博弈论知识点总结推荐文档
- 格式:docx
- 大小:30.27 KB
- 文档页数:10
《博弈论》知识点总结博弈论作为一门交叉学科,涵盖了数学、经济学、政治学、心理学等多个学科领域。
其研究对象包括零和博弈、非零和博弈、合作博弈、序贯博弈等。
博弈论的应用领域也非常广泛,包括经济学、政治学、社会学、管理学等。
博弈论在求解决策问题、预测市场行为、推导策略和解释社会现象等方面有着广泛的应用。
博弈论的主要内容包括:1.博弈的定义博弈是指互相影响的参与者所进行的一种决策活动。
在博弈中,每个参与者都要做出一个选择,其结果受到其他参与者的选择的影响。
博弈的结果取决于所有参与者的选择。
2.博弈的基本元素博弈的基本元素包括参与者、策略和结果。
参与者是进行决策的主体,策略是参与者可以选择的行为方式,结果是参与者选择策略后所得到的收益或损失。
3.博弈的分类根据参与者的利益关系和决策方式,博弈可以分为零和博弈和非零和博弈。
零和博弈指参与者的利益完全相反,一方获利即意味着另一方损失,而非零和博弈则指参与者的利益可能存在重叠或者是共同合作的情况。
4.博弈的解博弈的解是指在博弈参与者做出决策选择之后,通过某种机制确定最终的结果。
常见的博弈解包括纳什均衡、霍夫达均衡、帕累托最优等。
5.博弈论的应用博弈论在经济学、政治学、社会学等领域有着广泛的应用。
在经济学中,博弈论可以用来解释市场行为、预测价格变动等。
在政治学中,博弈论可以用来分析政治决策、议事程序等。
在社会学中,博弈论可以用来解释群体行为、合作问题等。
博弈论是一门具有重要理论意义和广泛应用价值的学科,它不仅可以帮助人们更好地理解决策制定的规律和机制,还可以为人们提供更科学的决策指导。
在日常生活中,我们可以通过学习和应用博弈论的知识,更加理性地做出决策,并更好地理解他人的选择和行为。
希望未来博弈论能够继续在各个领域发挥作用,为人类社会的进步和发展做出更大的贡献。
博弈论知识点总结完整版博弈论是数学和经济学中一个重要的分支,研究决策制度下的相互作用和决策策略。
它是通过数学模型来描述和分析不同参与者的决策行为和决策结果,并找到最优的决策策略。
下面是博弈论中的一些重要知识点的总结。
1.博弈的定义和基本概念:-博弈是指参与者在一定的规则下做出决策,并根据其他参与者的决策结果来确定自己的收益或损失。
-参与者称为博弈者,他们的决策称为策略,策略的组合称为策略组合。
-博弈可以是合作博弈或非合作博弈,合作博弈强调协作,非合作博弈强调竞争。
2.标准博弈:-标准博弈是博弈论中最基础的形式,参与者之间的策略和收益都是确定的。
-标准博弈可以是零和博弈(总收益为零)或非零和博弈(总收益不为零)。
3.纳什均衡:-纳什均衡是指在博弈中,不存在一个参与者可以通过改变自己的策略来获得更高收益的情况。
-纳什均衡是博弈论中的核心概念,它描述了博弈中的稳定状态。
-一个博弈可能有一个或多个纳什均衡,也可能没有纳什均衡。
4.基本博弈:-二人零和博弈是一种特殊的博弈,其中一个参与者的利益是另一个参与者的损失。
-石头、剪刀、布是一个典型的二人零和博弈,存在一个纳什均衡策略。
-行棋游戏如国际象棋、围棋也是二人零和博弈,但策略空间较复杂。
5.博弈理论的扩展:-广义博弈是对博弈理论的扩展,考虑了更复杂的情况,如多人博弈、不完全信息博弈等。
-多人博弈是指博弈中有多个参与者,每个参与者都会影响其他参与者的决策。
-不完全信息博弈是指博弈中参与者对其他参与者的信息是不完全的。
6.博弈论在经济学中的应用:-博弈论在经济学中有广泛的应用,如市场竞争、拍卖等。
-例如,决定定价策略的厂商可以使用博弈论来确定最优的定价策略。
-拍卖是一种常见的博弈形式,在博弈过程中参与者可以选择不同的竞标策略。
7.演化博弈:-演化博弈是博弈论的一个重要分支,研究博弈在一定的演化过程中的演化规律。
-演化博弈通过数学模型来描述和分析参与者的策略演化和演化结果。
《博弈论》知识点总结归纳《博弈论》知识点总结归纳摘要:博弈论是研究决策者之间相互影响和决策制定的数学分析工具。
本文对博弈论的基本概念、解的概念、均衡理论、博弈策略和应用等方面进行了总结归纳,以帮助读者更好地理解和应用博弈论的相关知识。
关键词:博弈论、基本概念、解的概念、均衡理论、博弈策略、应用引言博弈论是研究决策者之间相互影响和决策制定的数学分析工具,源自于经济学和数学两大学科的交叉。
博弈论在经济学、管理学、政治学、社会学、计算机科学等多个领域都有广泛的应用。
本文将对博弈论的相关知识进行详细的总结和归纳。
一、基本概念1.1 博弈博弈是指决策者之间相互影响和策略选择的过程。
博弈的基本要素包括:参与者、策略、收益和信息。
1.2 参与者参与者是指博弈中的决策者,可以是个人、团体、企业、国家等。
参与者的目标是实现自身利益的最大化。
1.3 策略策略是指参与者在博弈中所能采取的行动或选择。
通常分为纯策略和混合策略。
1.4 收益收益是指在博弈中参与者根据所选择的策略所能得到的结果或利益。
收益可以用来衡量参与者的利益大小。
1.5 信息信息是指参与者在博弈中所了解的有关其他参与者或博弈环境的信息。
信息可以分为对称信息和非对称信息。
二、解的概念2.1 均衡均衡是指在博弈中各参与者选择了策略后,没有动力再改变策略,从而达到一种稳定状态。
常见的均衡概念有纳什均衡、帕累托最优和博弈解。
2.2 纳什均衡纳什均衡是指在博弈中的一组策略选择,使得每个参与者选择的策略是对其他参与者的策略选择的最佳应对,没有动机再改变策略。
2.3 帕累托最优帕累托最优是指在博弈中的一组策略选择,使得至少有一个参与者的收益达到最大,而其他参与者的收益至少不会减小。
帕累托最优是一种资源分配的有效方式。
2.4 博弈解博弈解是指在博弈中的一组策略选择,使得没参与者都没有动力再改变策略。
博弈解往往是均衡的特殊情况。
三、均衡理论3.1 零和博弈零和博弈是一种特殊的博弈形式,即参与者的利益总和为零。
第1篇一、引言博弈论是研究具有冲突和合作的个体或群体在有限信息和资源条件下,如何通过策略选择实现自身利益最大化的理论。
自20世纪初以来,博弈论在经济学、政治学、生物学、计算机科学等领域得到了广泛应用。
本文将对博弈论的基本概念、主要模型及其应用进行总结。
二、基本概念1. 博弈:指两个或多个参与者,在一定的规则下,根据对方的策略选择自己的策略,以实现自身利益最大化的过程。
2. 策略:指参与者在博弈中采取的行动方案。
3. 利益:指参与者追求的目标。
4. 博弈结果:指所有参与者采取策略后所达到的状态。
三、主要模型1. 零和博弈:指所有参与者的利益总和为零的博弈,即一方所得即另一方所失。
2. 非零和博弈:指所有参与者的利益总和不为零的博弈。
3. 完美信息博弈:指所有参与者对其他参与者的信息都完全了解的博弈。
4. 不完美信息博弈:指至少有一个参与者对其他参与者的信息不完全了解的博弈。
5. 静态博弈:指参与者同时或依次采取策略的博弈。
6. 动态博弈:指参与者采取策略的顺序是随机的博弈。
四、应用领域1. 经济学:博弈论在经济学中的应用主要体现在市场均衡、价格竞争、企业竞争等方面。
2. 政治学:博弈论在政治学中的应用主要体现在选举、政治决策、国际关系等方面。
3. 生物学:博弈论在生物学中的应用主要体现在物种进化、社会行为、性别选择等方面。
4. 计算机科学:博弈论在计算机科学中的应用主要体现在人工智能、网络安全、算法设计等方面。
五、结论博弈论作为一种研究个体或群体在冲突和合作中实现自身利益最大化的理论,具有广泛的应用前景。
通过对博弈论的基本概念、主要模型及其应用领域的总结,我们可以更好地理解现实生活中的竞争与合作现象,为解决实际问题提供理论指导。
然而,博弈论在应用过程中仍存在一些局限性,如信息不对称、策略复杂等问题,需要进一步研究和改进。
总之,博弈论作为一种重要的理论工具,在各个领域都发挥着重要作用。
随着博弈论研究的不断深入,其在实际应用中的价值将得到进一步体现。
博弈论总结第1篇最大化自己最坏情况下的收益。
着眼于自己的收益,保证自己收益,防止风险使得自己的收益变小。
以性别之战为例子:首先你得先得到一个关于妻子和丈夫的一个收益表 1.进行假设:妻子策略:P概率看韩剧、(1-P)概率看体育丈夫策略:Q概率看韩剧、(1-Q)概率看体育 xxx子期望收益(着眼于自己的期望收益): Uw(q,p)=2PQ + 0×P(1-Q) + 0×Q(1-P) +1×(1-P)(1-Q) = 3PQ - P -Q +1 前面的系数参考收益表(妻子收益)3.妻子的最小收益可能为Q=0或Q=1(当丈夫选择Q=0时,意味着丈夫100%想看体育,妻子的收益可能为0;当Q=1时,丈夫100%想看韩剧,如果这时妻子想看体育,收益同样最小)这里只是在讨论妻子收益最小的可能性4.妻子的最坏收益为:minUw(p,q) = min(1-P,2P)5.最大化最坏收益: max(min(1-P,2P))解的:P=1/3则妻子的maxmin策略为:1/3概率选择韩剧,2/3概率选择体育。
同理得丈夫的maxmin策略为:1/3概率选择体育,2/3概率选择韩剧。
minmax策略 1.最小化对手最好情况下的收益。
是着眼于对手的收益。
还是这样的一个收益表 1.进行假设:妻子策略:P概率看韩剧、(1-P)概率看体育丈夫策略:Q概率看韩剧、(1-Q)概率看体育2.丈夫期望收益(着眼于对方的期望收益):(与maxmin不同要注意!!)Uw(q,p)=PQ + 0×P(1-Q) + 0×Q(1-P) +2×(1-P)(1-Q) = 3PQ - 2P -2Q +2前面的系数参考收益表(丈夫收益)3.妻子的最小收益可能为Q=0或Q=1(当丈夫选择Q=0时,意味着丈夫100%想看体育,如果这时妻子也想看体育,丈夫收益到2;当Q=1时,丈夫100%想看韩剧,如果这时妻子想看韩剧,收益同最大1)这里只是在讨论妻子收益最小的可能性xxx夫的最大收益为:maxUw(p,q) = max(2-2P,P) 5.最小化最好收益: min(max(1-P,2P))妻子的minmax策略:2/3概率选择韩剧,1/3概率选择体育同里丈夫为的minmax为…在零和博弈中,maxmin策略和minmax策略是等价的。
《博弈论》知识点总结归纳博弈论是研究决策者之间相互作出决策时,通过考虑对方的行动和可能的结果来进行决策的一门学科。
它主要关注对策略的选择与分析,以及对方可能的反应。
下面我们来对博弈论的知识点进行总结归纳。
1.普通博弈和扩展博弈:博弈论分为两类,即普通博弈和扩展博弈。
普通博弈是指参与者在同一时间同时做出决策的博弈,扩展博弈是指参与者在不同的时间节点上做出决策的博弈。
2.博弈的组成要素:博弈论研究的关键要素包括博弈参与者、参与者的策略、参与者的支付、参与者的效用等。
博弈论的目标是通过合理的策略选择来实现最优的支付和效用。
3.纳什均衡:纳什均衡是博弈论中一个重要的概念,指的是当每个参与者都选择了最优的策略后,没有人会改变自己的策略来获得更好的支付。
纳什均衡是博弈的稳定状态。
4.博弈的分类:根据参与者的合作与否,博弈可以分为合作博弈和非合作博弈。
合作博弈中,参与者可以通过合作与其他参与者达成协议,而非合作博弈中,参与者彼此之间没有合作关系。
5.零和博弈和非零和博弈:零和博弈是指所有参与者的支付之和为零的博弈,即一方获利就意味着其他方会损失相应的支付。
非零和博弈是指所有参与者的支付之和不为零的博弈,即所有参与者都有可能获得一定的支付。
6.博弈的解析方法:解析方法是通过分析博弈的特性和参与者的策略来研究博弈的方法。
解析方法包括主要包括支配策略法、混合策略法、最佳反应函数等。
7.博弈的策略选择:博弈论研究的核心问题之一是参与者在博弈中如何选择最优的策略。
策略选择可以通过分析博弈的收益矩阵和参与者的目标来实现。
8.博弈的应用领域:博弈论的应用十分广泛,包括经济学、政治学、生物学、社会学等多个领域。
在经济学中,博弈论被用来研究市场竞争、价格形成等问题,在政治学中,博弈论被用来分析政治决策与合作等问题。
9.孤立型博弈和重复博弈:孤立型博弈是指只进行一轮博弈的情况,参与者只能根据当下的情况来做出决策。
重复博弈是指进行多轮博弈的情况,参与者可以根据之前的决策和结果来进行策略的调整。
博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。
即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。
1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。
1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。
两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。
倘若不能,则称非合作博弈(Non-cooperative game)。
合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。
目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。
博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。
把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。
完整版)博弈论知识点总结博弈论是研究决策主体在相互作用中做出的决策以及均衡问题的学科。
该学科的研究假设包括:1)决策主体是理性的,会尽可能地最大化自己的收益;2)完全理性是共同知识;3)每个参与者都能对环境和其他参与者的行为形成正确的信念和预期。
博弈中涉及到的变量包括:参与人、行动、战略和信息。
完全信息指每个参与人都了解其他参与人的支付函数,而完美信息则指在博弈过程中,每个参与人都能观察和记忆之前的行动选择。
不完全信息则表示参与人没有完全掌握其他参与人的信息,存在不确定性因素。
博弈与传统决策的区别在于,博弈是决策主体之间的相互作用,需要考虑其他决策者的选择和效用函数。
博弈的表示形式包括战略式博弈和扩展式博弈,其中战略式博弈适用于描述不需要考虑博弈进程的完全信息静态博弈问题,而扩展式博弈则更适用于描述动态博弈问题。
与战略式博弈不同,扩展式博弈更注重参与者在博弈过程中面临的决策问题的序列结构分析,而不是仅关注博弈结果的描述。
扩展式博弈包括参与人集合、参与人的行动顺序、序列结构和参与人的支付函数等要素。
战略式博弈是一种静态模型,而扩展式博弈是一种动态模型。
博弈论可以分为合作博弈和非合作博弈,其中合作博强调团体理性、团体最优决策和效率,而非合作博弈强调个人理性和个人最优决策。
根据参与人行动先后顺序的不同,博弈可以分为静态博弈和动态博弈,后者包括先行动者获得先行动者行动信息的情况。
根据参与人对信息的掌握程度,博弈可以分为完全信息和不完全信息博弈。
根据决策主体对信息的掌握程度和行动的先后顺序,博弈可以分为完全信息静态博弈、完全信息动态博弈、不完全信息静态博弈和不完全信息动态博弈。
不同类型的博弈有不同的均衡类型和求解方法,顺序的不同也会影响均衡结果。
Hotelling价格竞争模型是一种重要的扩展式博弈,用于描述两个企业在同一市场上的价格竞争。
相对应。
占有均衡是指在博弈中存在一组参与人的战略选择,使得每个参与人都无法通过改变自己的战略来提高自己的支付。
博弈论前四章笔记整理第一章:博弈论基础概念。
- 博弈的定义与要素。
- 博弈是指在一定的规则下,多个参与者(至少两个)进行策略选择并得到相应结果(收益)的过程。
- 要素包括参与者(局中人)、策略(每个参与者可选择的行动方案)、收益(每个参与者在不同策略组合下的所得)。
例如在“囚徒困境”中,两个囚犯是参与者,坦白或不坦白是他们的策略,不同策略组合下的刑期长短就是收益。
- 博弈的分类。
- 按参与者数量可分为两人博弈和多人博弈。
- 按策略空间是否有限分为有限博弈和无限博弈。
如猜硬币是有限博弈(正面或反面两种策略),企业的产量竞争(产量可在一定范围内连续取值)可能是无限博弈。
- 按收益情况分为零和博弈(一方的收益就是另一方的损失,总和为零,如赌博)、常和博弈(收益总和为常数)和非零和博弈(收益总和不为零,如企业合作共同开拓市场,双方都可能获利)。
第二章:完全信息静态博弈。
- 策略式表述(标准式表述)- 通常用一个矩阵来表示,行代表一个参与者的策略,列代表另一个参与者的策略,矩阵中的元素是对应的收益组合。
以“性别战”为例,丈夫和妻子选择看电影或看球赛,就可以构建一个2×2的收益矩阵。
- 占优策略均衡。
- 占优策略是指无论其他参与者选择什么策略,该策略都是某个参与者的最优策略。
如果每个参与者都有占优策略,那么由这些占优策略组成的策略组合就是占优策略均衡。
例如在“囚徒困境”中,每个囚徒的占优策略都是坦白,所以(坦白,坦白)是占优策略均衡。
- 纳什均衡。
- 纳什均衡是指在一个策略组合中,每个参与者的策略都是对其他参与者策略的最优反应。
即给定其他参与者的策略,没有参与者有动机单方面改变自己的策略。
与占优策略均衡不同,纳什均衡并不要求每个参与者都有占优策略。
例如在“性别战”中,(看电影,看电影)和(看球赛,看球赛)都是纳什均衡。
第三章:完全信息动态博弈。
- 扩展式表述。
- 包括博弈树的构建,节点表示参与者的决策点,树枝表示可选择的策略,终端节点表示博弈的结果并标有相应的收益。
博弈论知识总结博弈论概述:1、博弈论概念:博弈论:就是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题。
博弈论研究的假设:1、决策主体是理性的,最大化自己的收益。
2、完全理性是共同知识3、每个参与人被假定为可以对所处环境以及其他参与者的行为形成正确的信念与预期2、和博弈有关的变量:博弈参与人:博弈中选择行动以最大化自己受益的决策主体。
行动:参与人的决策选择战略:参与人的行动规则,即事件与决策主体行动之间的映射,也是参与人行动的规则。
信息:参与人在博弈中的知识,尤其是其他决策主体的战略、收益、类型(不完全信息) 等的信息。
完全信息:每个参与人对其他参与人的支付函数有准确的了解;完美信息:在博弈过程的任何时点每个参与人都能观察并记忆之前各局中人所选择的行动,否则为不完美信息。
不完全信息:参与人没有完全掌握其他参与人的特征、战略空间及支付函数等信息,即存在着有关其他参与人的不确定性因素。
支付:决策主体在博弈中的收益。
在博弈中支付是所有决策主题所选择的行动的函数。
从经济学的角度讲,博弈是决策主体之间的相互作用,因此和传统个人决策存在着区别:3、博弈论与传统决策的区别:1、传统微观经济学的个人决策就是在给定市场价格、消费者收入条件下,最大化自己效用,研究工具是无差异曲线。
可表示为:maxU(Pi),其中P为市场价格,I为消费者可支配收入。
2、其他消费者对个人的综合影响表示为一个参数——市场价格,所以在市场价格既定下,消费者效用只依赖于自己的收入和偏好,不用考虑其他消费者的影响。
但是在博弈论理个人效用函数还依赖于其他决策者的选择和效用函数。
4、博弈的表示形式:战略式博弈和扩展式博弈战略式博弈:是博弈问题的一种规范性描述,有时亦称标准式博弈。
战略式博弈是一种假设每个参与人仅选择一次行动或战略,并且参与人同时进行选择的决策模型,因此,从本质上来讲战略式博弈是一种静态模型,一般适用于描述不需要考虑博弈进程的完全信息静态博弈问题。
1、参与人集合{1, 2,..., n }:2、每位参与人非空的战略集S in3、每位参与人定义在战略组合1S i (s i.., Si,..., s n)上的效用函数Ui(s1,s2,…,sn).扩展式博弈:是博弈问题的一种规范性描述。
与战略式博弈侧重博弈结果的描述相比,扩展式博弈更注重对参与人在博弈过程中遇到决策问题时序列结构的分析。
包含要素:1、参与人集合{1, 2,..., n }2、参与人的行动顺序,即每个参与人在何时行动;3、序列结构:每个参与人行动时面临的决策问题,包括参与人行动时可供选择的行动方案、所了解的信息;4、参与人的支付函数。
比较:1、战略式博弈从本质上来讲是一种静态模型。
2、扩展式博弈从本质上来讲是一种动态模型。
5、博弈论分类:按决策主体的行为相互作用时,当事人能否达成一个具有约束力的协议可分为:1、合作博弈(强调团体理性、团体最优决策、效率)2、非合作博弈(强调个人理性,个人最优决策) 按参与人行动先后顺序可分为:1、静态博弈:博弈中参与人同时行动,或者虽然不是同时行动,但是在行动前不知道其他参与人所选择的行动。
2、动态博弈:参与人的行动有先后顺序,后行动者获得先行动者的行动信息。
按参与人对信息的掌握程度可分为:1、完全信息:每个参与人对其他所有参与人的特征、战略空间及支付函数有精确的了解,博弈开始时不存在不确定性因素。
2、不完全信息:参与人没有完全掌握其他参与人的特征、战略空间及支付函数等信息,即存在着有关其他参与人的不确定性因素。
按决策主体对信息的掌握程度和行动的先后顺序,博弈可以分为:完全信息静态博弈、完全信息动态博弈、不完全信息静态博弈、不完全信息动态博弈。
6、根据所学这四种博弈的特点对这四种博弈做一个对比分析:二、四种博弈类型具体分述1完全信息静态博弈1.1完全信息静态博弈特点:每个参与人对其他所有参与人的特征、战略空间及支付函数有精确的了解,博弈开始时不存在不确定性因素,参与人同时行动或者不是同时行动但是后行动者不知道行动者的行动信息。
战略和行动相同。
1.2 完全信静态博弈相关概念:以新产品开发博弈举例说明:参与人:参与人1 和2。
参与人的集合卡表示为:r ={1,2, --n}•表示所有参与人的集合,在新产品开发博弈中为:r ={1,2}行动 :开发、不开发。
Ai 表示参与人行动的集合。
新产品开发博弈中参与人的行动集合为 A1=A2={a,b},其中a为开发, b 为不开发。
a={a1,a2・・an}表示参与人的行动组合。
新产品开发博弈中为: A={ ( a,a ) ,(a,b),(b,a),(b,b)} 战略 :参与人的行动规则。
在博弈中的战略可以定义为从观测集到行动集的映射关系,即: Si:X — Ai 。
用Si={si}表示参与人所有战略的集合。
在n 人博弈中,用S=(S i ,S 2,S 3-,S n )表示n 个参与人的战略组合,它表示博弈中每个参与 人采取战略 si 的一种博弈情形。
在完全信息静态博弈中,由于不存在决策时序上的差异,所有参与人在同一决策时点即 博弈开始的那一时刻决策,因此,所有参与人面临的决策情形都只有一种, 所以, 参与人的战略集与行动集相同。
支付 :是指参与人在博弈中的所得。
一般情况下也是用效用函数来表示参与人在博弈中 的所得。
因此, 参与人的支付就可表示为一种特定博弈情形下参与人得到的确定效用水平或 期望效用水平。
支付一般用ui(1,2,…,n)表示参与人i 的支付(效用水平),支付组合u=(u1,u2「un) 表示参与人在特定博弈情形下所得到的支付,其中为参与人i 的支付。
因此,参与人i=(i=1,2,…,n)的支付就可表示为: ui=ui(s i ,s-i ).信息 :是参与人所具有的有关博弈的所有知识,如有关其它参与人行动或战略的知识、 有关参与人支付的知识等等。
在“新产品开发博弈”中,如果两个企业都知道市场需求,那 么这样的博弈情形就是我们前面所提到的完全信息假设; 如果两个企业中至少有一个不知道 市场需求,那么这样的博弈情形就是我们前面所提到的不完全信息假设。
1.3纯战略纳什均衡纯战略 :参与人在给定信息下只选择一种特定(或确定性)的战略 混合战略: 混合战略解释了一个参与人对其他参与人所采取的行动的不确定性, 它描述了参与人在给定信息下以某种概率分布随机地选择不同的行动或战略。
纯战略纳什均衡中包括:占有均衡、重复剔除劣战略均衡、一般纯战略纳什均衡等。
1 、占优均衡占优战略:参与人的最优战略si *与其他参与人的选择 s -i 无关。
无论其他参与人选择什 么战略,参与人的最优战略总是唯一的,这样的最优战略称之为“占优战略”。
在n 人博弈中,如果对于所有的其他参与人的选择s -i , si *都是参与人i 的最优选择*u i (s i *,s i ) u i (s i ,s i )则称 si *为参与人的占优战略。
在 n 人博弈中, 如果对所有参与人都存在占优战略 si *,则占优战略组合 si*=(s1 * si2*, …, sn *)称为占优战略均衡。
如果所有参与人都有占优战略存在,那么占优战略均衡就是唯一 的所有理性参与人可以预测到的博弈结果。
2、重复剔除劣战略 如果在一个博弈中,参与人不存在占优战略,但是参与人 i 存在两个战略,其中一u i (s i ,s i ) u i (s i ,s i )个战略叫另一个战略的所得效用要大,则理性的参与人绝对不会选择战略。
严格劣战略 :u i (s i ,s i ) u i (s i ,s i )u(s i ,s i ) u i (s i ,s i )弱劣战略 :若重复剔除过程一直可持续到只剩下唯一的战略组合,则该战略组合即为重复剔除 的占优均衡,此时该博弈是重复剔除战略可解。
要点:再重复剔除过程中,如果每次剔除的是严格劣战略,均衡结果与剔除顺序无关;如果剔除的是弱劣战略,均衡结果可能与剔除顺序有关。
3、一般Nash 均衡Nash均衡是完全信息静态博弈的解的概念,在完全信息静态博弈中,构成Nash均衡的战略是不可剔除的,即不存在任何一个战略严格优于Nash均衡战略。
求解纳什均衡的方法划线法、箭头法。
划线法:1、考察参与人1 的最优战略2、用上述方法找出参与人2 的最优战略3、找出最优战略组合箭头法:1、对于每个战略组合,检查是否有参与人会偏离这个战略组合2、直至找出没有参与人会偏离的战略组合纯战略均衡反映函数:各博弈方选择的纯策略对其他博弈方纯策略的反应。
1.4 混合战略纳什均衡混合战略:在博弈G { ;S1,...,S n;u1,...,u n}中,对任一参与人i,设Si={S i1,…,S i k},则参与人i的一个混合战略为定义在战略集Si上的一个概率分布3 i={ S i 1,…,S i k},其中S i j(j=1,…,k )表示参与人i选择战略表示参与人i选择战略S"的概率的概率,即S i J 满足O WS i j W 1,其中概率之和为1。
支付:混合战略的支付为各种概率下收益的加权平均。
混合战略纳什均衡:在博弈G { ;s,…,S n;U1,…,U n}中,混合战略组合S i={ S 1*,…,S n*}为一个Nash 均衡。
当且仅当i , i i,有V i( ;, *i) v( i, *i)。
混合战略Nash 均衡的求解:1. 支付最大化法;2. 支付等值法;混合战略均衡反映函数:在混合策略的范畴内,博弈方的决策是选择概率分布,因此, 反应函数就是一方对另一方选择的概率分布的反应。
聚点均衡:在现实生活中, 参与人可能使用某些被博弈模型抽象掉的信息来达到一个“聚点” 均衡。
这些信息可能与社会文化习惯、参与人过去博弈的历史有关。
不同均衡概念之间的关系:占优均衡<重复剔除劣战略均衡<纯战略纳什均衡<混合战略纳什均衡1.5 纳什均衡的多重性与存在性存在性:每个有限战略式博弈(参与人与相应的战略集均为有限) 必存在纳什均衡,这个均衡可能是纯战略纳什均衡,也可能是混合战略纳什均衡。
多重性:一个博弈可能有多个均衡, 博弈论并没有一个一般的理论证明, 哪一个纳什均衡结果一定能出现。
2、完全信息动态博弈2.1 完全信息动态博弈特点:在博弈开始之前参与人之间的信息不存在不确定性,但是参与人行动存在先后顺序。
在完全信息动态博弈中,为了表示参与人之间的信息掌握关系,引入了信息及的概念。
2.2 完全信息动态博弈有关概念:信息集:信息集I i 是参与人i 决策结的一个集合,它满足以下两个条件:1、I i中的每个决策结都是参与人i的决策结;2、当博弈到达I i 时,参与人i 知道自己处在该信息集中的某个决策结,但不知道是哪一个。