平面结构问题的有限单元法
- 格式:pptx
- 大小:519.66 KB
- 文档页数:15
有限单元法及工程应用有限单元法(Finite Element Method,FEM)是一种数值计算方法,广泛应用于工程领域。
它是一种将复杂的连续体分割为有限个简单形状的小单元,并将偏微分方程转化为代数方程求解的方法。
有限单元法通过将计算领域离散化为一个有限的单元网络,然后通过求解每个单元上的方程来得到整个计算领域的解。
这种方法在解决复杂问题上具有很大的优势,并已经在工程应用中得到广泛应用。
有限单元法在工程应用中有许多不同的方面。
以下是其中一些主要的应用领域:1. 结构力学分析:有限单元法可以用于结构的形状、变形、应力和振动等问题的分析。
通过将结构离散为有限个单元,可以准确地计算结构的应力分布和变形情况,进而评估结构的稳定性和可靠性。
这在建筑、桥梁、飞机和船舶等领域中得到广泛应用。
2. 热传导分析:有限单元法可以用于热传导问题的分析,如温度分布、热流量和热应力等。
通过建立传导方程和边界条件,可以计算不同材料和结构的热行为,进而为热处理、热设备设计和热工艺优化提供指导。
3. 流体力学分析:有限单元法可以用于求解流体力学方程,如流体流动、湍流、传质和热传递等。
通过将流体域划分为有限个单元,可以计算流速、压力和流体力学特征等。
这在空气动力学、水力学和化工工艺等领域中得到广泛应用。
4. 电磁场分析:有限单元法可以用于求解静电场、磁场和电磁波等问题。
通过建立电磁方程和边界条件,可以计算电场、磁场和电磁波的分布和特性。
这在电力系统、电子器件和电磁辐射等领域中得到广泛应用。
5. 生物医学工程:有限单元法可以应用于生物医学领域的各种问题,如骨骼力学、组织力学、生物电流和生物传递等。
通过对生物体或医学设备建立有限元模型,可以模拟和预测生物体的行为和反应,为生物医学研究和医学工程设计提供指导。
以上只是有限单元法在工程应用中的一部分方面。
由于其灵活性和适用性,有限单元法被广泛应用于各种工程领域,为工程师提供了一种有效的工具来解决现实世界中的复杂问题。
有限元方法的发展及应用1 有限元法介绍1.1 有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它是起源于20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。
有限元法的基本思想是将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。
1.2 有限元法优缺点有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容易编程、成熟的大型商用软件较多等优点。
(1)概念浅显,容易掌握,可以在不同理论层面上建立起对有限元法的理解,既可以通过非常直观的物理解释来理解,也可以建立基于严格的数学理论分析。
(2)有很强的适用性,应用范围极其广泛。
它不仅能成功地处理线性弹性力学问题、费均质材料、各向异性材料、非线性应立-应变关系、大变形问题、动力学问题已及复杂非线性边界条件等问题,而且随着其基本理论和方法的逐步完善和改进,能成功地用来求解如热传导、流体力学、电磁场等领域的各类线性、非线性问题。
他几乎适用于求解所有的连续介质和场问题,以至于目前开始向纳米量级的分子动力学渗透。
(3)有限元法采用矩阵形式表达,便于编制计算机软件。
这样,不仅可以充分利用高速计算机所提供的方便,使问题得以快速求解,而且可以使求解问题的方法规范化、软件商业化,为有限元法推广和应用奠定了良好的基础。
结构力学的有限单元法——柔度矩阵法.naHuaPa0KeJjYuSjChana结构力学的有限单元法口丁学兴摘要:本文以实例介绍了与电子计算机性能相适应的力学模型:柔度矩阵法,实现了结构设计的程序化.有限单元法描述了与数字电子计算机逻辑性能相适应的力学模型.实现了部件设计的最优化.1.有限单元法应用范围:有限单元法不但适用于土木工程分析领域,也适用于国防和船舶等工程的分析领域.另外,还可以解决热传导和液流等方面的问题.2.有限单元法在工程设计中的常用法,包括:柔度矩阵法,刚度矩法和刚度集合法.3.应用结构力学的有限单元法应满足三个条件:A.平衡条件:荷载与杆端力平衡;B.相容条件:节点位移和杆端变形必须满足几何相容条件;C.物理条件:必须符合广义的虎克定律.4柔度矩阵法在结构设计中的应用:柔度矩阵法就是找出荷载,与其和杆端力,杆端变形,节点位移之间的关系,从而导出柔度矩阵.下面以图所示的悬臂梁为例,来说明柔度矩阵法的原理及计算步骤:(1)根据叠加原理建立线性议程组:如图所示悬臂梁.在一一一荷载作用下产生变形,其变形曲线如虚线所示,用A表示广义力,用D表示广义变位,根据叠加原理建立下列线性方程组:D1=FDz=F式中1A1+1A1+F11,12A222A212,F柔度矩阵法(2)求杆端力(荷载)与杆端变形的变换矩阵.[F~F1.1FI2]A_[]则D=FA (2)式中D为位移矩阵F为柔度矩阵A为荷载矩阵(3)代入初始数据求出杆端挠度和转角.由结构力学得出:Fn=1./3EJFzz=1/EJFI2=FzI=1/2EJ.一[:.1厄2/E][AA:I]当A1=2A:2EJ=31—2时.L22/2x3322/3L2JrL2/32/3]J.JF2]F8/9x2+2/3x2]F16/9+4/3]I-28/9"]FD1]L23一L2/3x2+2/3x2jL4,3+4,3jL8/3JLD2j即D1=28/9(挠度)D:8/3(转角)其计算结果与经典力学计算结果是一致的.经典力学的计算只能用人工进行.有限单元法可以通过数组的形式输入电子计算机,通过计算输出优化的结果, 所以本法具有广阔的发展前景.参考文献1.结构和连续力学中的有限单元法2.结构计算和程序设计(作者单位:萍乡市建筑设计院)0数系度柔称简数系影度一柔一为一¨F,●I,Jh2。
结构力学第六章平面应力问题的有限单元法引言平面应力问题是结构力学中的重要内容之一。
为了求解这类问题,目前广泛应用的方法之一是有限元方法。
有限元方法通过将复杂的问题离散为多个简单的有限元单元,在每个单元上进行计算,最后得到整个问题的近似解。
本文将介绍平面应力问题的有限单元法的基本原理,并讨论其在结构力学中的应用。
有限单元法概述有限单元法是一种通过将连续问题离散为有限数量的简单单元,再通过求解这些单元的位移和应力来近似求解原始问题的方法。
在平面应力问题中,我们通常将结构物在平面上分割为多个有限单元,并在每个单元上进行力学分析。
有限单元法的基本思想是,先在每个单元上假设位移场的近似形式,然后将位移场的近似形式与力学原理相结合,得到每个单元上的平衡方程。
通过求解这些平衡方程,我们可以得到每个单元上的位移场和应力场。
在有限元分析中,我们通常选择线性三角形单元或矩形单元作为平面应力问题的有限单元。
这些单元通常具有简单的几何形状和计算形式,便于计算机求解。
平面应力问题的有限单元法步骤平面应力问题的有限单元法通常包括以下几个步骤:1.离散化 - 将结构物划分为多个有限单元。
在平面应力问题中,我们通常选择三角形或矩形作为单元。
2.选取近似函数 - 在每个单元上选择位移场的近似函数形式,通常选择多项式形式。
3.建立单元刚度矩阵 - 通过应用平衡方程和力学原理,建立每个单元上的刚度矩阵。
4.组装总刚度矩阵 - 将所有单元的刚度矩阵组装成总刚度矩阵。
要注意,由于每个单元的自由度不同,需要将刚度矩阵根据单元的连接关系进行组装。
5.施加边界条件 - 根据实际情况,对总刚度矩阵和载荷向量进行修正,将边界条件考虑在内。
6.求解位移场 - 通过求解线性代数方程组,得到每个单元上的位移场。
7.计算应力场 - 根据位移场,计算每个单元上的应力场。
应用案例为了进一步说明平面应力问题的有限单元法的应用,以下是一个简单的应用案例。
假设有一块矩形薄板,长为L,宽为W。
有限单元法有限单元法,是一种有效解决数学问题的解题方法。
其基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
内容简述在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。