当前位置:文档之家› 初中数学竞赛专题中位线

初中数学竞赛专题中位线

初中数学竞赛专题中位线
初中数学竞赛专题中位线

初中数学竞赛专题中位线

一、内容提要

1. 三角形中位线平行于第三边,并且等于第三边的一半。

梯形中位线平行于两底,并且等于两底和的一半。

2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计

算线段的长度,确定线段的和、差、倍关系。

3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括

作出辅助线。

4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线

截比例线段定理及推论,

①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半

②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。 二、例题

例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM

和CAN ,P 是BC 的中点。求证:PM =PN

(1991年泉州市初二数学双基赛题)

证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形

∴AE =EB =ME ,AF =FC =NF ,

根据三角形中位线性质 PE =

21AC =NF ,PF =2

1

AB =ME

PE ∥AC ,PF ∥AB

∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN

∴△PEM ≌△PFN ∴PM =PN

P

例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。求MN 的长。

分析:N 是BC 的中点,若M 是另一边中点,

则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。

辅助线是:延长CM 交AB 于E (证明略)

例3.求证梯形对角线的中点连线平行于两底,且等于两底差的一半。 已知:梯形ABCD 中,AB ∥CD ,M 、N 分别是AC 、BD 的中点 求证:MN ∥AB ∥CD ,MN =

2

1

(AB -CD )

分析一:∵M 是AC 中点,构造一个三角形,使N 为另一边中点,以便运用中位线的性质。

∴连结CN 并延长交AB 于E (如图1)证△BNE ≌△DNC 可得N 是CE 的中点。(证明略)

分析二:图2与图1思路一样。

分析三:直接选择△ABC ,取BC 中点P 连结MP 和NP ,证明M ,N ,P 三点在同一直线上,方法也是运用中位线的性质。

例4. 如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是

BC 和EF 的中点

求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PN

MP ∥AB ,MP =

21AB ,NP ∥AC ,NP =2

1AC ∵BE =CF ,∴MP =NP

∴∠3=∠4=2

MPN

-180∠

∠MPN +∠BAC =180

(两边分平行的两个角相等或互补)

∴∠1=∠2=2

MPN

-180∠ , ∠2=∠3

∴NP ∥AC ∴MN ∥AD

C N

证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG

则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG

∴AB ∥CG ,∠BAC +∠FCG =180 ∠CAD =

2

1

(180 -∠FCG ) ∠CFG

=2

1

(180 -∠FCG )=∠CAD ∴ MN ∥AD

例5. 已知:△ABC 中,AB =AC ,AD 是高,CE 是角平分线,EF ⊥BC

于F ,GE ⊥CE 交CB 的延长线于G

求证:FD =4

1

CG

证明要点是:延长GE 交AC 于H , 可证E 是GH 的中点

过点E 作EM ∥GC 交HC 于M ,

则M 是HC 的中点,EM ∥GC ,EM =2

1

GC

由矩形EFDO 可得FD =EO =21EM =4

1

GC

三、练习 1.已知E 、F 、G 、H 是四边形ABCD 各边的中点 则①四边形EFGH 是_____形 ②当AC =BD 时,四边形EFGH 是___形

③当AC ⊥BD 时,四边形EFGH 是__形 ④当AC 和BD ________时,四边形EFGH 是正方形形。 2.求证:梯形两底中点连线小于两边和的一半。

3.已知AD 是锐角三角形ABC 的高,E ,F ,G 分别是边BC ,CA ,AB 的中

点,证明顺次连结E ,F ,G ,H 所成的四边形是等腰梯形。 4. 已知:经过△ABC 顶点A 任作一直线a,过B ,C 两点作直线a 的垂线段

BB ,和CC ,

,设M 是BC 的中点,

求证:MB ,=MC ,

5.如图已知△ABC 中,AD =BE ,DM ∥EN ∥BC

求证BC =DM +EN

6.如图已知:从平行四边形ABCD 的各顶点向形外任一直线a 作垂线段AE ,BF ,CG ,DH 。

求证AE +CG =BF +DH 7.如图已知D 是AB 的中点,F 是DE 的中点, 求证BC =2CE

8.平行四边形ABCD 中,M ,N 分别是BC 、CD 的中点,求证AC 平分MN 9.已知△ABC 中,D 是边BC 上的任一点,M ,N ,P ,Q 分别是BC ,AD ,AC ,MN 的中点,求证直线PQ 平分BD 。

10.等腰梯形ABCD 中,AB ∥CD ,AD =BC ,点O 是AC 和BD 的交点,∠AOB =60 ,P ,Q ,R 分别是AO ,BC ,DO 的中点,求证△PQR 是等边

三角形。

11.已知:△ABC 中,AD 是高,AE 是中线,且AD ,AE 三等分∠BAC ,求证:△ABC 是Rt △。

12.已知:在锐角三角形ABC 中,高AD 和中线BE 相交于O ,

∠BOD =60 ,求证AD =BE 13.如图 已知:四边形ABCD 中,AD =BC ,

点E 、F 分别是AB 、CD 的中点,MN ⊥EF 求证:∠DMN =∠CNM

练习题参考答案

1. ①平行四边形②菱形③矩形④相等且互相垂直

E N

B C D a E B

2. 取一条对角线的中点,利用三角形两边差小于第三边

3. DG =EF =2

1AB 4. 过点M 作a 的垂线,必平分B ,

C ,

5. △ABC 的中位线也是梯形BCD ,

D 中位线 6. 同上,有公共中位线 7. 取BC 中点G ,连结DG

8. 连结BD 交AC 于O ,易证四边形MCNO 是平行四边形 9.

证四边形MPNS 是平行四边形

10. ∵△COD 是等边三角形,CR ⊥DO ,RQ =2

1

BC ,…… 11. 作EF ⊥AC ,EF =ED =

2

1EC ,∠C =30

,…… 12. 作EF ⊥BC 于F ,AD ,BE 都等于2EF

13. 过AC 的中点O 作MN 的平行线,则OE =OF ,……

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

初中数学竞赛专题选讲《观察法》

初中数学竞赛专题选讲观察法 一、内容提要 数学题可以猜测它的结论(包括经验归纳法),但都要经过严谨的论证,才能确定是否正确. 观察是思维的起点,直觉是正确思维的基础. 观察法解题就是用清晰的概念,直觉的思维,根据题型的特点,得出题解或猜测其结论,再加以论证. 敏锐的洞察力来自对概念明晰的理解和熟练的掌握. 例如:用观察法写出方程的解,必须明确方程的解的定义,掌握方程的解与方程的系数这间的关系. 一元方程各系数的和等于零时,必有一个解是1;而奇次项系数的和等于偶次项系数的和时,则有一个根是-1;n 次方程有n 个根,这样才能判断是否已求出全部的根,当根的个数超过方程次数时,可判定它是恒等式. 对题型的特点的观察一般是注意已知数据,式子或图形的特征,分析题设与结论,已知与未知这间的联系,再联想学过的定理,公式,类比所做过的题型,试验以简单的特例推导一般的结论,并探求特殊的解法. 选择题和填空题可不写解题步骤,用观察法解答更能显出优势. 二、例题 例1. 解方程:x+x 1=a+a 1. 解:方程去分母后,是二次的整式方程,所以最多只有两个实数根. 根据方程解的定义,易知 x=a ;或x= a 1. 观察本题的特点是:左边x 11=? x , 右边a 11=?a . (常数1相同). 可推广到:若方程f(x)+a m a x f m +=)((am ≠0), 则f(x)=a ; f(x)= a m . 如:方程x 2+22255a a x +=, x 2+3x -83202=+x x (∵8=10-1020). 都可以用上述方法解. 例2. 分解因式 a 3+b 3+c 3-3abc. 分析:观察题目的特点,它是a, b, c 的齐三次对称式. 若有一次因式,最可能的是a+b+c ;若有因式a+b -c,必有b+c -a, c+a -b ; 若有因式a+b, 必有b+c, c+a ; 若有因式b -c,必有c -a, a -b. 解:∵用a=-b -c 代入原式的值为零, ∴有因式a+b+c. 故可设 a 3+b 3+c 3-3abc=(a+b+c)[m(a 2+b 2+c 2)+n(ab+bc+ca)]. 比较左右两边a 3的系数,得m=1, 比较abc 的系数, 得 n=-1. ∴a 3+b 3+c 3-3abc=(a+b+c) (a 2+b 2+c 2-ab -bc -ca) 例3. 解方程x x =++++3333.

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论 代数篇 【乘法公式】 完全平方公式:(a±b)2=a2±2ab+b2, 平方差公式:(a+b)(a-b)=a2-b2, 立方和(差)公式:(a±b)(a2 ?ab+b2)=a3±b3 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd 二项式定理:(a±b)3=a3±3a2b+3ab2±b3 (a±b)4=a4±4a3b+6a2b2±4ab3+b4) (a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5) ………… 在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- … +ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1 类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n 公式的变形及其逆运算 由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab 由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b) 由公式的推广③可知:当n为正整数时 a n- b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。重要公式(欧拉公式) (a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc 【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。当被 除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式: f(x)=g(x)q(x)-r(x) 其中r(x)的次数小于g(x)的次数,或者r(x)=0。当r(x)=0时,就是f(x)能被g(x)整除。 【余式定理】多项式f(x)除以x-a所得的余数等于f(a)。 【因式分解方法】拆项、添项、配方、待定系数法、求根法、对称式和轮换对称式等。 【部分分式】把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。 【素数和合数】2是最小的素数,也是唯一的一个既是偶数又是素数的数.

初中数学竞赛专项训练不等式

初中数学竞赛专项训练 (不等式与不等式组)及参考答案 1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A. 111 B. 1000 C. 1001 D. 1111 2、若2001 119811198011 ??++= S ,则S 的整数部分是____________________ 3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。 4、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把 零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 5、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值 为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 6、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为 ( ) A. 2 1 B. 2 2 C. 1 D. 2 7、设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 8.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3

初中数学竞赛专项训练.doc

初中数学竞赛专项训练 1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。 A . 111? B 。 1000? C 。 1001?D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105 +b ×104 +c ×103 +a ×102 +b × 10+c=a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103 +1)=1001(a×103+b ×10+c ),而a ×103+b ×10+c是整数,所以能被1001整除。故选C 方法二:代入法 2、若2001 119811198011 ??++= S ,则S 的整数部分是 解:因1981、1982……2001均大于1980,所以9022 1980 1980 1 221== ?> S ,又1980、1981……2000均小于2001,所以22 21 902220012001 1221== ? < S ,从而知S的整数部分为90。 3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着. 解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所 以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那 些编号为1、22、32、42、52、62、72、82、92 、102共10盏灯是亮的.

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

初中数学竞赛常用公式

初中数学竞赛常用公式Last revision on 21 December 2020

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

初中数学竞赛专项训练.doc

初中数学竞赛专项训练(2) (代数式、恒等式、恒等变形) 一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。 1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为( ) A. 2 1 B. 2 2 C. 1 D. 2 4、设a <b <0,a 2+b 2= 4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 5、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值( ) A. 0 B. 1 C. 2 D. 3 6、设a 、b 、c 为实数,2 26 23 2222 π π π + -=+ -=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有 一个值 ( ) A. 大于0 B. 等于0 C. 不大于0 D. 小于0 7、已知abc ≠0,且a+b+c =0,则代数式ab c ca b bc a 222+ +的值是 ( ) A. 3 B. 2 C. 1 D. 0 8、若13649832 2 ++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是 ( ) A. 正数 B. 负数 C. 零 D. 整数 二、填空题 1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____ 2、已知-1<a <0,化简4)1 (4)1(22+-+-+a a a a 得_______ 3、已知实数z 、y 、z 满足x+y=5及z 2=xy+y -9,则 x+2y+3z=_______________ a

初中数学竞赛二次根式竞赛训练题

二次根式竞赛训练题 一、填空题: 1= 。 211 2a ++=+,则a= 。 3=-,则x 的取值范围是 。 436363638?= 。 5、设m,x,y 均为正整数,且y x m -= -28,则x+y+m= 。 6、设关于x 的方程4x 2-4(a+2)x+a 2+11=0的两根为x 1,x 2,若x 1-x 2=3,则a 的值为 。 7、若u ,v 满足32 v =,那么u 2-uv+v 2= ________ 。 8、若x ,y ,a 都是实数且1x a =-,2(1)(1)y a a a =---,则31x y a +++= 。 二、选择题: 9、若实数a ,b ,c 满足0a a +=,ab ab =,0c c -=,那么代数式 2222b bc c b a b +--+-化简后结果等于( ) (A) 2c-b (B) 2c-2a (C) -b (D) c b a -+ 10、下列各数中,最小的正数是( ) (A )10-(B )10(C ) 18-(D)51- 11、把(a -的根号外面的因式移到根号内,则原式等于( ) 12、设 +++=222x , 222=y ,则( ) (A )x>y (B )x

13、已知9)4()5(22=-++x x ,则的取值范围是( ) (A)54x -≤≤ (B) 5x ≤- (C) 54x -<≤ (D) 4x ≥ 14的整数部分是a ,小数部分是b ,那么2a+b 的值是( ) (B) (C)2 (D)2 三、解答题: 15. 16.若=x ,求4322621823815x x x x x x --++-+的值。 17.解方程:3x y z ++=+. 18.设0x >,0y >= 的值。

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

初中数学竞赛常用公式

初中数学竞赛常用公式内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等

26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

初中数学竞赛专项训练之命题及三角形边角不等关系附答案

1 初中数学竞赛专项训练之命题及三角形边角不等关系 一、选择题: 1、如图8-1,已知AB =10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作两个等边三角形APC 和BPD ,则线段CD 的长度的最小值是 ( ) A. 4 B. 5 C. 6 D. )15(5- 2、如图8-2,四边形ABCD 中∠A =60°,∠B =∠D =90°,AD =8,AB =7, 则BC +CD 等于 ( ) A. 36 B. 53 C. 43 D. 33 3、如图8-3,在梯形ABCD 中,AD ∥BC ,AD =3,BC =9,AB =6,CD =4,若EF ∥BC ,且梯形AEFD 与梯形EBCF 的周长相等,则EF 的长为 ( ) A. 745 B. 533 C. 539 D. 2 15 4、已知△ABC 的三个内角为A 、B 、C 且α=A+B ,β=C+A ,γ=C+B ,则α、β、γ中,锐角的个数 最多为 ( ) A. 1 B. 2 C. 3 D. 0 5、如图8-4,矩形ABCD 的长AD =9cm ,宽AB =3cm ,将其折叠,使点D 与点B 重合,那么折叠后DE 的长和折痕EF 的长分别为 ( ) A. 4cm cm 10 B. 5cm cm 10 C. 4cm cm 32 D. 5cm cm 32 6、一个三角形的三边长分别为a ,a ,b ,另一个三角形的三边长分别为a ,b ,b ,其中a>b ,若两个三角 形的最小内角相等,则b a 的值等于 ( ) A. 2 13+ B. 2 15+ C. 2 23+ D. 2 25+ 7、在凸10边形的所有内角中,锐角的个数最多是 ( ) A. 0 B. 1 C. 3 D. 5 8、若函数)0(>=k kx y 与函数x y 1 =的图象相交于A ,C 两点,AB 垂直x 轴于B ,则△ABC 的面积为 ( ) A. 1 B. 2 C. k D. k 2 二、填空题 1、若四边形的一组对边中点的连线的长为d ,另一组对边的长分别为a ,b ,则d 与2 b a +的大小关系是_______ 2、如 图8-5,AA ′、BB ′分别是∠ 60° A B C D A C D P 图8-1 图8-2 图8-3 图8-7 图 8-4 ′ 图8-5 A ′

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

初中数学竞赛专项训练--找规律题

观察——归纳—猜想——找规律 给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题 的思路是实施特殊向一般的简化;具体方法和步骤是: (1)通过对几个特例的分析,寻找规律并且归纳; (2)猜想符合规律的一般性结论; (3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字类 基本技巧 (一)标出序列号: 例如,观察下列各式数:0,3,8,15,24,……。 我们把有关的量放在一起加以比较: 给出的数:0,3,8,15,24,……。 序列号: 1,2,3, 4, 5,……。 容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n 项是2 n -1 (二)公因式法: 每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。 例如:1,9,25,49,(81),(121),的第n 项为( 2 )12(-n ), 1,2,3,4,5.。。。。。。,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以 此类推。 (三)增副 A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且是n 的3次幂,即:n 3 +1 B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n 2 (四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。 例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……, 序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12 -n 。再看原数列是同时减2得到的新数列,则在12 -n 的基础上加2,得 到原数列第n 项 12+n (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并 恢复到原来。 例 : 4,16,36,64,?,144,196,… ?(第一百个数) 同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n 项即n 2 ,原数列是同除以4得到的新数列,所以求出新数列n 的公式后再乘以4即,4 n 2 ,则求出第一百个数为4*1002 =40000 (一)等差数列 例题:2,5,8,( )。 例题5: 12,15,18,( ),24,27。 A.20 B.21 C.22 D.23 (二)等比数列

初中数学竞赛专题选讲-三点共线

初中数学竞赛专题选讲 三点共线 一、内容提要 1. 要证明A ,B ,C 三点在同一直线上, A 。 B 。 C 。 常用方法有:①连结AB ,BC 证明∠ABC 是平角 ②连结AB ,AC 证明AB ,AC 重合 ③连结AB ,BC ,AC 证明 AB +BC =AC ④连结并延长AB 证明延长线经过点C 2. 证明三点共线常用的定理有: ① 过直线外一点有且只有一条直线和已知直线平行 ② 经过一点有且只有一条直线和已知直线垂直 ③ 三角形中位线平行于第三边并且等于第三边的一半 ④ 梯形中位线平行于两底并且等于两底和的一半 ⑤ 两圆相切,切点在连心线上 ⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 二、例题 例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB , PN ⊥CD 求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM ⊥AB ,PN ⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴ M ,N ,P 三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直 线上 已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和 BD 的交点 求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行

∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称 点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 X ∴B ,O ,C 三点在同一直线上 ∵OB =OC ∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B O 1 和⊙O 2于E ,F 。 求证:AE ,AF 和⊙O 1和⊙O 2的直径成比例 ,

相关主题
文本预览
相关文档 最新文档