信号与系统1—信号的函数表示与系统分析方法
- 格式:pdf
- 大小:150.04 KB
- 文档页数:8
信号与系统分析在现代科学技术领域中,信号与系统分析是一门重要的学科。
它主要研究信号以及信号在系统中的传输和处理过程。
本文将从信号与系统的基本概念、数学模型、频域分析以及实际应用等方面对信号与系统进行分析。
一、信号与系统的基本概念1.1 信号的定义与分类信号是指随时间、空间或其他自变量的变化而变化的物理量。
根据信号的特征和性质,可以将信号分为连续时间信号和离散时间信号。
连续时间信号是在连续时间内取值的信号,例如模拟音频信号;离散时间信号是在离散时间点上取值的信号,例如数字音频信号。
1.2 系统的定义与分类系统是指对信号进行处理或者传输的设备或物理构造。
根据系统的输入和输出形式,可以将系统分为线性系统和非线性系统。
线性系统满足加法性和齐次性的特性,而非线性系统则不满足。
二、信号与系统的数学模型2.1 连续时间信号模型连续时间信号可以用连续函数来描述。
常见的连续时间信号模型有周期函数、指数函数和三角函数等。
在实际应用中,还可以利用微分方程来描述连续时间信号与系统之间的关系。
2.2 离散时间信号模型离散时间信号可以用序列来表示。
序列是由离散的采样点构成的数列。
常见的离散时间信号模型有单位样值序列、周期序列和随机序列等。
在实际应用中,离散时间信号与系统之间可以通过差分方程进行建模。
三、频域分析频域分析是对信号在频域上的特性进行分析的方法。
通过将信号从时域转换到频域,可以更加清晰地观察信号的频率成分及其变化规律。
常见的频域分析方法有傅里叶变换、拉普拉斯变换和Z变换等。
3.1 傅里叶变换傅里叶变换是将一个信号在频域上进行表示的方法。
它可以将信号分解成一系列的正弦函数或者复指数函数的组合。
傅里叶变换广泛应用于信号的频谱分析、滤波器设计以及通信系统等领域。
3.2 拉普拉斯变换拉普拉斯变换是对信号在复域上的频域表示。
它具有傅里叶变换的扩展性质,可以处理更加一般的信号和系统。
拉普拉斯变换在控制系统分析和设计、电路分析以及信号处理等方面有重要应用。
信号与系统(2013年上海交通大学出版社出版的图书):
《信号与系统》是2013年上海交通大学出版社出版的图书,作者是胡光锐、徐昌庆。
内容简介:
本书主要参照了1995年出版的《信号与系统》(上海交通大学出版社)教材,吸收了众多国内外同类教材的精华,除了保留传统的内容,即确定性信号经线性非时变系统传输与处理的基本概念与基本分析方法以外,增加了小波与小波分析方面的最基本内容。
这是对信号与系统教材编写的改革初探,旨在使本课程的教学内容能够适应快速发展的信息科学与技术需要。
目录:
第1章信号的函数表示与系统分析方法
第2章连续时间系统的时域分析
第3章离散时间系统的时域分析
第4章连续信号的傅里叶分析
第5章连续时间系统的频域分析
第6章离散时间信号与系统的傅里叶分析
第7章小波与小波分析
第8章拉普拉斯变换及连续时间系统的复频域分析
第9章z变换与离散时间系统的z域分析
第10章状态方程与状态变量分析法
附录A常用函数卷积积分表
附录B常用等比级数求和公式表
附录C卷积和表
附录D常用周期信号傅里叶系数表
附录E常用信号的傅里叶变换表
附录F拉普拉斯反变换表
附录G常用离散信号的z变换表
附录H利用小波方法对信号进行分解、压缩与重构处理的MATLAB脚本。
信号与系统重点概念公式总结一、信号的基本概念:1.离散信号:在离散时间点上取值的信号,用x[n]表示。
2.连续信号:在连续时间上取值的信号,用x(t)表示。
3.周期信号:在一定时间内重复出现的信号。
4.能量信号:能量信号的能量有限,用E表示。
5.功率信号:功率信号的能量无限,用P表示。
二、时域分析:1. 时域表示:x(t) = X(t)eiωt,其中X(t)是振幅函数,ω是角频率。
2.常用信号的时域表示:- 矩形脉冲信号:rect(t/T)- 三角函数信号:acos(ωt + φ)-单位跳跃信号:u(t)-单位斜坡信号:r(t)3.信号的分解与合成:线性时不变系统能够将一个信号分解为若干个基础信号的线性组合。
4.性质:-时域平移性:如果x(t)的拉普拉斯变换是X(s),那么x(t-t0)的拉普拉斯变换是e^(-t0s)X(s)。
-线性性:设输入信号的拉普拉斯变换为X(s),系统的拉普拉斯变换表达式为H(s),那么输出为Y(s)=X(s)H(s)。
-倍乘性:设输入信号拉普拉斯变换为X(s),输出信号的拉普拉斯变换为Y(s),那么输出信号的拉普拉斯变换为cX(s),即输出信号的幅度放大为c倍。
-时间反转性:x(-t)的拉普拉斯变换是X(-s)。
-时间抽取性:设输入信号的拉普拉斯变换为X(s),那么调整时间尺度为t/T的信号的拉普拉斯变换为X(s/T)。
三、频域分析:1.傅里叶级数:将周期信号表示为一系列谐波的和。
2.离散傅里叶变换(DFT):将离散信号从时域变换到频域的过程。
3.傅里叶变换:将连续信号从时域变换到频域的过程。
4.频域表示:- 矩形函数:sinc(ωt) = sin(πωt)/(πωt)- 高斯函数:ft(x) = e^(-πx^2)5.频域滤波:系统的传输函数是H(ω),那么输出信号的频率表示为Y(ω)=X(ω)H(ω)。
四、信号与系统的系统分析:1.系统稳定性:-意义:系统稳定指的是当输入有界时,输出有界。
信号与系统面试题一、信号与系统的基本概念和性质信号与系统是电子与通信工程领域中重要的基础课程,涉及到信号的表示、处理与传输以及系统的分析与设计等方面。
下面将从信号与系统的基本概念和性质进行论述。
1. 信号的定义和分类信号是指随时间、空间或其他独立变量的变化而变化的物理量,用于携带信息。
信号可以分为连续信号和离散信号两类。
连续信号在时间和幅度上都是连续变化的,例如音频信号、视频信号等;离散信号在时间和幅度上都是离散的,例如数字音频、数字图像等。
2. 基本信号的表示与表示方法常见的基本信号包括冲激信号、阶跃信号、正弦信号等。
冲激信号是一种时间间隔极短、幅度无穷大的信号;阶跃信号在时间t=0时突变,从0瞬间跳变到某个确定值;正弦信号是一种周期为T的、幅度恒定的信号。
这些基本信号可以通过数学函数进行表示,如单位阶跃函数、单位冲激函数、正弦函数等。
3. 系统的定义和分类系统是指对信号进行处理的一种设备或方法。
根据处理方式的不同,系统可以分为线性系统和非线性系统。
线性系统具备叠加性和齐次性的特点,即输入和输出之间满足叠加原理和比例原理;非线性系统则不满足这两个性质。
4. 信号与系统的性质信号与系统具有多种性质,包括可加性、时移性、幅度缩放性、时域抽样性、频域抽样性等。
可加性表示系统对两个输入信号的响应等于单独输入两个信号的响应之和;时移性表示信号的延迟或提前不会影响系统的响应;幅度缩放性表示输入信号按照一定比例进行放大或缩小,输出信号也会按照相同的比例进行放大或缩小。
二、常见的信号与系统分析方法信号与系统的分析方法是研究信号与系统行为与性质的关键。
下面将介绍一些常见的信号与系统分析方法。
1. 时域分析方法时域分析方法主要通过观察信号在时间域上的变化进行分析。
其中,时域响应表示系统对输入信号的响应在时间上的变化情况;卷积表示两个信号之间的运算关系,描述了输入信号经过系统处理后得到的输出信号;相关性分析用于衡量两个信号之间的相似度和相关性。
【课程信息】课程名称:信号与系统课程编码:任课教师:王秀贞【录入】王秀贞【章节】第一章信号的函数表示与系统分析方法【知识点】1、信号的函数表示说明:连续函数和奇异函数、信号分解2、系统数学模型说明:系统性质【单选题】1、f (5-2t )是如下运算的结果( )。
A .f (-2t )右移5B .f (-2t )左移5C .f (-2t )右移25D .f (-2t )左移25答案:C难度:1分值:2知识点:1【判断题】1.偶函数加上直流后仍为偶函数。
( )答案:T2. 不同的系统具有不同的数学模型。
( )答案:F3. 任何信号都可以分解为偶分量与奇分量之和。
( )答案:T4.奇谐函数一定是奇函数。
( )答案:T【简答题】1.信号、信息与消息的差别?答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.单位冲激信号的物理意义及其取样性质?答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。
它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰【录入】王秀贞【章节】第二章连续时间系统的时域分析【知识点】【单选题】1.系统微分方程式),()(),(2)(2)(t u t x t x t y dtt dy ==+若 34)0(=-y ,解得完全响应y (t )=)0(,1312≥+-t e t 当 则零输入响应分量为 ( )。
A .t e 231-B .21133t e --C .te 234-D .12+--t e答案:C难度:1分值:2知识点:12.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ()。