信号处理-习题(答案)
- 格式:doc
- 大小:767.50 KB
- 文档页数:33
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
信号处理基础课后练习题含答案信号处理是一种重要的技术,涉及到音频、图像、视频等众多领域。
信号处理技术能够从原始信号中提取出有用的信息,帮助我们更好地理解和分析数据。
在学习信号处理时,我们必须进行实践,以加深对理论知识的理解。
下面是一些信号处理基础课后练习题及其答案。
问题1.对于给定的数字信号 $x[n] = \\{1, 2, 3, 4, 5\\}$,请计算其平均值和方差。
2.对于信号 $x(t) = 2\\sin(2\\pi f_1 t) + 3\\cos(2\\pi f_2 t +\\phi)$,请说明其频率和相位。
3.对于滤波器系统 $H(z) = \\frac{1}{1 - az^{-1}}$,请确定其系统函数的长度与阶数,说明其类型。
4.对于数字信号 $x[n] = \\{1, 2, 0, 4, 5, 1\\}$,请绘制其幅度谱和相位谱。
答案问题1数字信号 $x[n] = \\{1, 2, 3, 4, 5\\}$ 的平均值为:$$ \\mu = \\frac{1 + 2 + 3 + 4 + 5}{5} = 3 $$而方差为:$$ \\sigma^2 = \\frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5} = 2 $$问题2信号 $x(t) = 2\\sin(2\\pi f_1 t) + 3\\cos(2\\pi f_2 t + \\phi)$ 的频率为f1和f2,而相位为 $\\phi$。
问题3滤波器系统 $H(z) = \\frac{1}{1 - az^{-1}}$ 的系统函数长度为2,阶数为1,是一个一阶滤波器。
问题4数字信号 $x[n] = \\{1, 2, 0, 4, 5, 1\\}$ 的幅度谱和相位谱幅度谱幅度谱相位谱相位谱以上是信号处理基础课后练习题及其答案。
通过这些练习,我们可以更好地理解信号处理的基本概念和实践应用,以加深知识点的掌握。
数字信号处理经典习题(北理工826必备)(附答案)第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前让信号通过一个低通滤波器,是为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称位“抗折叠”滤波器。
在D/A变换之后都要让信号通过一个低通滤波器,是为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故友称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理 计算题:18c 因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T 8π没有影响,故整个系统的截止频率由)(ωj eH 决定,是625Hz 。
(b )采用同样的方法求得kHz T 201=,整个系统的截止频率为Hz Tf c 1250161==二、离散时间信号与系统频域分析 计算题:1( 2(2))(*n x (共轭) 解:DTFT )(**])([)(*)(*ωωωj n n jn jn e X e n x en x n x -∞-∞=∞-∞=-===∑∑2.计算下列各信号的傅里叶变换。
(a )][2n u n- (b )]2[)41(+n u n(c )]24[n -δ (d )nn )21(解:(a )∑∑-∞=--∞-∞==-=2][2)(n nj n nj n ne en u X ωωωωnj e 11)1(==∞( ((X =3 (1))(*n x - (2))](Re[n x (3) )(n nx解: (1))(*])([)(*)(*jw n n jw n jwne X en x en x=-=-∑∑∞-∞=--∞-∞=-(2)∑∑∞-∞=-*-*∞-∞=-+=+=n jw jw jwn n jwne X e X e n xn x en x )]()([21)]()([21)](Re[(3)dw e dX j e n x dw d j dw e n dx j en nx jw n jwnn jwn n jwn)()()(1)(==-=∑∑∑∞-∞=-∞-∞=-∞-∞=- 4.序列)(n x 的傅里叶变换为)(jwe X ,求下列各序列的傅里叶变换。
数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。
答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。
答案:两倍3.傅里叶变换可以将信号从时域变换到________。
答案:频域4.信号的频率和________有关。
答案:周期5.数字信号处理系统的输出信号一般是________信号。
答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。
2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。
答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。
3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。
答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。
四、简答题1.请简要介绍数字信号处理的基本原理。
答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。
1.6自测题及参考答案1.自测题(1) 数字域频率ωπ2=所对应的信号的实际频率为 。
(2)序列)6sin()(1n n x π=的周期是 ,序列)6sin()4cos()(2n n n x ππ+=的周期是 。
(3)要使一个正弦序列 )sin()(ϕω+=n A n x 是周期序列,必须满足 条件。
(4) 采样信号的频谱是原模拟信号频谱的周期函数,其周期为 ,折叠频率为 。
(5)某线性时不变离散系统的单位脉冲响应为)(3)(n u n h n=,则该系统的因果性及稳定性分别为__________、__________。
(6) 已知某离散系统的输入输出关系是)2(2)1()(-+-=n x n x n y ,试判断系统的线性时不变和因果特性分别为 , , 。
(7) 已知系统的输入输出关系为8)(3)(+=n x n y ,则系统的线性性和时不变性分别为 及 。
(8) 有一连续信号)40cos()(t t x a π=,用采样间隔s T 02.0=对)(t x a 进行采样,则采样信号)(t x a 的表达式为=)(t x a_________;采样后所得时域离散信号)(n x 的周期为__________。
(9) 若一个理想采样及恢复系统,采样频率为π6=Ωs ,采样后经一个带宽为π3,增益为3/1的理想低通还原。
现有输入t t t t x a πππ5cos 2cos cos )(++=,输出信号)(t y 为 。
(10)如果截止频率为8/π的低通数字滤波器,采样频率为KHz T f s 10/1==,那么等效的模拟滤波器的截止频率是 。
2.参考答案(1)采样频率s f(2)12,244128)12,8gcd(128),gcd(2121=⨯=⨯==N N N N N(3)数字频率ω是π的函数(4)采样频率s Ω或s f ,2s Ω或2s f(5)因果非稳定(6)线性,时不变,因果 (7)非线性,时不变(8)∑∑∞-∞=∞-∞=-=-=n n aa n t n nT t nT xt x)02.0()8.0cos()()()(ˆδπδ,5=N (k 为2)(9)t t t y ππcos 22cos )(+= (10) 625Hz2.6 自测题及参考答案1.自测题(1) 对于稳定的因果系统,如果输入一个频率为0ω的复正弦序列nj en x 0)(ω=,则其输出为)(n y = ,设系统的频率响应)(ωj e H 已知。
对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。
2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。
5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、用来计算N =16点DFT ,直接计算需要(N 2)16*16=256_次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32 次复乘法。
7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。
8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型的运算速度最高。
9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_。
11、N=2M点基2FFT ,共有 M 列蝶形,每列有N/2 个蝶形。
12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。
16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。
17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。
18、单位脉冲响应分别为和的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n),=H 1(e j ω)×H 2(e j ω)。
页脚内容1数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号;分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即页脚内容2f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,页脚内容3若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
第三章 傅里叶分析I. 傅里叶变换概述3.1 [习题3.2]设序列x (n )=δ(n-m ),求其频谱X (e j ω),并讨论其幅频和相频响应分析:求解序列的频谱有两种方法:○1先求序列的z 变换X (z ),再求频谱ωωj e z j z X e X ==)()(,即X (e j ω)为单位圆上的z 变换; ○2直接求序列的傅里叶变换 ∑∞-∞=-=n nj j en x e X ωω)()(解:对序列x (n )先进行z 变换,再求频谱,得m z m n ZT n x ZT z X -=-==)]([)]([)(δ则ωωωjm e z j e z X e X j -===)()(若系统的单位采样响应h (n )=x (n ),则系统的频率响应)}(exp{)(1)()(ωϕωωωωωj e H e e e X e H j jm jm j j ====--•故其幅频和相频响应(如图)分别为幅频响应 1)(=ωj e H 相频响应 ωωϕm -=)(由图可见,该系统的频率响应具有单位幅值以及线性相位的特点。
3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω)表示下列序列的傅里叶变换:(1))1()1()(1n x n x n x --+-= (2) )]()([21)(2n x n x n x -+=*分析:利用序列翻褶后的时移性质和线性性质来求解,即)()(ωj e X n x ⇔,)()(ωj e X n x -⇔-)()(ωωj m j e X e n m x --⇔-解:(1)由于)()]([ωj e X n x DTFT =,)()]([ωj e X n x DTFT -=-,则)()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=--故ωωωωωcos )(2])[()]([1j j j j e X e e e X n x DTFT ---=+= (2)由于)()]([ωj e X n x DTFT **=-故)](Re[2)()()]([2ωωωj j j e X e X e X n x DTFT =+=* 3.3 设X (e j ω)是如图所示的信号x (n )的傅里叶变换,不必求出X (e jω),试完成下列计算:(1))(0j e X(2) ⎰-ππωωd e X j )((3) ωππωd e X j ⎰-2)(分析:利用序列傅里叶变换的定义以及帕塞瓦定理来求解。
(1) 序列的傅里叶变换公式为:正变换 ∑∞-∞=-=n nj j en x e X ωω)()(反变换 ⎰-=ππωωωπd e e X n x n j j )(21)((2) 帕塞瓦定理⎰∑-∞-∞==ππωωπd e X n x j n 22)(21)(解:(1)由傅里叶正变换公式可知ω=0,则6)()()(00===∑∑∞-∞=∞-∞=⋅-n n nj j n x en x e X(2)由于e j0=1,则由傅里叶反变换公式可知n=0,故πππωωππωππω422)(2)()(00====⋅=--⎰⎰n j j j n x d e e X d e X(3) 由帕塞瓦定理,得ππωππω28)(2)(22==∑⎰∞-∞=-n j n x d e XII. 周期序列的离散傅里叶级数(DFS )3.4 如图所示,序列x (n )是周期为6的周期性序列,试求其傅里叶级数的系数。
分析:利用DFS 的定义求解,即∑-===1)(~)](~[)(~N n kn N W n x n x DFS k X ,其中k = 0 ~ (N-1)解:已知N = 6,则由DFS 的定义得k jk jk j k j k j n nk j n kn eeee e en x W n x k X 5624623622626250625061068101214)(~)(~)(~ππππππ-----=-=+++++===∑∑对上式依次取k = 0 ~ 5,计算求得339)5(~33)4(~0)3(~33)2(~339)1(~60)0(~j X j X X j X j X X +=-==+=-==,,,, 3.5 设⎩⎨⎧≤≤+=n n n n x 其他,,0401)(,)2()(4-=n R n h令6))(()(~n x n x =,6))(()(~n h n h =,试求)(~n x 与)(~n h 的周期卷积。
分析:可以利用列表法求解,直观方便。
由于)(~)(~n x n y =○*∑-=-=1)(~)(~)(~N m m n h m x n h 只要将列表中对应于某个n 的一行中的)(~m n h -值和第一行中与之对应的)(~m x 值相乘,然后再将所有乘积结果相加,就得到此n 的)(~n y 值 解:注意:本题需要利用下一节中有限序列与周期序列的关系以及序.........................列循环移位的概念。
.........在一个周期(N =6)内的计算卷积值)(~)(~n x n y =○*∑-=-=1)(~)(~)(~N m m n h m x n h 则)(~n x 与)(~n h 的周期卷积)(~n y 值(n =0~5)如下表所示:III. 离散傅里叶变换(DFT )3.6 已知x (n )如图所示,为{1,1,3,2},试画出序列x ((-n ))5,x ((-n ))6 R 6(n),x ((n ))3 R 3(n),x ((n ))6, x ((n-3))5R 5(n) 和x ((n ))7 R 7(n)的略图。
分析:此题需注意周期延拓的数值,也就是x ((n ))N 中N 的数值。
如果N 比序列的点数多,则需补零;如果N 比序列的点数少,则需将序列按N 为周期进行周期延拓,造成混叠相加形成新的序列。
解:各序列的略图如图所示。
3.7 试求下列有限长序列的N 点离散傅里叶变换(闭合形式表达式):(1))()(n R a n x N n = (2)N n n n n x <<-=000)()(,δ (3))()(n nR n x N = (4))()(2n R n n x N = 分析:利用有限长序列的DFT 的定义,即10)()(10-≤≤=∑-=N k W n x k X N n knN ,解:(1)因为)()(n R a n x N n =,所以k Nj N N n nk Njn N n knNn aea ea Wa k X ππ2121011)(--=--=--===∑∑(2)因为N n n n n x <<-=000)()(,δ,所以k n Njn n knNN n knNeW W n n k X 002100)()(πδ-=-===-=∑(3)由)()(n nR n x N =,得∑-==10)(N n knN nW k X注意:为了便于求解,必须利用代数简化法消除掉上式中的变量.........................n .。
.∑-=+=10)1()(N n n k N kNnW k X W NW W N WN W N W N W W W N W W W nW nWW k X kNk N N n knNkNN N k N k N k N N k N k N k N k N N n n k N N n kn Nk N-=--+--=+--=-+-+++--++++=-=-∑∑∑-=---=+-=11)1()1(])1()2(2[])1(32[)1)((11)1(32)1(321)1(1则所以kNW Nk X --=1)( (4)注意:本题可利用上题的结论来进行化简。