博弈是决策主体之间的相互作用,因此和传统个人决策存在着区别:3、博弈论与传统决策的区别:1、传统微观经济学的个人决策就是在给定市场价格、消费者收入条件下,最大化自己效用,研究工具是无差异曲线。
可表示为:maxU(Pi),其中P为市场价格,I为消费者可支配收入。
2、其他消费者对个人的综合影响表示为一个参数——市场价格,所以在市场价格既定下,消费者效用只依赖于自己的收入和偏好,不用考虑其他消费者的影响。
但是在博弈论理个人效用函数还依赖于其他决策者的选择和效用函数。
4、博弈的表示形式:战略式博弈和扩展式博弈战略式博弈:是博弈问题的一种规范性描述,有时亦称标准式博弈。
战略式博弈是一种假设每个参与人仅选择一次行动或战略,并且参与人同时进行选择的决策模型,因此,从本质上来讲战略式博弈是一种静态模型,一般适用于描述不需要考虑博弈进程的完全信息静态博弈问题。
第十章 博弈论初步【学习精要】一、学习重点1. 条件策略组合2. 纳什均衡3. 寻找纳什均衡的方法4. 二人同时博弈的一般理论5. 混合策略均衡6. 序贯博弈的纳什均衡精炼二、知识脉络博弈论基本概念 纳什均衡基本概念博弈论初步 同时博弈 序贯博弈 寻找纳什均衡的方法纳什均衡的存在性、唯一性、最优性 二人博弈的一般理论三、理论精要知识点一 纳什均衡博弈论是研究在策略性环境中如何进行策略性决策和采取策略性行动的科学。
策略性环境指每一个人进行的决策和采取的行动都会对其他人产生影响。
策略性决策和策略性行动指每个人要根据其他人的可能反应来决定自己的决策和行动。
博弈的三个基本要素:参与人、参与人的策略及参与人的支付。
不会得到好处。
知识点二寻找纳什均衡的方法寻找纳什均衡的方法:条件策略下划线法。
根据纳什均衡定义和条件策略组合的定义可得:纳什均衡是所有参与人的条件策略组合的公约数,即纳什均衡是每一个参与人的条件策略组合。
条件策略下划线法:在支付矩阵中每一个参与人的条件策略所对应的支付下面划线,如果支付组合中都有划线,则该支付组合代表的策略组合即为纳什均衡。
知识点三纳什均衡的存在性、唯一性和最优性在同时博弈中,(纯策略的)纳什均衡既可能存在,也可能不存在。
在纳什均衡存在的条件下,它既可能是唯一的,也可能不唯一。
知识点四二人同时博弈的一般理论二人同时博弈(二个策略)每个参与人有9 种可能的支付矩阵,整个博弈有81 种可能的支付矩阵。
全部纳什均衡可分为五种类型:第一种:四个均衡;第二种:三个均衡;第三种:二个均衡;第四种:一个均衡;第五种:零个均衡。
知识点五混合策略均衡混合策略指赋予纯策略的概率向量。
纯策略可以是有限的,由于概率取值的无限性,以有限的纯策略为基础的混合策略一定是无限的。
混合策略组合:((p1, p2),(q1, q2)。
期望支付是指对于每一个混合策略组合,参与人都有一个期望支付即支付的期望值。
条件混合策略: 在其他参与人选择既定的混合策略条件下,参与人所选择的可以使其期望支付最大的混合策略。
第八章 博弈论前面章节对经济人最优决策的讨论,是在简单环境下进行的,没有考虑经济人之间决策相互影响的问题。
本章讨论这个问题,建立复杂环境下的决策理论。
开展这种研究的的理论叫做博弈论,也称为对策论(Game Theory)。
最近十几年来,博弈论在经济学中得到了广泛应用,在揭示经济行为相互制约性质方面取得了重大进展。
大局部经济行为都可视作博弈的特殊情况,比方把经济系统看成是一种博弈,把竞争均衡看成是该博弈的古诺-纳什均衡。
博弈论的思想精髓与方法,已成为经济分析根底的必要组成局部。
第一节 博弈事例博弈是一种日常现象,例如棋手下棋,双方都要根据对方的行动来决定自己的行动,双方的目的都是要战胜对方,互不相容,互相影响,互相制约。
一般来讲,博弈现象的特征表现为两个或两个以上具有利害冲突的当事人处于一种不相容的状态中,一方的行动取决于对方的行动,每个当事人的收益都取决于所有当事人的行动。
当所有当事人都拿定主意作出决策时,博弈的局势就暂时确定下来。
博弈论就是研究这种不相容现象的一种理论,并把当事人叫做局中人(player)。
博弈论推广了标准的一人决策理论。
在每个局中人的收益都依赖于其他局中人的选择的情况下,追求收益最大化的局中人应该如何采取行动?显然,为了确定出可行的策略,每个局中人都必须考虑其他局中人面临的问题。
下面来举例说明。
例1.便士匹配(Matching Pennies)(二人零和博弈)设博弈中有两个局中人甲和乙,每个局中人都有一块硬币,并且各自独立安排硬币是否正面朝上。
局中人的收益情况是这样的:如果两个局中人同时出示硬币正面或反面,那么甲赢得1元,乙输掉1元;如果一个局中人出示硬币正面,另一个局中人出示硬币反面,那么甲输掉1元,乙赢得1元。
对于这个博弈,每个局中人可选择的策略都有两种:正面朝上和反面朝上,即甲和乙的策略集合都是{正面,反面}。
当甲和乙都作出选择时,博弈的局势就确定了。
显然,该博弈的局势集合是{(正面,正面),(正面,反面),(反面,正面),(反面,反面)},即各种可能的局势的全体,也称为局势表,即表1。