汽车零部件失效模式及其分析
- 格式:ppt
- 大小:964.01 KB
- 文档页数:7
没有影响;事件发生的频率要记录特定的失效原因和机理多长时间发生一次以及发生的几率。
如果为10,则表示几乎肯定要发生,工艺能力为0.33或者ppm大于10000。
5.2检测等级是评估所提出的工艺控制检测失效模式的几率,列为10表示不能检测,1表示已经通过目前工艺控制的缺陷检测。
5.3计算风险优先数RPN(riskprioritynumber)。
RPN是事件发生的频率、严重程度和检测等级三者乘积,用来衡量可能的工艺缺陷,以便采取可能的预防措施减少关键的工艺变化,使工艺更加可靠。
对于工艺的矫正首先应集中在那些最受关注和风险程度最高的环节。
RPN最坏的情况是1000,最好的情况是1,确定从何处着手的最好方式是利用RPN的pareto图,筛选那些累积等级远低于80%的项目。
推荐出负责的方案以及完成日期,这些推荐方案的最终目的是降低一个或多个等级。
对一些严重问题要时常考虑拯救方案,如:一个产品的失效模式影响具有风险等级9或10;一个产品失效模式/原因事件发生以及严重程度很高;一个产品具有很高的RPN值等等。
在所有的拯救措施确和实施后,允许有一个稳定时期,然后还应该对修订的事件发生的频率、严重程度和检测等级进行重新考虑和排序。
在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。
FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。
FMEA是一种可靠性设计的重要方法。
它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。
它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。
及时性是成功实施FMEA的最重要因素之一,它是一个"事前的行为',而不是"事后的行为'。
为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。
FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。
汽车零部件的失效模式及分析专业:班级学号:姓名:指导教师:年月摘要汽车零件失效分析,是研究汽车零件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,其目的在与分析零部件失效的原因,找出导致失效的责任,并提出改进和预防措施,从而提高汽车可靠性和使用寿命。
目录第一章汽车零部件失效的概念及分类 (1)一、失效的概念 (1)二、失效的基本分类型 (1)三、零件失效的基本原因 (2)第二章汽车零部件磨损失效模式与失效机理 (3)一、磨料磨损及其失效机理 (3)二、粘着磨损及其失效机理 (4)三、表面疲劳磨损及其失效机理 (5)四、腐蚀磨损及其失效机理 (5)五、微动磨损及其失效机理 (6)第三章汽车零部件疲劳断裂失效及其机理 (8)第四章汽车零部件腐蚀失效及其机理 (9)第五章汽车零部件变形失效机理 (10)参考文献 (11)第一章汽车零部件失效的概念及分类一、失效的概念汽车零部件失去原设计所规定的功能称为失效。
失效不仅是指完全丧失原定功能,而且功能降低和严重损伤或隐患、继续使用会失去可靠性及安全性的零部件。
机械设备发生失效事故,往往会造成不同程度的经济损失,而且还会危及人们的生命安全。
汽车作为重要的交通运输工具,其可靠性和安全性越来越受到重视。
因此,在汽车维修工程中开展失效分析工作,不仅可以提高汽车维修质量,而且可为汽车制造部门提供反馈信息,以便改进汽车设计和制造工艺。
二、失效的基本分类型按失效模式和失效机理对是小进行分类是研究失效的重要内容之一。
失效模式是失效件的宏观特征,而失效机理则是导致零部件失效的物理、化学或机械的变化原因,并依零件的种类、使用环境而异。
汽车零部件按失效模式分类可分为磨损、疲劳断裂、变形、腐蚀及老化等五类。
汽车零件失效分类一个零件可能同时存在几种失效模式或失效机理。
研究失效原因,找出主要失效模式,提出改进和预防措施,从而提高汽车零部件的可靠性和使用寿命。
三、零件失效的基本原因引起零件是小的原因很多,主要可分为工作条件(包括零件的受力状况和工作环境)、设计制造(设计不合理、选材不当、制造工艺不当等)以及使用与维修等三个方面。
汽车维修工程习题第二章汽车零部件的失效模式及分析一、名词解释1.汽车零件失效:指汽车在运行过程中,零部件逐渐丧失原有的性能或技术文件所要求的的性能,从而引起汽车技术状况变差,直至不能履行规定的功能。
2.混合摩擦:两摩擦表面间干摩擦、液体摩擦和边界摩擦混合存在的摩擦,称为混合摩擦。
3.磨料磨损:摩擦表面间存在的硬质颗粒引起的磨损,称为磨料磨损。
4.边界摩擦:两摩擦表面被一层极薄的边界膜隔开的摩擦,称为边界摩擦。
5.磨损:零件摩擦表面的金属在相对运动过程中不断损失的现象,称为零件的磨损。
6.穴蚀:与液体相对运动的固体表面,因气泡破裂产生的局部高温及冲击高压所引起的疲劳剥落现象。
7.疲劳断裂:零件在交变载荷作用下,经过较长时间工作而发生的断裂现象。
8.失效度:产品在规定的条件下,在规定的时间内丧失规定功能(即发生故障)的概率。
9。
粘着磨损:摩擦副相对运动时由于固相焊合接触表面的材料发生转移的现象。
二、填空题1、汽车早期失效期的基本特征是开始时失效率( )。
2、汽车失效类型有(磨损)、(疲劳断裂)、腐蚀、变形、老化。
3、微动磨损一般发生在交变载荷或振动作用的()配合表面部位。
4、腐蚀按机理不同,可分为()腐蚀、()腐蚀。
5、润滑油中加入适量的活性添加剂,可以()磨合过程,提高磨合质量。
6、引起零件失效的原因分为工作条件、设计制造以及()。
7、粘接剂的种类有环氧树脂胶、酚醛树脂胶和( )。
8、汽车零部件腐蚀失效分为化学腐蚀失效和( )失效。
9、影响汽车零件磨损的因素有()、()、()。
三、判断题1、低温条件下随着温度下降,汽油粘度、相对密度增加,发动机启动困难()四、简答题1、什么是干摩擦?其磨损特征是什么?在汽车上,一般将摩擦副表面间完全没有润滑油或其他润滑介质时的摩擦称为干摩擦。
其特征是:摩擦表面直接接触,产生强烈地阻碍摩擦副表面相对运动的分子吸引和机械啮合作用,消耗动力,转化为有害的摩擦热。
伴随着强烈的摩擦副表面磨损。
汽车零部件可靠性试验基理及失效数据分析摘要:目前,我国的汽车发展十分迅速,本研究利用工业机器人拥有六个自由度和较高控制精度的特点,来开发复杂运动轨迹的汽车部件可靠性试验,并通过自主设计的快换夹具来实现不同加载头对同一样品加载的可靠性试验。
关键词:工业机器人;汽车零部件产品;可靠性试验;快换夹具引言随着汽车行业的发展和人们对汽车认识水平的普遍提高,人们已经从关注精致感知转变为更加关注汽车的可靠性,即关注汽车长期保持其功能的能力。
汽车可靠性,作为汽车重要性能之一,很多车企也越来越重视汽车的可靠性,并且作为企业研发过程中的重要研究对象,设立专门的组织,在汽车设计阶段,提出可靠性要求并进行闭环,掌握汽车的可靠性水平。
在汽车产品设计的开发技术规范或与供应商签订的技术协议中,明确产品的可靠性目标要求,一些整车企业特别是合资车企,可靠性部分会提出RxxCyy形式的可靠性要求,一般会提出R90C50或者R95C50[1],甚至一些零部件会提出更高的可靠性要求,表示的含义是当达到规定的时间t时(此处的时间是广义的时间,可以是循环次数,工作时间等),该产品在置信度为50%的条件下,产品的可靠度要达到90%或者95%,甚至更高。
对于汽车零部件而言,因用户使用条件复杂,并且所涉及到的技术领域极为广泛,对一些问题的研究不够充分,因此在设计或制造过程中,即使考虑非常周密,也必须通过试验进行检验。
针对可靠性的设计目标,必须通过可靠性试验,验证是否达到可靠性的要求,并且通过试验,来帮助我们深入了解汽车在实际使用中各种现象的本质及其规律,不断进行改进,从而提升产品的可靠性水平,提升市场竞争力。
针对可靠性目标要求,如何设计产品的可靠性试验就成为关键,需要根据现有的技术规范要求,设计可靠性试验的样本量,并随着调整样本量,达到缩短试验时间的目的,或者能根据设计的可靠性试验,分析设计缺陷,评估产品的可靠性水平。
在可靠性试验设计中,常用的方法有成功型和失效型两种。
/Article/articleview/2006-7-10/article_view_4349.htm#top/Article/articlelist/article_87_adddate_desc_1.htm#失效模式及后果分析(FMEA)1、什么是FMEA?FMEA是英文Failure Mode Effects Analysis 的缩写,其中文一般译为“失效模式及后果分析”。
FMEA是依据由质量目标所制定的技术文件,根据经验分析产品设计与生产工艺中存在的弱点和可能产生的缺陷,以及这些缺陷产生的后果与风险,并在决策过程中采取措施加以消除。
FMEA分设计FMEA和过程FMEA两种,设计FMEA是以系统、子系统或零部件为分析对象,过程FMEA是以加工工艺过程的每道工序为分析对象。
因而,FMEA分析要从系统组成零件列表中或加工工艺流程中确定产品设计项目或过程项目。
它们的基本思路是:划分分析对象,确定每一对象的分析内容,研究分析结果及处理措施,制作FMEA分析表。
为了尽可能地消除产品的故障,不仅要知道产品有哪些故障模式,而且还要依赖预知的能力设想将会有哪些故障模式,把这些故障模式全部排列出来,并根据它们不同的性质分析后果影响,对风险较大的故障模式则预先制定相应的补救措施,避免产品在使用过程发生故障。
这种思想是企图实现产品既定的设计和制造意图,自始至终不出差错地、顺利地完成制造的全过程和确保产品预期的性能的可靠性,这显然是一种严密的策划过程,是一种主动、积极、有效的预防方法。
2、FMEA的分类根据原因来分析,产品出现故障无非是因为设计先天不足或制造过程留下的缺陷,所以FMEA分设计FMEA和过程FMEA。
·设计FMEA设计FMEA是由设计主管工程师/小组在设计时采用的一种分析技术,用来在最大范围内保证已充分地考虑到和指明各种潜在的失效模式及其相关的起因/机理,评估最全的产品以及每个与之相关的系统、子系统和零部件。
发动机装配过程中的失效模式分析摘要:在发动机装配过程中,存在各类失效模式,对于各类失效的充分识别并制定相应的对策,可以有效保证发动机装配质量。
文章通过对所有可能的失效模式进行分类分析并给出相应的解决办法供从业人员参考。
同时针对可能导致批量不良的严重问题以及特殊特性问题的防错方式进行探讨总结,希望可以避免严重质量问题的发生。
关键词:装配失效模式分析、防错手段、批量质量问题、特殊特性发动机作为影响汽车性能的关键零部件之一,它的质量一直备受关注。
发动机装配过程中,一般都采取多机型混线生产的方式,可能会出现各种错装、漏装等潜在质量风险,从而影响使用者的人身安全。
为了确保装配的准确性,在日常生产过程中,我们需识别各类失效模式并通过防错技术保证发动机的装配质量。
1、装配过程中可能发生的失效模式漏装:包括漏拧紧、漏压入、漏涂油、漏检测、漏拆卸工装等位置错误:包括安装顺序错误、未安装到位等方向错误:包括安装方向正反错误、相位角度安装错误等规格错误:包括零件型号装错、类似部件混入装错等嵌入不良:包括线束端子嵌入不良、连接器嵌入不良拧紧不良:包括扭矩不足、斜着拧入、螺栓拉伸、带垫片螺栓未安装垫片等压入不良:包括压入尺寸不良、斜着压入等铆接不良:包括铆接不足、铆接过头等选择不良:包括轴瓦等级、活塞等级、挺柱等级选择等涂胶不良:包括断胶、胶量过多或过少、涂胶位置不良等钢印打刻不良:包括钢印号重号、刻印缺少、刻印不清等密封圈夹入不良:包括O型圈、橡胶密封圈的异常夹入等其他:包括损伤、变形、磕碰、异物、多装、表面机油、污垢、生锈等以上所有不良情况,在日常生产中都会出现。
针对每一种不良,都需要有完备的防发生、防流出手段,确保发动机出厂质量。
2、各类失效的防错手段防错技术起源于日本,是由日本著名的质量管理学者森口博士提出,他根据长期从事现场质量改进的丰富经验,首创了POKA YOKE的概念[1]。
在工艺方案制定初期,对于影响质量的各个工序进行分析找出所有的失效模式,从防发生和防流出两个角度制定相应的对策。
失效模式和效果分析(Failure Mode and Effect Analysis, FMEA)是一种用来确定潜在失效模式及其原因的分析方法。
具体来说,通过实行FMEA,可在产品设计或生产工艺真正实现之前发现产品的弱点,可在原形样机阶段或在大批量生产之前确定产品缺陷。
FMEA最早是由美国国家宇航局(NASA)形成的一套分析模式,FMEA是一种实用的解决问题的方法,可适用于许多工程领域,目前世界许多汽车生产商和电子制造服务商(EMS)都已经采用这种模式进行设计和生产过程的管理和监控。
FMEA简介FMEA有三种类型,分别是系统FMEA、设计FMEA和工艺FMEA,本文中主要讨论工艺FMEA。
实施FMEA管理的具体步骤见图1。
确定产品需要涉及的技术、能够出现的问题,包括下述各个方面:需要设计的新系统、产品和工艺;对现有设计和工艺的改进;在新的应用中或新的环境下,对以前的设计和工艺的保留使用;形成FMEA团队。
理想的FMEA团队应包括设计、生产、组装、质量控制、可靠性、服务、采购、测试以及供货方等所有有关方面的代表。
记录FMEA的序号、日期和更改内容,保持FMEA始终是一个根据实际情况变化的实时现场记录,需要强调的是,FMEA文件必须包括创建和更新的日期。
创建工艺流程图。
工艺流程图应按照事件的顺序和技术流程的要求而制定,实施FMEA需要工艺流程图,一般情况下工艺流程图不要轻易变动。
列出所有可能的失效模式、效果和原因、以及对于每一项操作的工艺控制手段:1.对于工艺流程中的每一项工艺,应确定可能发生的失效模式,如就表面贴装工艺(SMT)而言,涉及的问题可能包括,基于工程经验的焊球控制、焊膏控制、使用的阻焊剂(soldermask)类型、元器件的焊盘图形设计等。
2.对于每一种失效模式,应列出一种或多种可能的失效影响,例如,焊球可能要影响到产品长期的可靠性,因此在可能的影响方面应该注明。
3.对于每一种失效模式,应列出一种或多种可能的失效原因,例如,影响焊球的可能因素包括焊盘图形设计、焊膏湿度过大以及焊膏量控制等。
失效模式和效果分析(Failure Mode and Effect Analysis, FMEA)是一种用来确定潜在失效模式及其原因的分析方法。
具体来说,通过实行FMEA,可在产品设计或生产工艺真正实现之前发现产品的弱点,可在原形样机阶段或在大批量生产之前确定产品缺陷。
FMEA最早是由美国国家宇航局(NASA)形成的一套分析模式,FMEA是一种实用的解决问题的方法,可适用于许多工程领域,目前世界许多汽车生产商和电子制造服务商(EMS)都已经采用这种模式进行设计和生产过程的管理和监控。
FMEA简介FMEA有三种类型,分别是系统FMEA、设计FMEA和工艺FMEA,本文中主要讨论工艺FMEA。
实施FMEA管理的具体步骤见图1。
确定产品需要涉及的技术、能够出现的问题,包括下述各个方面:需要设计的新系统、产品和工艺;对现有设计和工艺的改进;在新的应用中或新的环境下,对以前的设计和工艺的保留使用;形成FMEA团队。
理想的FMEA团队应包括设计、生产、组装、质量控制、可靠性、服务、采购、测试以及供货方等所有有关方面的代表。
记录FMEA的序号、日期和更改内容,保持FMEA始终是一个根据实际情况变化的实时现场记录,需要强调的是,FMEA文件必须包括创建和更新的日期。
创建工艺流程图。
工艺流程图应按照事件的顺序和技术流程的要求而制定,实施FMEA需要工艺流程图,一般情况下工艺流程图不要轻易变动。
列出所有可能的失效模式、效果和原因、以及对于每一项操作的工艺控制手段:1.对于工艺流程中的每一项工艺,应确定可能发生的失效模式,如就表面贴装工艺(SMT)而言,涉及的问题可能包括,基于工程经验的焊球控制、焊膏控制、使用的阻焊剂(soldermask)类型、元器件的焊盘图形设计等。
2.对于每一种失效模式,应列出一种或多种可能的失效影响,例如,焊球可能要影响到产品长期的可靠性,因此在可能的影响方面应该注明。
3.对于每一种失效模式,应列出一种或多种可能的失效原因,例如,影响焊球的可能因素包括焊盘图形设计、焊膏湿度过大以及焊膏量控制等。