第八章 稳恒磁场
- 格式:pdf
- 大小:311.36 KB
- 文档页数:12
磁场 磁感应强度 基本磁现象1、通有电流的导线周围,小磁针会发生偏转。
2、磁铁附近的载流导线及载流线圈会受到力的作用。
3、载流导线之间或载流线圈之间有相互作用力。
4、电子射线束在磁场中路径发生偏转。
一切磁现象的根源是电流。
任何物质的分子中都存在有圆形电流,称为分子电流.分子电流相当于一个基元磁铁。
当物体不显示磁性时,各分子电流作无规则的排列, 它们对外界所产生的磁效应互相抵消。
在外磁场的作用下,与分子电流相当的基元磁铁将趋向于沿外磁场方向取向,从而使整个物体对外显示磁性。
磁感应强度磁现象中,电流与电流之间,电流与磁铁之间以及磁铁与磁铁之间的相互作用是通过一种叫磁场的特殊物质来传递的。
磁场对外的重要表现:1、磁场对进入场中的运动电荷或载流导体有磁力的作用;2、载流导体在磁场中移动时,磁场的作用力将对载流导体作功,表明磁场具有能量。
引入磁感应强度矢量B 来描述磁场的强弱和方向。
试验线圈(线度必须小,其引入不影响原有磁场的性质)的面积为 S ∆,线圈中电流为0I ,则定义试验线圈的磁矩为 n S I P m ∆0= 磁矩是矢量,其方向与线圈的法线方向一致,n 表示沿法线方向的单位矢量,法线与电流流向成右螺旋系。
(附图)线圈受到磁场作用的力矩(称为磁力矩)使试验线圈转到一定的位置而稳定平衡。
此时,线圈所受的磁力矩为零,此时线圈正法线所指的方向,定义为线圈所在处的磁场方向。
如果转动试验线圈,只要线圈稍偏离平衡位置,线圈所受磁力矩就不为零。
当试验线圈从平衡位置转过090时,线圈所受磁力矩为最大。
在磁场中给定点处,比值m P M max 仅与试验线圈所在位置有关,即只与试验线圈所在处的磁场性质有关。
规定磁感应强度矢量B 大小为m P M B max =磁场中某点处磁感应强度的方向与该点处试验线圈在稳定平衡位置时的法线方向相同;磁感应强度的量值等于具有单位磁矩的试验线圈所受到的最大磁力矩。
单位:磁感应强度的国际单位为特斯拉,简称特。
第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB)180cos 150(cos 60cos 400︒︒-=R Iπμ)231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外 2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B 环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里 P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。
磁场和电场一样具有能量、动量和质量,是一种特殊的物质,叫场物质。
P是矢量,电流I 的方向m穿过磁场中某一曲面的磁力线总数,称为穿过该曲面的磁通量,用符号的磁通量为 d d m m S SB S ΦΦ==⋅⎰⎰ Wb ),1Wb =12m T ⋅。
SB dS ⋅=⎰在给定点P 所产生的磁感应强度称为真空的磁导率1-⋅m H )任意形状的载流导线在给定点P 产生的磁场的方向相同,则得LB dl ⋅⎰cos B dl θ=⎰0=⎰ 2002I d πμϕπ=⎰μ= 或电流方向反过来),则 ⎰⋅L l d B=-I 0μ0=l d0L B dl μ⋅=∑⎰的电流方向与回路L 的绕行方向符合右螺旋法则时,,则为0, 是所有电流产生.),sin(B l Id BIdl dF =B l Id F d ⨯=F =⎰F d =⎰⨯B l Id 真空中两条无限长的载流平行导线单位长度间相互作用力 a I I dl dF πμ2210=线圈磁矩的方向n与磁场B的方向成ϕ角(线圈平面与磁场的方向成θ角) 1F =θsin 1BIl 导线da 受力 1F '=)sin(1θπ-BIl = 2F =2BIl 导线cd 受力 2F '=2BIl载流导线电流保持不变,磁力所做的功等于电流强度乘以磁通量的增量.ΔP在外磁场作用下分子的附加磁矩mP的电子的进动轨道磁矩为m,e。
电子进动的方向是:0d (Lμ⋅=∑⎰B l 对于磁场,引入磁场强度矢量(辅助矢量),⎰(B μ即得有磁介质时的安培环路定理i LH dl I ⋅=∑⎰- H曲线与M - H曲线相似,可见B与H不成线性关系,即铁磁质的磁导率μ不再是常数、而是与H有关。
磁滞现象与磁滞回线时、磁介质反复磁化,分子振动加剧、温度升高,产生H的电流提供的热损曲线所围的面积等于反复磁化的一个周期中单位体积的。
课时:2课时教学目标:1. 理解稳恒磁场的基本概念,包括磁感应强度、磁场中的高斯定理、毕奥-萨伐尔定律等。
2. 掌握毕奥-萨伐尔定律的应用,能够计算载流导线产生的磁场。
3. 理解安培环路定理,并能够运用其解决实际问题。
4. 了解磁矩、磁力矩、洛伦兹力等概念,并掌握其应用。
教学重点:1. 稳恒磁场的基本概念和公式。
2. 毕奥-萨伐尔定律的应用。
3. 安培环路定理的推导和应用。
教学难点:1. 毕奥-萨伐尔定律公式的推导和应用。
2. 安培环路定理的推导和应用。
教学过程:第一课时一、导入1. 回顾静电场的基本概念,引出稳恒磁场。
2. 介绍稳恒磁场的基本概念,如磁感应强度、磁场中的高斯定理等。
二、新课讲授1. 磁感应强度:- 定义磁感应强度,讲解其大小和方向。
- 举例说明磁感应强度在生活中的应用。
2. 磁场中的高斯定理:- 介绍高斯定理的概念,讲解其数学表达式。
- 举例说明高斯定理在解决实际问题中的应用。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁感应强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁感应强度。
四、总结1. 回顾本节课所学内容,强调稳恒磁场的基本概念和公式。
2. 布置课后作业,巩固所学知识。
第二课时一、导入1. 回顾上一节课所学内容,引出毕奥-萨伐尔定律。
2. 介绍毕奥-萨伐尔定律的概念,讲解其数学表达式。
二、新课讲授1. 毕奥-萨伐尔定律:- 定义毕奥-萨伐尔定律,讲解其数学表达式。
- 举例说明毕奥-萨伐尔定律在解决实际问题中的应用。
2. 安培环路定理:- 介绍安培环路定理的概念,讲解其数学表达式。
- 推导安培环路定理,讲解其推导过程。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁场强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁场强度。
四、总结1. 回顾本节课所学内容,强调毕奥-萨伐尔定律和安培环路定理的应用。
2. 布置课后作业,巩固所学知识。
教学反思:1. 本节课通过理论讲解和实例分析,帮助学生掌握了稳恒磁场的基本概念和公式。