复旦大学(微电子)半导体器件第五章PN结
- 格式:ppt
- 大小:1.92 MB
- 文档页数:32
第五章结•平衡态PN结;•PN结的伏安特性;•PN结的电容;•PN结的击穿特性;•PN结二极管的开关特性;•金-半肖特基接触和欧姆接触;•异质结:半导体器件的基本结构-PN结、金半结和异质结PN结空间电荷区•由于PN结两边载流子浓度不同造成载流子扩散运动,载流子扩散的结果在结附近出现了空间电荷区,该区域内电离施主和受主杂质的浓度远大于载流子浓度,有电离杂质产生的自建电场,阻止载流子进一步扩散。
•在空间电荷的区内有载流子的漂移流和扩散流,平衡情况下净电流为零。
平衡PN结能带图•空间电荷区内部各点不是电中性,但是整个空间电荷区正负电荷相等;•空间电荷区的电场使PN结两边出现电势差;•热平衡情况下费米能级保持水平;•空间电荷区以外均匀掺杂,是电中性区。
在该区域:导带、价带和费米能级之间的相对位置保持原样。
注意:P区电子的势能高于N区,空穴的势能正好相反,电势N区高于P。
⎟⎠⎞⎜⎝⎛−=T k qV p p B D p n exp 00⎟⎠⎞⎜⎝⎛−=T k qV n n B D n p exp 000exp F V V B E E p N k T ⎛⎞−=−⎜⎟⎝⎠0exp C F C B E E n N k T ⎛⎞−=−⎜⎟⎝⎠2l n B D ADik T N NVq n =正向电压下的窄势垒模型•势垒区(空间电荷区)很窄,势垒区两边边界处电子准费米能级保持水平;•势垒区以外的非平衡载流子扩散复合区由于非平衡载流子复合减少逐步趋于平衡,准费米能级趋向平衡费米能级。
该区域内非平衡少数载流子准费米能级变化大而非平衡多数载流子准费米能级变化很小。
从何入手计算伏安特性•假设理想情况包括:低掺杂的突变结、忽略势垒区复合、外加电压全部加在势垒区、小注入。
•因为外电压全部加在势垒区,所以选择势垒区边界计算电流。
•势垒边界的少子和多子都有扩散流和漂移流,非平衡少数载流子的漂移流非常小可以忽略。
•在忽略势垒区复合的情况下,势垒两边的非平衡少数载流子的扩散电流相加就是总电流。
pn结的形成原理
1 什么是 pn 结
PN 结是一种构造于两种不同材料之间的半导体器件。
PN结由一种掺有三价杂质的半导体(如硼掺入硅)和一种掺有五价杂质的半导体(如磷掺入硅)组成。
当它们被熔合在一起时,掺杂的材料会互相扩散,形成一个电势降和电场。
2 PN 结的形成原理
半导体中的掺杂,可以有效地改变其导电性质。
在半导体中,掺
入三价杂质如硼可以形成电子空位,形成类似于p型材料的区域,称
为p区;掺入五价杂质如磷可以形成多余的电子,形成n型材料的区域,称为n区。
当一个p区和一个n区接触,原来分布于两个区域中的自由电子
和空穴会相互扩散,形成一个电势降和电场。
电子从n区移动到p区,空穴从p区移动到n区,大部分通过复合相互消失,少部分在pn结中
留下尘埃,产生电流。
PN结具有导电性和单向性。
当PN结处于正向电压时,如p区为正电,n区为负电,自由电子从n区向p区扩散,空穴从p区向n区扩散,使得PN结的电流变大,这称为正向电压。
如果PN结处于反向电压时,如p区为负电,n区为正电,此时自
由电子受到PN结场的吸引,移向n区,空穴移向p区。
由于电子与空
穴相互扩散后,在受到PN结场的阻抗下变得微不足道,所以反向电压
条件下,PN结不导电,这称为反向电压。
3 PN 结的应用
PN结是半导体器件中最基本的构件之一,它有许多应用,例如用
于制造二极管、晶体管和场效应晶体管等器件。
PN结还可以作为太阳
电池和CMOS象元等集成电路器件中的基本单元。
在现代光电子技术中,PN结也常被用作光检测器或光电转换器件,将光子能量转换成电子能量。
半导体物理学中的pn结半导体物理学是研究半导体材料和器件的特性及其应用的科学领域。
而其中一个核心概念便是pn结,它是一种半导体器件中常见的结构。
本文将介绍pn结的基本原理、特性和应用。
一、pn结的构成pn结由p型半导体和n型半导体直接接触形成。
p型半导体是掺入了三价杂质的半导体,如掺入硼或铝,带有多余的电子空穴。
n型半导体则是掺入了五价杂质的半导体,如掺入砷或磷,带有过剩的自由电子。
当这两种半导体相结合时,空穴和自由电子会通过碰撞重组,形成一个带电的区域,即结区。
二、pn结的工作原理在pn结中,有两个关键区域:n端和p端。
n端富含自由电子,而p端则富含电子空穴。
由于电荷差异,电子和空穴会相互扩散到对方的区域,形成漂移电流。
同时,当电子和空穴通过重组而消失时,会形成一个正电荷层和一个负电荷层。
这就是常说的耗尽区。
在平衡状态下,耗尽区的正电荷层和负电荷层正好平衡,称为开路状态。
而当外加电压施加在pn结上时,会改变耗尽区的电荷分布。
当施加的电压为正向偏置时,p端连接的电源的正极与n端连接的电源的负极,会加大耗尽区的宽度,减小耗尽区正负电荷层的高度,这就形成了导通状态。
反过来,当施加的电压为反向偏置时,p端连接的电源的负极与n端连接的电源的正极,会增大耗尽区的宽度和正负电荷层的高度,这就形成了截止状态。
三、pn结的特性1. 双向导电性:pn结在正向偏置下会导电,形成导通状态。
而在反向偏置下则会截止,不导电。
这种特性使得pn结成为一种可控制的电子器件。
2. 整流性:由于pn结的双向导电性,它可以用于整流电路。
在正向偏置下,电流可以流过pn结,而在反向偏置下则会被截止。
3. 光电效应:当光照射到pn结上时,通过光电效应,光子能量会被转化为电能。
这使得pn结广泛应用于光电器件,如太阳能电池。
四、pn结的应用1. 整流器件:如二极管和整流电路,用于将交流电转换为直流电。
2. 放大器件:如晶体管,能够放大信号,实现电子设备的放大功能。
半导体PN结的物理特性实验目的与要求1、学会用运算放大器组成电流-电压变换器的方法测量弱电流。
2、研究PN结的正向电流与电压之间的关系。
3、学习通过实验数据处理求得经验公式的方法。
实验原理PN 结的物理特性测量由半导体物理学中有关PN 结的研究,可以得出PN 结的正向电流一电压关系满足(1)式中I是通过PN 结的正向电流,I0是不随电压变化的常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降. 由于在常温(300 K)下,KT/e =0,026 V,而PN 结正向压降约为十分之几伏,则e eU/kT>>l,(1)式括号内-1 项完全可以忽略,于是有(2)即PN 结正向电流随正向电压按指数规律变化. 若测得PN 结I-U关系值,则利用(2)式可以求出e/kT. 在测得温度T 后,就可以得到e/k 常数,然后将电子电量作为已知值代入,即可求得玻尔兹曼常数k。
在实际测量中,为了提高测量玻尔兹曼常数的正确性,利用集成运算放大器组成的电流-电压变换器输人阻抗极小的特点,常用半导体三极管的集电极c与基极b短接(共基极)来代替PN结进行测量. 具体线路如图下实验仪器PN结实验仪、TIP31型三极管、恒温装置1 、直流电源和数字电压表,包括—15 V——0——+ 15V直流电源、1.5 V直流电源、0——2 V三位半数字电压表、四位半数字电压表.2、LF356 集成运算放大器,它的各引线脚如2脚、3 脚、4 脚、6 脚、7 脚由学生用棒针引线连接;待测样品TIP31型三极管的e、b、c 三电极可以从机壳右面接线柱接入3、不诱钢保温杯組合,它包括保温杯、内盛少量油的玻璃试管、搅拌器水银温度计等. (实验时,开始保温杯内为适量室温水,然后根据实验需要加一些热水,以改变槽内水的温度; 测量时应搅拌水,待槽内水温恒定时,进行测量)实验内容一、必做部分:1、在室温(保温杯加入适量的自来水,为什么?)下,测量PN结正向电流与电压的关系。
第五章半导体P-N结5.1 P-N结如果我们在一块N型半导体中的某个区域掺入P 型杂质(或在P型半导体中的某个区域掺入N型杂质)就会在半导体中形成P-N结。
大多数器件都至少有一个P-N结,半导体器件的工作特性与工作过程与P-N 结有密切关系。
集成电路中器件与器件之间的隔离大都采用反向偏置的P-N结隔离,利用P-N结的特性制作的稳压二极管,整流二极管都在电路中大量应用。
另外通过P-N结二极管的分析,我们可以建立一些基本概念,这些概念在讨论其它器件时也会用到。
分析P-N结的一些技巧也适用于其它半导体器件。
所以,理解和掌握P-N结原理和概念是学习半导体器件理论的关键。
5.2 P-N结的结构P-N结所处的位置是两种杂质的交接面,其交接面称为冶金结面。
在静态(P-N结的两端不加外电压)交界面处的净电荷为零。
为简单起见,我们首先讨论突变结的情况,突变结的特点是:每个掺杂区的杂质分布是均匀的,在结的交界面处,杂质浓度有个突然的跳变。
这种假设意味着结的交界面处电子和空穴都有较大的浓度梯度,由于浓度不同,N区的多子电子向P区扩散,P区的多子空穴向N区扩散。
如果P-N结没有外加电压,那么这种由于两边的浓度差引起的多子载流子的相向扩散过程就不会无限延续下去。
随着电子由N区向P区扩散,带正电的施主离子留在了N区;同样,随着空穴由P区向N区扩散,带负电的受主离子留在了P区。
N 区与P区的带正电的施主离子和带负电的受主离子在冶金结的附近形成了一个内建电场,电场的方向由N区指向P区。
带正电的施主离子和带负电的受主离子所在的区域叫空间电荷区。
该区中的电子和空穴在相互扩散的过程中都被复合(中和)湮灭了,不存在任何可动的电荷,所以有时也称该区为耗尽区。
在没有完成扩散之前,内建电场的建立也不会完成。
扩散过程增大了内建电场,内建电场又进一步阻止了的扩散。
载流子的扩散过程和内建电场的建立过程是同时完成的,最终达到了平衡。
值得注意的是完成这一过程所需要的时间及其短暂。
固态器件理论(5)PN结正文如果将一块P型半导体块与下图(a)中的N型半导体块接触,则结果将没有价值。
我们有两个相互接触的导电块,没有表现出独特的性能。
问题是两个单独且不同的晶体。
两个晶体块中的电子的数量与质子的数量相同。
因此,两个块都没有任何净电荷。
但是,在下图(b)中,一端为P型材料而另一端为N型材料制成的单个半导体晶体具有一些独特的性能。
P型材料具有正多数电荷载流子,空穴,它们可自由围绕晶格移动。
N型材料具有可移动的负多数载流子电子。
在结附近,N型材料电子扩散穿过结,并与P型材料中的空穴结合。
由于吸引了电子,结附近的P型材料区域带净负电荷。
由于电子离开了N型区域,因此它具有局部正电荷。
这些电荷之间的晶格薄层已经耗尽了多数载流子,因此被称为耗尽区。
成为非导电本征半导体材料。
实际上,我们几乎有一个绝缘体将导电的P和N 掺杂区分开。
(a)接触的P和N半导体块没有可利用的特性。
(b)掺有P和N型杂质的单晶形成势垒。
PN结处的电荷分离构成了势垒。
必须通过外部电压源克服该势垒,以使结导通。
结和势垒的形成发生在制造过程中。
势垒的大小取决于制造中使用的材料。
硅PN结具有比锗结更高的势垒。
PN结偏置在下图(a)中,电池的排列方式是使负极端子将电子提供给N型材料。
这些电子向结扩散。
正极端子将电子从P型半导体中移除,从而产生向结扩散的空穴。
如果电池电压足够大以克服结电势(Si中为0.6V),则N型电子和P型空穴会相互抵消。
这释放了晶格内的空间,使更多的载流子流向结。
因此,N型和P型多数载流子的电流流向结。
结点的重组使电池电流流过PN结二极管。
这种结点被称为前向偏置的。
如果电池极性如上图(b)所示相反,则多数载流子会从结点吸引到电池端子。
电池正极端子从结处吸引N型多数载流子电子。
负极端子从连接处吸引P型多数载流子,空穴。
这增加了非导电耗尽区的厚度。
没有多数载体的重组;因此,没有传导。
电池极性的这种排列称为反向偏置。
半导体器件中的PN结与晶体管原理半导体器件是当今电子技术中不可或缺的组成部分。
其中,PN结和晶体管原理是两个重要的概念,对于理解和应用半导体器件具有重要意义。
本文将从PN结的构成和特性入手,探讨其在晶体管原理中的应用。
一、PN结的构成与特性PN结是由P型半导体和N型半导体组成的结构。
P型半导体中的主要载流子是空穴,N型半导体中的主要载流子是电子。
当P型与N型半导体连接时,形成了PN结。
PN结的特性可以从以下几个方面来描述:1. 能带结构:在PN结中,由于P型和N型半导体的能带位置不同,形成了能带弯曲的情况。
在P区域,能量带中最高的占据带被空穴占据,而在N区域中,最低的导带则被电子填充。
这样,就会形成能量差,促使电子和空穴跨过能量壁垒。
2. 势垒区:PN结中由于能带的差异而形成了势垒区。
在势垒区中,空穴和电子被阻挡住,无法自由传导。
这种特性使得PN结具有单向导电的特点。
3. 正向偏置:当外加电压与PN结的势垒相反方向时,即正向偏置时,势垒会减小,减小到一定程度后,PN结就会导通,电流开始流动。
此时,空穴会从P区域流向N区域,电子则从N区域流向P区域。
4. 反向偏置:当外加电压与PN结的势垒方向相同时,即反向偏置时,势垒会增大,阻碍电流流动。
这种特性使得PN结在正常工作条件下具有斩波作用,用于电子设备中的稳压、整流、滤波等电路。
二、晶体管原理与应用晶体管是一种基于PN结的三层结构器件,由发射区、基区和集电区组成。
晶体管的工作原理是基于PN结在不同偏置情况下的特性。
晶体管可以充当放大器、开关和逻辑门等功能。
1. 放大器:当晶体管的发射区加上适当的正向偏置时,PN结的势垒会减小,使电流从发射区注入到基区。
这样,由于基区较薄,注入的小电流可以被放大为较大的电流。
因此,晶体管可以将弱信号放大,实现放大器的功能。
2. 开关:当晶体管的发射区与基区之间没有偏置时,PN结处于正常情况下,无法导通。
然而,当施加一个适当的电压到基区时,PN结会形成一个导通通道,允许电流从集电区流到发射区,实现开关的功能。