平面问题有限单元法
- 格式:ppt
- 大小:1.33 MB
- 文档页数:107
结构力学第六章平面应力问题的有限单元法引言平面应力问题是结构力学中的重要内容之一。
为了求解这类问题,目前广泛应用的方法之一是有限元方法。
有限元方法通过将复杂的问题离散为多个简单的有限元单元,在每个单元上进行计算,最后得到整个问题的近似解。
本文将介绍平面应力问题的有限单元法的基本原理,并讨论其在结构力学中的应用。
有限单元法概述有限单元法是一种通过将连续问题离散为有限数量的简单单元,再通过求解这些单元的位移和应力来近似求解原始问题的方法。
在平面应力问题中,我们通常将结构物在平面上分割为多个有限单元,并在每个单元上进行力学分析。
有限单元法的基本思想是,先在每个单元上假设位移场的近似形式,然后将位移场的近似形式与力学原理相结合,得到每个单元上的平衡方程。
通过求解这些平衡方程,我们可以得到每个单元上的位移场和应力场。
在有限元分析中,我们通常选择线性三角形单元或矩形单元作为平面应力问题的有限单元。
这些单元通常具有简单的几何形状和计算形式,便于计算机求解。
平面应力问题的有限单元法步骤平面应力问题的有限单元法通常包括以下几个步骤:1.离散化 - 将结构物划分为多个有限单元。
在平面应力问题中,我们通常选择三角形或矩形作为单元。
2.选取近似函数 - 在每个单元上选择位移场的近似函数形式,通常选择多项式形式。
3.建立单元刚度矩阵 - 通过应用平衡方程和力学原理,建立每个单元上的刚度矩阵。
4.组装总刚度矩阵 - 将所有单元的刚度矩阵组装成总刚度矩阵。
要注意,由于每个单元的自由度不同,需要将刚度矩阵根据单元的连接关系进行组装。
5.施加边界条件 - 根据实际情况,对总刚度矩阵和载荷向量进行修正,将边界条件考虑在内。
6.求解位移场 - 通过求解线性代数方程组,得到每个单元上的位移场。
7.计算应力场 - 根据位移场,计算每个单元上的应力场。
应用案例为了进一步说明平面应力问题的有限单元法的应用,以下是一个简单的应用案例。
假设有一块矩形薄板,长为L,宽为W。
第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。
一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。
在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。
即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。
构造位移函数的方法是:以结点(i,j,m)为定点。
以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。
在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。
将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。