2013年高考物理二轮典型例题讲解(知识点归纳+例题)专题8磁场课件
- 格式:ppt
- 大小:5.40 MB
- 文档页数:110
可编辑修改精选全文完整版磁场典型例题解析一、磁场与安培力的计算【例题1】两根无限长的平行直导线a 、b 相距40cm ,通过电流的大小都是3.0A ,方向相反。
试求位于两根导线之间且在两导线所在平面内的、与a 导线相距10cm 的P 点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。
解题过程从略。
【答案】大小为×10−6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I 的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。
因为θ → 0(在图9-10中,为了说明问题,θ被夸大了),弧形导体可视为直导体,其受到的安培力F = BIL ,其两端受到的张力设为T ,则T 的合力ΣT = 2Tsin 2θ再根据平衡方程和极限xxsin lim0x →= 0 ,即可求解T 。
方法二:隔离线圈的一半,根据弯曲导体求安培力的定式和平衡方程即可求解…【答案】BIR 。
〖说明〗如果安培力不是背离圆心而是指向圆心,内张力的方向也随之反向,但大小不会变。
〖学员思考〗如果圆环的电流是由于环上的带正电物质顺时针旋转而成(磁场仍然是进去的),且已知单位长度的电量为λ、环的角速度ω、环的总质量为M ,其它条件不变,再求环的内张力。
〖提示〗此时环的张力由两部分引起:①安培力,②离心力。
前者的计算上面已经得出(此处I = ωπλ•π/2R 2 = ωλR ),T 1 = B ωλR 2 ;后者的计算必须..应用图9-10的思想,只是F 变成了离心力,方程 2T 2 sin 2θ =πθ2M ω2R ,即T 2 =πω2R M 2 。
〖答〗B ωλR 2 + πω2R M 2 。
【例题3】如图9-11所示,半径为R 的圆形线圈共N 匝,处在方向竖直的、磁感强度为B 的匀强磁场中,线圈可绕其水平直径(绝缘)轴OO ′转动。
专题八、静电场1、(2013重庆卷).如题3图所示,高速运动的α粒子被位于O 点的重原子核散射,实线表示α粒子运动的轨迹,M 、N 和Q 为轨迹上的三点,N 点离核最近,Q 点比M 点离核更远,则BA .α粒子在M 点的速率比在Q 点的大B .三点中,α粒子在N 点的电势能最大C .在重核产生的电场中,M 点的电势比Q 点的低D .α粒子从M 点运动到Q 点,电场力对它做的总功为负功2、【2013江苏高考】. 下列选项中的各14圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各14圆环间彼此绝缘. 坐标原点O 处电场强度最大的是B3、【2013江苏高考】. 将一电荷量为+Q 的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等. a 、b 为电场中的两点,则ABD(A)a 点的电场强度比b 点的大(B)a 点的电势比b 点的高(C)检验电荷-q 在a 点的电势能比在b 点的大(D)将检验电荷-q 从a 点移到b 点的过程中,电场力做负功4、【2013广东高考】.喷墨打印机的简化模型如图4所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中CA.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关5、【2013上海高考】.两异种点电荷电场中的部分等势面如图所示,已知A点电势高于B 点电势。
若位于a 、b 处点电荷的电荷量大小分别为q a 和q b ,则B(A)a 处为正电荷,q a <q b (B)a 处为正电荷,q a >q b(C)a 处为负电荷,q a <q b (D)a 处为负电荷,q a >q b6、【2013上海高考】.(12分)半径为R ,均匀带正电荷的球体在空间产生球对称的电场;场强大小沿半径分布如图所示,图中E 0已知,E -r 曲线下O -R 部分的面积等于R -2R 部分的面积。
2013年全国高考物理试题分类汇编——磁场一、各种磁场及基本性质1.(2013年高考·上海卷)如图1,足够长的直线ab 靠近通电螺线管,与螺线管平行。
用磁传感器测量ab 上各点的磁感应强度B ,在计算机屏幕上显示的大致图像是A .B .C .D .解析 通电螺线管的磁场分布相当于条形磁铁如答图1,因此可根据磁感线的分布来确定磁感应强度的大小;因为ab 线段长度大于通电螺线管的长度,由磁感线的分布,可知选项C 正确。
答案 C点评 本题考查通电螺线管周围磁场的分布特点,要求学生对基本知识要有深刻的理解。
2.(2013年高考·海南卷)三条在同一平面(纸面)内的长直绝缘导线组成一等边三角形,在导线中通过的电流均为I ,方向如图2所示。
a 、b 和c 三点分别位于三角形的三个顶角的平分线上,且到相应顶点的距离相等。
将a 、b 和c 处的磁感应强度大小分别记为B 1、B 2和B 3,下列说法正确的是A .321B B B <= B .321B B B ==C .a 和b 处磁场方向垂直于纸面向外,c 处磁场方向垂直于纸面向里D .a 处磁场方向垂直于纸面向外,b 和c 处磁场方向垂直于纸面向里 解析 三条导线分别标记为1、2、3如答图2所示,根据安培定则可知它们在a 点产生的磁场方向分别为垂直纸面向外、垂直纸面向外和垂直纸面向里,且大小相等,所以合磁场方向垂直纸面向外,磁感应强度大小为导线1或2产生的磁场决定;同理b 点与a 点有相同的情况,则21B B =;而在c点处三根导线产生磁场方向均垂直于纸bObObObOabO·答题1图2答图2面向里,所以合磁场最强,则321B B B <=,所以选项A 、C 均正确。
答案 AC点评 本题考查通电直导线的磁场分布和磁场的叠加问题,注意安培定则的应用。
二、安培力相关问题3.(2013年高考·上海卷)如图3,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且相互绝缘。
C .在磁场中转过的角度之比为D .离开电场区域时的动能之比为专题8 磁场1.丢分指数少^ (新课标卷I )如图,半径为 R 的圆是一圆柱形匀强 磁场区域的横截面(纸面),磁感应强度大小为 B ,方向垂直于纸面向外。
一电荷量为q (q>0),质量为m 的粒子沿平行于直径 ab 的方向射人磁场 区域,射入点与 方向间的夹角为 A qBR/2m ab 的距离为R/2。
已知粒子射出磁场与射入磁场时运动 60°。
,则粒子的速率为(不计重力) B . qBR/m C . 3qBR/2m D 2qBR/m (新课标卷II ) 僖它间有一圜柱形匀强磯场区域,该区域的橫戡面的半朋为R ,雄场方向垂直横眩亂一质量为血、电 荷StAq (q>0)的粒予囚速率vO 沿横戡面的某直桎射入曉场*离斤磁场时速度方向倫爲入射方向* • 不计歳力,滾逾场的战感吨强段人小为 占tn% D .3.丢分指数少^ 5*如题3图所禾.一段长方体形导电材料,左右两竭面的边长都为 立利肌内有带电量为?的某种门由运动电荷.导电材料置于方向垂 直于其前表血向些的匀强磁场屮,内部磁够应强度人小为肌 当通以 从左到右的穩恒电流f 时,测得导电材料仁卜农面之间的屯压为乩 且」•我而的电势比卞表而的电势低.由此可得该导电材料单位体积内 口由运动电荷数及自由运幼电荷的正负别为 (重庆)下A. /liqaU qbU Hi \q^U * ll ;4.丢分指数☆☆(安徽)图中 导线,其横截面积位于正方形的四个顶点上,导线中通有大小相等的 电流,方向如图所示。
一带正电的粒子从正方形中心 面的方向向外运动,它所受洛伦兹力的方向是 A .向上B .向下C .向左 a 、b 、c 、d 为四根与纸面垂直的长直 0点沿垂直于纸D .向右 5.丢分指数^☆(浙江)在半导体离子注入工艺中,初速度可忽略的 离子P +和P 3+,经电压为U 的电场加速后,垂直进入磁感应强度大小为 B 、方向垂直纸面向里,有一定的宽度的匀强磁场区域,如图所示。
第 十 一 章 磁 场一、磁场基本知识1、磁场的产生(1)磁极周围有磁场。
(2)电流周围有磁场(奥斯特实验)。
(3)变化的电场在周围空间产生磁场(麦克斯韦)。
2、磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)注意:(1)磁极受力方向与磁场方向共线,电流受力方向与磁场方向垂直;(2)“同名磁极排斥,异名磁极吸引”只适用于外部磁场,无论外部磁场还是内部磁场,小磁针的N 极受力方向总是与磁感线方向一致(S 极受力方向与磁感线方向相反)3、磁感应强度ILF B (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。
磁感应强度是矢量。
单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2)4、磁感线(1)用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。
磁感线的疏密表示磁场的强弱。
(2)磁感线是封闭曲线(和静电场的电场线不同),在磁极外部N →S ,内部S →N 。
说明:“磁场的方向、磁感应强度的方向、磁感线的切线方向、小磁针北极受力方向”这四个方向是一致的;注意:地磁场不是匀强磁场!但在不太大的空间范围,地磁场可近似视为匀强磁场。
5、电流的磁场 安培定则(右手螺旋定则)直电流:大拇指与电流方向一致,四个弯曲手指指向电流激发的磁场的方向环形电流:大拇指指向中心轴线上的磁感线方向,亦即指向“小磁针”的北极通电螺线管:大拇指指向为螺线管内部的磁感线方向,亦即“条形磁铁”的北极地磁场说明:磁场遵循叠加原理。
由直电流的磁场理解环形电流磁场的形成,由环形电流的磁场理解通电螺线管磁场的形成。
问:若认为地磁场是由于地球带电形成的,则地球带正电还是负电?(关键点:地球自西向东转、地球内部..的磁场方向由地理N 极指向地理S 极) 6、磁场对电流的作用力——安培力I ∥B 时,F =0,I ⊥B 时,F m =BIL 电流不受磁场力作用并不意味着不存在磁场 方向:左手定则——电流与磁场可以不垂直,但安培力一定既与电流垂直也与磁场垂直,亦即垂直于电流与磁场所在的平面。
专题限时集训(八)A [专题八磁场](时间:45分钟)1.如图8—1所示,长方形abcd的长ad=0.6 m,宽ab=0.3 m,o、e分别是ad、bc的中点,以e为圆心eb为半径的14圆弧和以o为圆心od为半径的14圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25 T.一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射入磁场区域.则下列判断正确的是( )图8-1A.从od边射入的粒子,出射点全部分布在oa边B.从ao边射入的粒子,出射点全部分布在ab边C.从od边射入的粒子,出射点分布在ab边D.从ao边射入的粒子,出射点全部通过b点图8-22.如图8-2所示,在竖直向下的匀强磁场中,有两根竖直放置的平行导轨AB、CD,导轨上放有质量为m的金属棒MN,棒与导轨间的动摩擦因数为μ,现从t=0时刻起,给棒通以图示方向的电流,且电流大小与时间成正比,即I=kt,其中k为恒量.若金属棒与导轨始终垂直,则如图8—3所示的表示棒所受的摩擦力随时间变化的四幅图中,正确的是( )A B C D图8-33.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D形金属盒处于垂直于盒底的匀强磁场中,如图8—4所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f.则下列说法正确的是( )图8-4A.质子被加速后的最大速度不可能超过2πfRB.质子被加速后的最大速度与加速电场的电压大小有关C.只要R足够大,质子的速度可以被加速到任意值D.不改变B和f,该回旋加速器也能用于加速α粒子4.如图8—5所示,空间内匀强电场和匀强磁场相互垂直,电场的方向竖直向上,磁场方向垂直纸面向里,一带电微粒a处于静止状态,下列操作能使微粒做匀速圆周运动的是( )图8-5A.只撤去电场B.只撤去磁场C.给a一个竖直向下的初速度D.给a一个垂直纸面向里的初速度5.如图8—6所示,长方体玻璃水槽中盛有NaCl的水溶液,在水槽左、右侧壁内侧各装一导体片,使溶液中通入沿x轴正向的电流I,沿y轴正向加恒定的匀强磁场B.图中a、b是垂直于z轴方向上水槽的前后两个内侧面,则( )图8-6A.a处电势高于b处电势B.a处离子浓度大于b处离子浓度C.溶液的上表面电势高于下表面的电势D.溶液的上表面处的离子浓度大于下表面处的离子浓度自h高度处水平6.如图8—7所示,一个质量为m、带电荷量为+q的小球,以初速度v抛出.不计空气阻力.重力加速度为g.(1)若在空间竖直方向加一个匀强电场,发现小球水平抛出后做匀速直线运动,求该匀强电场的场强E的大小;(2)若在空间再加一个垂直纸面向外的匀强磁场,小球水平抛出后恰沿圆弧轨迹运动,落地点P到抛出点的距离为3h,求该磁场的磁感应强度B的大小.图8-77.如图8—8所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度E 1=2500 N/C ,方向竖直向上;磁感应强度B =103 T ,方向垂直纸面向外;有一质量m =1×10-2 kg 、电荷量q =4×10-5C 的带正电小球自O 点沿与水平线成45°角以v 0=4 m/s 的速度射入复合场中,之后小球恰好从P 点进入电场强度E 2=2500 N/C 、方向水平向左的第二个匀强电场中,且恰好经过P 点正下方的Q 点,不计空气阻力,g 取10 m/s 2.求:(1)O 点到P 点的距离s 1; (2)Q 点到P 点的距离s 2.图8-88.在水平光滑的绝缘桌面内建立如图8—9所示的直角坐标系xOy ,将第Ⅰ、Ⅱ象限称为区域一,第Ⅲ、Ⅳ象限称为区域二,其中一个区域内有匀强电场,另一个区域内有大小为2×10-2T 、方向垂直桌面的匀强磁场.把一个比荷为q m=2×108C/kg 的正电荷从坐标为(0,-1)的A 点处由静止释放,电荷以一定的速度从坐标为(1,0)的C 点第一次经x 轴进入区域一,经过一段时间,从坐标原点O 再次回到区域二.(1)指出哪个区域存在电场、哪个区域存在磁场,以及电场和磁场的方向; (2)求电场强度的大小;(3)求电荷第三次经过x 轴的位置.图8-9专题限时集训(八)A1.D [解析] 由qvB =m v 2r 解得带电粒子在磁场中运动的半径r =mvqB=0.3 m .显然从Od边射入的粒子,受到的洛伦兹力向上做半径r =0.3 m 的圆周运动,出射点全部分布在be 边,选项A 、C 错误;从O 点射入的粒子,做半径r =0.3 m 的圆周运动经过b 点,从a 点射入的粒子,做直线运动经过b 点,从oa 之间射入的粒子,先做直线运动,进入磁场区域后受洛伦兹力作用向上偏转,做半径r =0.3 m 的圆周运动,因轨迹半径与圆弧ob 的半径相同,由几何知识知,其轨迹恰好通过b 点,选项B 错误,选项D 正确.2.C [解析] 当F f =μBIL =μBLkt<mg 时,棒沿导轨向下加速;当F f =μBLkt>mg 时,棒沿导轨向下减速;在棒停止运动前,所受摩擦力为滑动摩擦力,大小为F f =μBLkt ;当棒停止运动时,摩擦力立即变为静摩擦力,大小为F f =mg ,故选项C 正确.3.A [解析] 由evB =mv 2R 可得回旋加速器加速质子的最大速度为v =eBRm ,即与加速电场的电压大小无关,选项B 错误;由回旋加速器高频交流电频率等于质子运动的频率,则有f =eB2πm,联立解得质子被加速后的最大速度不可能超过2πfR ,选项A 正确;质子的速度不能加速到无限大,因为根据狭义相对论,粒子的质量随着速度的增加而增大,而质量的变化会导致其回转周期的变化,从而破坏了电场变化周期的同步,选项C 错误;由于α粒子在回旋加速器中运动的频率是质子的12,不改变B 和f ,该回旋加速器不能用于加速α粒子,选项D错误.4.C [解析] 带电微粒处于静止状态,说明其受到的重力与电场力平衡,微粒带正电.只撤去电场,微粒在重力和洛伦兹力作用下做变速曲线运动;撤去磁场,重力与电场力依然平衡,微粒将保持静止状态;给微粒一个向下的初速度,由于重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动;给微粒一个垂直纸面向里的初速度,微粒不受洛伦兹力作用,由于重力与电场力平衡,微粒垂直纸面做匀速直线运动.5.B [解析] 溶液中通入沿x 轴正向的电流I ,NaCl 的水溶液含有阴、阳离子,阳离子向x 轴正向运动,阴离子向x 轴负向运动,根据左手定则,阴、阳离子受到的洛伦兹力都偏向a 处,所以a 处离子浓度大于b 处离子浓度,选项B 正确.6.(1)mg q (2)2mv 03qh[解析] (1)小球做匀速直线运动,说明重力和电场力平衡,根据平衡条件,有mg =qE 解得E =mg q. (2)再加匀强磁场后,小球做圆周运动,洛伦兹力充当向心力,设轨道半径为R.运动轨迹如图所示,根据几何关系得P 点到抛出点的水平距离x =2h ,R 2=(R -h)2+x 2由洛伦兹力提供向心力有qv 0B =mv 20R联立解得B =2mv 03qh. 7.(1) 2 m (2)3.2 m[解析] (1)带电小球受到的重力G =mg =0.1 N 电场力F 1=qE 1=0.1 N即G =F 1,故带电小球在正交的电磁场中由O 到Q 做匀速圆周运动. 根据牛顿第二定律有 qv 0B =m v 20R解得R =mv 0qB =1×10-2×44×10-5×103 m =1 m由几何关系得s 1=2R = 2 m.(2)带电小球在P 点的速度大小仍为v 0=4 m/s ,方向与水平方向成45°.由于电场力F 2=qE 2=0.1 N ,与重力大小相等,方向互相垂直,则合力的大小F =F 22+G 2=0.1 2 N ,方向与初速度方向垂直,故带电小球在第二个电场中做类平抛运动.建立如图所示的x 、y 坐标系.沿y 轴方向,带电小球的加速度a =F m =10 2 m/s 2,位移y =12at 2沿x 轴方向,带电小球的位移x =v 0t 由几何关系有:y =x联立解得t =0.4 2 s ,x =1.6 2m.Q 点到P 点的距离s 2=2x =3.2 m.8.(1)略 (2)2×104 V/m (3)(8,0)[解析] (1)区域一是磁场,方向垂直纸面向里;区域二是电场,方向由A 指向C.(2)设电场强度的大小为E ,电荷从C 点进入区域一的速度为v.从A 到C 电荷做初速度为零的匀加速直线运动,且过C 点时速度方向与+x 轴方向成45°角,所以s AC = 2 m.由牛顿第二定律得qE =ma由运动学公式有 v 2=2as AC电荷进入区域一后,在洛伦兹力的作用下做匀速圆周运动,运动轨迹如图所示.由几何关系r=22m由牛顿第二定律得qvB=mv2 r解得E=2×104 V/m.(3)电荷从坐标原点O第二次经过x轴进入区域二,速度方向与电场方向垂直,电荷在电场中做类平抛运动,设经过时间t电荷第三次经过x轴,有:tan45°=12at2vt,解得t=2×10-6 s所以: x=vtcos45°=8 m即电荷第三次经过x轴上的点坐标为(8,0) .。
2013年高考二轮专题复习之模型讲解电磁场中的单杆模型[模型概述]在电磁场中,“导体棒”主要是以“棒生电”或“电动棒”的内容出现,从组合情况看有棒与电阻、棒与电容、棒与电感、棒与弹簧等;从导体棒所在的导轨有“平面导轨”、“斜面导轨”“竖直导轨”等。
[模型讲解]一、单杆在磁场中匀速运动例1.如图1所示,R R 125==6ΩΩ,,电压表与电流表的量程分别为0~10V 和0~3A ,电表均为理想电表。
导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。
图1(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大? 解析:(1)假设电流表指针满偏,即I =3A ,那么此时电压表的示数为U =IR 并=15V ,电压表示数超过了量程,不能正常使用,不合题意。
因此,应该是电压表正好达到满偏。
当电压表满偏时,即U 1=10V ,此时电流表示数为I U R A 112==并设a 、b 棒稳定时的速度为v 1,产生的感应电动势为E 1,则E 1=BLv 1,且E 1=I 1(R 1+R 并)=20Va 、b 棒受到的安培力为 F 1=BIL =40N 解得v m s 11=/(2)利用假设法可以判断,此时电流表恰好满偏,即I 2=3A ,此时电压表的示数为U I R 22=并=6V 可以安全使用,符合题意。
由F =BIL 可知,稳定时棒受到的拉力与棒中的电流成正比,所以F I I F N N 2211324060===×。
二、单杠在磁场中匀变速运动例2.如图2甲所示,一个足够长的“U ”形金属导轨NMPQ 固定在水平面内,MN 、PQ 两导轨间的宽为L =0.50m 。