——14.1整式的乘法同步练习及含答案4
- 格式:doc
- 大小:298.00 KB
- 文档页数:3
第十四章 整式的乘法与因式分解14.1整式的乘法专题一 幂的性质1.以下运算中,正确的选项是〔 〕A .3a 2-a 2=2B .(a 2)3=a 9C .a 3•a 6=a 9D .(2a 2)2=2a 4 2.以下计算正确的选项是〔 〕A .3x ·622x x = B .4x ·82x x = C .632)(x x -=- D .523)(x x =3.以下计算正确的选项是〔 〕A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6·a 2=a 12D .( -a 6)2=a 12 专题二 幂的性质的逆用4.假设2a =3,2b =4,那么23a+2b 等于〔 〕 A .7 B .12 C .432 D .1085.假设2m=5,2n=3,求23m+2n的值.专题三 整式的乘法7.以下运算中正确的选项是〔 〕A .2325a a a +=B .22(2)()2a b a b a ab b +-=--C .23622a a a ⋅=D .222(2)4a b a b +=+8.假设〔3x 2-2x +1〕〔x +b 〕中不含x 2项,求b 的值,并求〔3x 2-2x +1〕〔x +b 〕的值.9.先阅读,再填空解题: 〔x +5〕〔x +6〕=x 2+11x +30; 〔x -5〕〔x -6〕=x 2-11x +30; 〔x -5〕〔x +6〕=x 2+x -30; 〔x +5〕〔x -6〕=x 2-x -30.〔1〕观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:________. 〔2〕根据以上的规律,用公式表示出来:________. 〔3〕根据规律,直接写出以下各式的结果:〔a +99〕〔a -100〕=________;〔y -80〕〔y -81〕=________.专题四 整式的除法 10.计算:〔3x 3y -18x 2y 2+x 2y 〕÷〔-6x 2y 〕=________.11.计算:236274319132)()(ab b a b a -÷-.12.计算:〔a -b 〕3÷〔b -a 〕2+〔-a -b 〕5÷〔a +b 〕4.状元笔记【知识要点】 1.幂的性质(1)同底数幂的乘法:nm nma a a +=⋅ (m ,n 都是正整数),即同底数幂相乘,底数不变,指数相加.(2)幂的乘方:()m nmn a a=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘.(3)积的乘方:()n n nab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加. (3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.3.整式的除法(1)同底数幂相除:m n m na a a -÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底数不变,指数相减.(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. 【温馨提示】1.同底数幂乘法法那么与合并同类项法那么相混淆.同底数幂相乘,应是“底数不变,指数相加〞;而合并同类项法那么是“系数相加,字母及字母的指数不变〞.2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加〞;幂的乘方,应是“底数不变,指数相乘〞.3.运用同底数幂的乘法(除法)法那么时,必须化成同底数的幂后才能运用上述法那么进行计算.4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减〞符号也可以看成系数的符号来参与运算. 【方法技巧】1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式. 2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否那么容易造成漏项或增项的错误.3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项.参考答案:1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22〔a 2〕2=4a 4,故D 错误.应选C . 2.C 解析:3x ·2235x xx +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 应选C .3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624a a a ÷=,故B 错误;C 中,628a a a ⋅=,故C 错误. 应选D .4.C 解析:23a+2b =23a ×22b =〔2a 〕3×〔2b 〕2=33×42=432.应选C .5.解:23m+2n=23m·22n=〔2m〕3·〔2n〕2 =53·32=1125.7.B 解析:A 中,由合并同类项的法那么可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法那么可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法那么可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法那么可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B . 8.解:原式=3x 3+〔3b -2〕x 2+〔-2b+1〕x+b ,∵不含x 2项,∴3b -2=0,得 ∴〔3x 2-2x+1〕〔x+23〕=3x 3-2x 2+x+2x 2-43x+23=3x 3-13x+23.9.解:〔1〕观察积中的一次项系数、常数项与两因式中的常数项的关系是: 一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; 〔2〕根据以上的规律,用公式表示出来:〔a+b 〕〔a+c 〕=a 2+〔b+c 〕a+bc ;〔3〕根据〔2〕中得出的公式得:〔a+99〕〔a -100〕=a 2-a -9900;〔y -80〕〔y -81〕=y 2-161y+6480. 10.-12x+3y -16解析:〔3x 3y -18x 2y 2+x 2y 〕÷〔-6x 2y 〕=〔3x 3y 〕÷〔-6x 2y 〕-18x 2y 2÷〔-6x 2y 〕+x 2y÷〔-6x 2y 〕=-12x+3y -16.11.解:原式。
初初初初初初初初初初初初初初初初初初初初初初初初14.1整式的乘法一、选择题1.计算3a2⋅a3的结果是()A. 4a5B. 4a6C. 3a5D. 3a62.要使(x2+ax+5)⋅(−6x3)的展开式中不含x4的项,则a应等于()D. 1A. −1B. 0C. 163.下列计算错误的是()A. (−a)⋅(−a)2=a3B. (−a)2⋅(−a)2=a4C. (−a)3⋅(−a)2=−a5D. (−a)3⋅(−a)3=a64.已知(x−3)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A. m=3,n=9B. m=3,n=6C. m=−3,n=−9D. m=−3,n=95.下列各式中,计算结果错误的是().A. (x+2)(x−3)=x2−x−6B. (x−4)(x+4)=x2−16C. (2x+3)(2x−6)=2x2−3x−18D. (2x−1)(2x+2)=4x2+2x−26.若(x+m)(x+n)=x2−5x−15,则()A. m,n同时为正B. m,n同时为负C. m,n异号且绝对值小的为负D. m,n异号且绝对值大的为负7.已知a m=5,a n=2,则a m+n的值等于()A. 25B. 10C. 8D. 78.下列计算正确的是()A. (x3)2=x5B. (x3)2=x6C. (x n+1)2=x2n+1D. x3⋅x2=x6二、填空题9.若4x=3,则4x+2=________.10.若−x a+b y5与3x4y2b−a的和是单项式,则(2a+2b)(a−3b)的值为.11.若x3n=5,y2n=3,则x6n y4n的值为.12.计算:(m−n)·(n−m)3·(n−m)4=________.13.若m为正偶数,则(a−b)m⋅(b−a)n与(b−a)m+n的结果(填“相等”或“互为相反数”).三、计算题14.计算:(1)(m−2n)(−m−n);(2)(x+1)(x2−x+1);(3)(a−b)(a2+ab+b2);(4)x(x2+x−1)−(2x2−1)(x−4).四、解答题15.小明有一块长为m米,宽为n米的长方形玻璃,长、宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面的大小相同),则台面面积是多少?16.(1)已知m+4n−3=0,求2m⋅16n的值;(2)已知x2m=2,求(2x3m)2−(3x m)2的值.17.若x=2m+1,y=3+4m.(1)请用含x的式子表示y;(2)如果x=4,求此时y的值.18.(1)已知−2x3m+1y2n与4x n−2y6−m的积和−4x4y2是同类项,求m,n的值;a xb y+8与单项式4a2y b3x−y的和为单项式,求这两个单项式的积.(2)已知单项式−23答案和解析1.【答案】C【解析】解:3a2⋅a3=3a5.故选:C.直接利用单项式乘以单项式运算法则化简得出答案.此题主要考查了单项式乘以单项式运算,正确掌握相关运算法则是解题关键.2.【答案】B【解析】【分析】本题主要考查单项式乘多项式.先展开,然后根据不含x4项可知x4项的系数为0,计算即可.【解答】解:(x2+ax+5)⋅(−6x3)=−6x5−6ax4−30a3,∵展开式中不含x4的项,∴−6a=0,∴a=0,故选B.3.【答案】A【解析】【分析】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.根据同底数幂的乘法法则,结合选项进行判断即可.【解答】解:A、(−a)⋅(−a)2=−a3,原式计算错误,故本选项正确;B、(−a)2⋅(−a)2=a4,计算正确,故本选项错误;C、(−a)3⋅(−a)2=−a5,计算正确,故本选项错误;D、(−a)3⋅(−a)3=a6,计算正确,故本选项错误;故选A.4.【答案】A【解析】【分析】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.不含某一项就是说这一项的系数为0.【解答】解:∵原式=x3+(m−3)x2+(n−3m)x−3n,又∵乘积项中不含x2和x项,∴(m−3)=0,(n−3m)=0,解得,m=3,n=9.故选A.5.【答案】C【解析】【分析】本题主要考查多项式乘多项式,根据多项式乘多项式的运算法则:用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加,逐项计算即可求解.【解答】解:A.(x+2)(x−3)=x2−3x+2x−6=x2−x−6,故正确;B.(x−4)(x+4)=x2−4x+4x−16=x2−16,故正确;C.(2x+3)(2x−6)=4x2−12x+6x−18=4x2−6x−18,故错误;D.(2x−1)(2x+2)=4x2+4x−2x−2=4x2+2x−2,故正确;故选C.6.【答案】D【解析】【分析】本题主要考查多项式乘多项式.根据多项式乘多项式展开,求出m+n=−5,mn=−15,判断即可.【解答】解:(x+m)(x+n)=x2+(m+n)x+mn,∴m+n=−5,mn=−15,∵mn=−15<0,∴m,n异号,又∵m+n=−5<0,∴m,n中负数的绝对值大,故选D.7.【答案】B【解析】【分析】本题考查了同底数幂的乘法,同底数幂的乘法:底数不变指数相加,根据同底数幂的乘法,可得答案.【解答】解:∵a m=5,a n=2,∴a m+n=a m⋅a n=10,故选B.8.【答案】B【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用,着重培养学生的运算能力.解题的关键是会利用同底数幂的乘法、幂的乘方、积的乘方计算.【解答】A.(x3)2=x6,故A错误;B.(x3)2=x6,故B正确;C.(x n+1)2=x2n+2,故C错误;D.x3⋅x2=x3+2=x5,故D错误.故选B.9.【答案】48【解析】【分析】本题考查同底数幂的运算性质,代数式求值.根据a m●a n=a m+n,将所求代数式变形为4x+2=4x×42,再把4x=3代入计算即可.【解答】解:∵4x=3,∴4x+2=4x×42=3×16=48.故答案为48.10.【答案】−64【解析】【分析】此题考查了多项式乘多项式,以及合并同类项,熟练掌握同类项性质及运算法则是解本题的关键.根据题意得到两式为同类项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵−x a+b y5与3x4y2b−a的和是单项式,∴−x a+b y5与3x4y2b−a为同类项,即a+b=4①2b−a=5②①+②得b=3,再代入①得a=1,则(2a+2b)(a−3b)=(2+6)×(1−9)=−64,故答案为:−6411.【答案】225【解析】【分析】本题主要考查同底数幂的乘法、幂的乘方、积的乘方的应用。
14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 .5.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.9.先化简,再求值:2x 2y·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.10.已知(-2ax b y 2c )(3x b -1y)=12x 11y 7,求a +b +c 的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( ) A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A.3xy B.-3xy C.-1 D.18.一个拦水坝的横断面是梯形,其上底是3a2-2b,下底是3a+4b,高为2a2b,要建造长为3ab的水坝需要多少土方?9.计算:2xy2(x2-2y2+1)=.10.计算:-2x(3x2y-2xy)=.中档题11.要使(x2+ax+5)(-6x3)的展开式中不含x4项,则a应等于( )A .1B .-1C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x -5y)(3x -y)=2x·3x +2x· +(-5y)·3x +(-5y)· = . 3.计算:(1)(2a +b)(a -b)= ;(2)(x -2y)(x 2+2xy +4y 2)= . 4.计算:(1)(3m -2)(2m -1); (2)(3a +2b)(2a -b);(3)(2x -3y)(4x 2+6xy +9y 2); (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.6.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为34a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 平方厘米.8.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 9.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-3 16.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A ,B ,C 三类卡片若干张,拼出了一个长为2a +b 、宽为a +b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A ,B ,C 三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A .-4x 2B .-4x 4C .-4x 6D .4x 610.(黔南中考)下列运算正确的是(D)A .a 3·a =a 3B .(-2a 2)3=-6a 5C .a 3+a 5=a 10D .8a 5b 2÷2a 3b =4a 2b11.计算:(1)2x 2y 3÷(-3xy); (2)10x 2y 3÷2x 2y ; (3)3x 4y 5÷(-23xy 2).12.计算(6x 3y -3xy 2)÷3xy 的结果是( )A .6x 2-yB .2x 2-yC .2x 2+yD .2x 2-xy13.计算:(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.14.计算:310÷34÷34= . 中档题15.下列说法正确的是( )A .(π-3.14)0没有意义B .任何数的0次幂都等于1C .(8×106)÷(2×109)=4×103D .若(x +4)0=1,则x ≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = . 18.已知(x -5)x =1,则整数x 的值可能为 . 19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h,一架喷气式飞机的速度为1.8×106 m/h,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法 第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4.2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z. (2)5a 2·(3a 3)2. 解:原式=5a 2·9a 6 =45a 8. 4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3. 6.3x 5y 4z . 7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2;解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3.(2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4.9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7 =-8x 5y 7.当x =4,y =14时,原式=-12.10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7. ∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C 2.D 3.C 4.计算:(1)(2xy 2-3xy)·2xy ; 解:原式=2xy 2·2xy -3xy·2xy =4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a)=a 3b 3+43a 3b 2.(3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1) =-2a 2b 2+6a 2b 3+2ab. (4)(34a n +1-b2)·ab. 解:原式=34a n +1·ab -b 2·ab=34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14. 6.C 7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3.答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方. 9.2x 3y 2-4xy 4+2xy 2. 10.-6x 3y +4x 2y .12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b) =(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x 2-8x +15;(2)x 2-2x -24.12.-5.13.(1)(x +1)(x +4);解:原式=x 2+5x +4.(2)(m +2)(m -3);解:原式=m 2-m -6.(3)(y -4)(y -5);解:原式=y 2-9y +20.(4)(t -3)(t +4).解:原式=t 2+t -12.14.x 2-9xy +8y 2.15.B16.20x 2.17.2.18.(1)(a +3)(a -2)-a(a -1);解:原式=a 2-2a +3a -6-a 2+a=2a -6.(2)(-7x 2-8y 2)·(-x 2+3y 2);解:原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x-2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4. (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa 2 =12h +2H. 答:需要(12h +2H)个这样的杯子.。
人教版八年级上册第十四章14.1--14.3分节练习题含答案14.1《整式的乘法》一.选择题1.计算(﹣2x2y3)•3xy2结果正确的是()A.﹣6x2y6B.﹣6x3y5C.﹣5x3y5D.﹣24x7y52.若()×(﹣xy)=3x2y2,则括号里应填的单项式是()A.﹣3y B.3xy C.﹣3xy D.3x2y3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 4.若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为()A.m=5,n=6B.m=1,n=﹣6C.m=1,n=6D.m=5,n=﹣6 5.等式(x+4)0=1成立的条件是()A.x为有理数B.x≠0C.x≠4D.x≠﹣46.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.17.计算的结果是()A.B.C.D.8.若2m=3,2n=4,则23m﹣2n等于()A.1B.C.D.9.若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的周长为()A.2a+4b+1B.2a+4b C.4a+4b+1D.8a+8b+210.如果一个三角形的底边长为2x2y+xy﹣y2,底边上的高为6xy,那么这个三角形的面积为()A.6x3y2+3x2y2﹣3xy3B.6x2y2+3xy﹣3xy2C.6x2y2+3x2y2﹣y2D.6x2y+3x2y211.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a12.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①②B.③④C.①②③D.①②③④二.填空题13.计算(﹣3a2b3)2•2ab=.14.计算6m5÷(﹣2m2)的结果为.15.计算:﹣2a2(a﹣3ab)=.16.计算:82014×(﹣0.125)2015=.17.代数式(x2+nx﹣5)(x2+3x﹣m)的展开式中不含x3,x2项,则mn=.18.已知:4x=3,3y=2,则:6x+y•23x﹣y÷3x的值是.19.对于实数a,b,c,d,规定一种运算=ad﹣bc,如=1×(﹣2)﹣0×2=﹣2,那么当=27时,则x=.三.解答题20.计算:(1)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]2(2)(﹣3a3)2﹣3a5•a﹣(﹣2a2)321.计算:(4x3y﹣xy3+xy)÷(﹣xy).22.先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=.23.已知3m=2,3n=5.(1)求3m+n的值;(2)求9m﹣n(3)求3×9m×27n的值.24.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)0+p2019q2020的值25.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).参考答案一.选择题1.解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5.故选:B.2.解:∵()×(﹣xy)=3x2y2,∴括号里应填的单项式是:3x2y2÷(﹣xy)=﹣3xy.故选:C.3.解:(A)a2与a3不是同类项,故A错误;(B)原式=a5,故B错误;(D)原式=a2b2,故D错误;故选:C.4.解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故选:B.5.解:∵(x+4)0=1成立,∴x+4≠0,∴x≠﹣4.故选:D.6.解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.7.解:=••=•=1×=.故选:A.8.解:23m﹣2n=23m÷22n=(2m)3÷(2n)2=33÷42=.故选:D.9.解:另一边长是:(4a2+8ab+2a)÷2a=2a+4b+1,则周长是:2[(2a+4b+1)+2a]=8a+8b+2.故选:D.10.解:三角形的面积为:×(2x2y+xy﹣y2)×6xy=6x3y2+3x2y2﹣3xy3.故选:A.11.解:∵a=8131=(34)31=3124b=2741=(33)41=3123;c=961=(32)61=3122.则a>b>c.故选:A.12.解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选:D.二.填空题13.解:原式=9a4b6•2ab=18a5b7,故答案为:18a5b7.14.解:6m5÷(﹣2m2)=﹣3m3,故答案为:﹣3m3.15.解:﹣2a2(a﹣3ab)=﹣2a3+6a3b.故答案为:﹣2a3+6a3b.16.解:原式=82014×(﹣0.125)2014×(﹣0.125)=(﹣8×0.125)2014×(﹣0.125)=﹣0.125,故答案为:﹣0.125.17.解:原式=x4+(n+3)x3+(3n﹣m﹣5)x2+(﹣mn﹣15)x+5m,根据展开式中不含x3,x2得:,解得:,∴mn=42,故答案为:42.18.解:∵4x=3,3y=2,∴6x+y•23x﹣y÷3x=6x•6y•23x÷2y÷3x=2x•3x•2y•3y(2x)3÷2y÷3x=2x•3y•(2x)3=(4x)2•3y=9×2=18,故答案为:18.19.解:∵=27,∴(x+1)(x﹣1)﹣(x+2)(x﹣3)=27,∴x2﹣1﹣(x2﹣x﹣6)=27,∴x2﹣1﹣x2+x+6=27,∴x=22;故答案为:22.三.解答题20.解:(1)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]2=﹣(x﹣y)2•(x﹣y)7•(x﹣y)6=﹣(x﹣y)15;(2)(﹣3a3)2﹣3a5•a﹣(﹣2a2)3=9a6﹣3a6+8a6=14a6.21.解:原式=4x3y÷(﹣xy)﹣xy3)÷(﹣xy)+xy÷(﹣xy)=﹣8x2+2y2﹣3.22.解:原式=x2﹣4xy+4y2﹣x2﹣3xy﹣4y2=﹣7xy,当x=﹣4,y=时,原式=﹣7×(﹣4)×=14.23.解:(1)3m+n=2×5=10;(2)原式=(2)3×9m×27n=3×32m×33n=3×4×125=1500.24.解:(1)(x2+px﹣)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx﹣x2+x﹣q=x4+(p﹣3)x3+(q﹣3p﹣)x2+(pq+1)x﹣q∵(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项∴∴(2)∵p=3,q=﹣(﹣2p2q)2+(3pq)0+p2019q2020的值=4p4q2+1+(pq)2019•q=4×81×+1﹣1×(﹣)=37+=37∴代数式(﹣2p2q)2+(3pq)0+p2019q2020的值为.25.解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211,将下式减去上式得:2S﹣S=211﹣1,即S=211﹣1,则1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n①,两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②,②﹣①得:3S﹣S=3n+1﹣1,即S=(3n+1﹣1),则1+3+32+33+34+…+3n=(3n+1﹣1).14.2乘法公式14.2.1平方差公式基础题1.下列各式中能用平方差公式的是( )A.(x+y)(y+x) B.(x+y)(-y-x) C.(-x+y)(y-x) D.(x+y)(y-x) 2.将图1中阴影部分的小长方形变换到图2位置,你根据两个图形的面积关系得到的数学公式是.图1图23.如图1,把一张长方形纸片沿着线段AB剪开,把剪成的两张纸片拼成如图2所示的图形.图1图2(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a,b的式子表示S1,S2;(2)请写出上述过程所揭示的乘法公式.4.运用平方差公式计算:(1)(m +2n)(m -2n); (2)(xy +5)(xy -5); (3)(-4a +3)(-4a -3); (4)(-x -y)(x -y).5.先化简,再求值:(x +1)(x -1)+x 2(1-x)+x 3,其中x =2.6.计算:(1)1 001×999; (2)1122-113×111.7.下列计算正确的是( )A .(a +3b)(a -3b)=a 2-3b 2B .(-a +3b)(a -3b)=-a 2-9b 2C .(-a -3b)(a -3b)=-a 2+9b 2D .(-a -3b)(a +3b)=a 2-9b 2中档题8.若(2x +3y)(mx -ny)=9y 2-4x 2,则( )A .m =2,n =3B .m =-2,n =-3C .m =2,n =-3D .m =-2,n =3 9.计算(x 2+14)(x +12)(x -12)的结果为( )A .x 4+116B .x 4-116C .x 4-12x 2+116D .x 4-18x 2+11610.三个连续奇数,若中间一个为n ,则它们的积是( )A .6n 3-6nB .4n 3-nC .n 3-4nD .n 3-n11.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是 . 12.计算:(1)(-3x 2+y 2)(y 2+3x 2); (2)(-3a -12b)(3a -12b); (3)(a +2b)(a -2b)-12b(a -8b).13.试说明:(14m 3+2n)(14m 3-2n)+(2n -4)(2n +4)的值和n 无关.14.解方程:(3x)2-(2x +1)(3x -2)=3(x +2)(x -2).15.某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a -3b)m ,请你计算一下这个游泳池的容积是多少? 综合题16.(1)计算并观察下列各式:(x -1)(x +1)= ; (x -1)(x 2+x +1)= ; (x -1)(x 3+x 2+x +1)= ;(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接写下面的空格. (x -1) =x 6-1; (3)利用你发现的规律计算:(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)= ;(4)利用该规律计算:1+4+42+43+…+42 018= .14.2.2 完全平方公式基础题1.根据完全平方公式填空:(1)(x +1)2=(x)2+2×(x)×(1)+(1)2= ;(2)(-x +1)2=(-x)2+2×(-x)×(1)+(1)2= ;(3)(-2a -b)2=(-2a)2+2×(-2a)×(-b)+(-b)2= .2.下列计算正确的是( )A .(x +y)2=x 2+y 2B .(x -y)2=x 2-2xy -y 2C .(x +1)(x -1)=x 2-1D .(x -1)2=x 2-1 3.计算:(1)(y +3)2= ;(2)(-4x +12)2= . 4.如图1,从边长为a 的正方形中剪去一个边长为b 的小正方形,然后将剩余部分剪拼成一个长方形(如图2),则上述操作所能验证的公式是( )A .(a +b)(a -b)=a 2-b 2B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2+ab =a(a +b)5.如图,将完全相同的四个长方形纸片拼成一个正方形,则可得出一个等式为( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +b)2=(a -b)2+4ab 6.计算:(a +1)2-a 2= .7.已知a 2+b 2=7,ab =1,则(a +b)2= .8.直接运用完全平方公式计算:(1)(3+5p)2; (2)(7x -2)2; (3)(-2a -5)2; (4)(-2x +3y)2.9.运用完全平方公式计算:(1)2012; (2)99.82.10.已知(a+b)2=25,ab=6,则a-b等于( )A.1 B.-1 C.1或-1 D.以上都不正确中档题11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+,但不小心把最后一项染黑了,你认为这一项是( )A.5y2B.10y2 C.100y2D.25y2 12.若(y+a)2=y2-6y+b,则a,b的值分别为( )A.a=3,b=9 B.a=-3,b=-9 C.a=3,b=-9 D.a=-3,b=9 13.已知a+b=5,ab=2,则(a-b)2的值为( )A.21 B.25 C.17 D.1314.将边长为a cm的正方形的边长增加4 cm后,所得新正方形的面积比原正方形的面积大( )A.4a cm2B.(4a+16)cm2C.8a cm2D.(8a+16)cm215.若(x-1)2=2,则式子x2-2x+5的值为.16.计算:(1)(a+b)2-(a-b)2;(2)(a-b)2(a+b)2;(3)(a-1)(a+1)(a2-1);(4)(2x-y)2-4(x-y)(x+2y).17.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)-(x+1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.综合题18.【关注数学文化】杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:11 112 1133 11464 11510105 1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4……按照前面的规律,则(a+b)5=.参考答案:14.2乘法公式14.2.1平方差公式1.D2.(a+b)(a-b)=a2-b2.3.解:(1)S1=(a+b)(a-b),S2=a2-b2.(2)(a+b)(a-b)=a2-b2.4.(1)(m+2n)(m-2n);解:原式=m2-4n2.(2)(xy+5)(xy-5);解:原式=x2y2-25.(3)(-4a+3)(-4a-3);解:原式=(-4a)2-32=16a2-9.(4)(-x-y)(x-y).解:原式=(-y)2-x2=y2-x2.5.解:原式=x2-1+x2-x3+x3=2x2-1.当x=2时,原式=2×22-1=7.6.(1)1 001×999;解:原式=(1 000+1)×(1 000-1)=1 0002-12=999 999.(2)1122-113×111.解:原式=1122-(112+1)×(112-1)=1122-(1122-1)=1122-1122+1=1.7.C8.B9.B10.C11.10.12.(1)(-3x 2+y 2)(y 2+3x 2);解:原式=(y 2)2-(3x 2)2=y 4-9x 4.(2)(-3a -12b)(3a -12b); 解:原式=(-12b)2-(3a)2=14b 2-9a 2. (3)(a +2b)(a -2b)-12b(a -8b). 解:原式=a 2-(2b)2-12ab +4b 2 =a 2-12ab. 13.解:原式=(14m 3)2-(2n)2+(2n)2-42 =116m 6-4n 2+4n 2-16 =116m 6-16. ∴原式的值和n 无关.14.解:9x 2-(6x 2-4x +3x -2)=3(x 2-4),9x 2-6x 2+4x -3x +2=3x 2-12,x =-14.15.解:(4a 2+9b 2)(2a +3b)(2a -3b)=(4a 2+9b 2)(4a 2-9b 2)=16a 4-81b 4.答:这个游泳池的容积是(16a 4-81b 4)m 3.16.(1)x 2-1;x 3-1;x 4-1;(2)(x 5+x 4+x 3+x 2+x +1);(3)x 7-1; (4)42019-13.14.2.2 完全平方公式1.(1)x 2+2x +1;(2)x 2-2x +1;(3)4a 2+4ab +b 2.2.C3.(1)y 2+6y +9;(2)16x 2-4x +14.4.A5.D 6.2a +1.7.9.8.(1)(3+5p)2;解:原式=9+30p +25p 2.(2)(7x -2)2;解:原式=49x 2-28x +4.(3)(-2a -5)2;解:原式=4a 2+20a +25.(4)(-2x +3y)2.解:原式=4x 2-12xy +9y 2.9.(1)2012;解:原式=(200+1)2=2002+2×200×1+12=40 000+400+1=40 401.(2)99.82.解:原式=(100-0.2)2=1002-2×100×0.2+0.22=10 000-40+0.04=9 960.04.10.C11.D12.D13.C14.D15.6.16.(1)(a+b)2-(a-b)2;解:原式=(a2+2ab+b2)-(a2-2ab+b2)=a2+2ab+b2-a2+2ab-b2=4ab.(2)(a-b)2(a+b)2;解:原式=[(a-b)(a+b)]2=(a2-b2)2=a4-2a2b2+b4.(3)(a-1)(a+1)(a2-1);解:原式=(a2-1)(a2-1)=(a2-1)2=a4-2a2+1.(4)(2x-y)2-4(x-y)(x+2y).解:原式=4x2-4xy+y2-4(x2+2xy-xy-2y2) =4x2-4xy+y2-4x2-4xy+8y2=9y2-8xy.17.(1)一;(2)解:x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.18.a5+5a4b+10a3b2+10a2b3+5ab4+b5.14.3 因式分解一、选择题1. 2019·唐山滦州期末若关于x的二次三项式x2-ax+36是完全平方式则a的值是( ) A.-6 B.±6 C.12 D.±122. 若a+b=3,a-b=7,则b2-a2的值为( )A.-21 B.21 C.-10 D.103. 计算(-2)2020+(-2)2019所得的正确结果是( )A.22019B.-22019C.1 D.24. 计算552-152的结果是( )A.40 B.1600 C.2400 D.28005. 2019·武汉期中把多项式3x3-6x2+3x分解因式下列结果正确的是( )A.x(3x+1)(x-3)B.3x(x2-2x+1)C.x(3x2-6x+3)D.3x(x-1)26. 2019·绍兴柯桥区月考若多项式x2-3(m-2)x+36能用完全平方公式分解因式则m的值为( )A.6或-2 B.-2 C.6 D.-6或27. 当a,b互为相反数时,式子a2+ab-4的值为( )A.-4 B.-3 C.0 D.48. 2019·毕节织金期末某同学粗心大意,分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字是( )A .8,1B .16,2C .24,3D .64,89. 2019·扬州邗江区月考 若2m +n =25,m -2n =2,则(m +3n )2-(3m -n )2的值为( ) A .200B .-200C .100D .-10010. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零 D .小于或等于零二、填空题11. 因式分解:m 2n -6mn +9n =________.12. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填括号)13. 分解因式x (x -2)+(2-x )的结果是________.14. 分解因式(x +2)2-3(x +2)的结果是____________.15. 把多项式x 2+mx +6分解因式得(x -2)(x +n ),则m =________.16. 2019·沈阳分解因式:-x 2-4y 2+4xy =________.17. 若2a =3b -1则4a 2-12ab +9b 2-1的值为________.18. 我们已经学过用面积来说明公式.如x 2+2xy +y 2=(x +y )2就可以用如图甲中的面积来说明.请写出图乙的面积所说明的公式:x 2+(p +q )x +pq =________.三、解答题19. 分解因式:26136x x -+20. 已知2246130a b a b +--+=,求a b +的值.21. 分解因式:2222()abcx a b c x abc +++22. 分解因式:2222(1)(2)(1)x x x x x x ++-++-人教版 九年级数学 14.3 因式分解课后训练-答案一、选择题1. 【答案】D [解析] 依题意得ax =±2×6x解得a =±12.2. 【答案】A3. 【答案】A [解析] (-2)2020+(-2)2019=-2×(-2)2019+(-2)2019=(-2)2019×(-2+1)=22019.4. 【答案】D [解析] 552-152=(55+15)×(55-15)=70×40=2800.5. 【答案】D [解析] 原式=3x(x 2-2x +1)=3x(x -1)2.6. 【答案】A [解析] 因为多项式x 2-3(m -2)x +36能用完全平方公式分解因式 所以-3(m -2)=±12.所以m =6或m =-2.7. 【答案】A [解析] 因为a ,b 互为相反数,所以a +b =0.所以a 2+ab -4=a(a +b)-4=0-4=-4.8. 【答案】B [解析] 由(x 2+4)(x +2)(x -▲)得出▲=2, 则(x 2+4)(x +2)(x -2)=(x 2+4)(x 2-4)=x 4-16,则■=16.9. 【答案】B [解析] 因为2m +n =25,m -2n =2, 所以(m +3n)2-(3m -n)2=[(m +3n)+(3m -n)][(m +3n)-(3m -n)]=(4m +2n)(-2m +4n)=-4(2m +n)(m -2n)=-4×25×2=-200.10. 【答案】B 【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<11. 【答案】n (m -3)2 【解析】m 2n -6mn +9n =n (m 2-6m +9)=n (m -3)2.12. 【答案】其中⑴是单项式变形,⑷是多项式的乘法运算,⑵中并没有写成几个整式的乘积的形式,只有⑶是因式分解13. 【答案】(x -2)(x -1) 【解析】公因式是(x -2),所以x (x -2)+(2-x )=(x -2)(x -1).14. 【答案】(x +2)(x -1) [解析] (x +2)2-3(x +2)=(x +2)(x +2-3)=(x +2)(x -1).15. 【答案】-5 [解析] 把x 2+mx +6分解因式得(x -2)(x +n),即x 2+mx +6=(x -2)(x +n)=x 2+(n -2)x -2n ,所以-2n =6,m =n -2.解得n =-3,m =-5.16. 【答案】-(x -2y)217. 【答案】0 [解析] 因为2a =3b -1所以2a -3b =-1.所以4a 2-12ab +9b 2-1=(2a -3b)2-1=(-1)2-1=0.18. 【答案】(x +p)(x +q) [解析] 根据题意可知 x 2+(p +q)x +pq =(x +p)(x +q).三、解答题19. 【答案】 (32)(23)x x --【解析】26136(32)(23)x x x x -+=--20. 【答案】5a b +=【解析】∵2246130a b a b +--+=,∴2244690a a b b -++-+=∴()()22230a b -+-=,∴2030a b -=⎧⎨-=⎩,∴23a b =⎧⎨=⎩,∴5a b +=()()abx c cx ab ++【解析】2222()()()abcx a b c x abc abx c cx ab +++=++22. 【答案】2(1)(21)(1)x x x x --++【解析】原式424322212x x x x x x x =+++----43221x x x =--+3(21)(21)x x x =---3(21)(1)x x =--2(1)(21)(1)x x x x =--++.。
可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。
第14章人教八年级数学上册第14章《整式的乘法》同步练习及(含答案)4 14.1.4 单项式乘单项式一、选择题1.计算2322)(xy y x -⋅的结果是( )A. 105y xB. 84y xC. 85y x -D.126y x2.计算)()41()21(22232y x y x y x -⋅+-的结果为( ) A. 36163y x - B. 0 C. 36y x - D. 36125y x - 3.计算2233)108.0()105.2(⨯-⨯⨯ 的结果是( )A. 13106⨯B. 13106⨯-C. 13102⨯D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( ) A. z y x 663 B. z y x 663- C. z y x 553 D. z y x 553-5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a6.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定7.计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( ) A. mn m y x 43 B. m m y x 22311+- C. n m m y x ++-232 D. n m y x ++-5)(311 8.下列计算错误的是( )A.122332)()(a a a =-⋅B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=---二、填空题1..___________))((22=x a ax2.3522)_)((_________y x y x -=3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a5.._____________)(4)3(523232=-⋅-b a b a6..______________21511=⋅⋅--n n n y x y x7.._____________)21()2(23=-⋅-⋅mn mn m 8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯9.若单项式423a b x y --与33a b x y +是同类项,则它们的积为 .10.若1221253()()m n n m a b a b a b ++-=,则m+n 的值为 .三、解答题1.计算)53(32)21(322yz y x xyz -⋅⋅-2.计算23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅3.已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.4.已知:693273=⋅m m ,求m .5.若32=a ,52=b ,302=c ,试用a .b 表示出c .14.1.4 单项式乘单项式一、选择题:BADA CCCB二、填空题:1﹨33a x ;2﹨-xy ;3﹨743x y ;4﹨43232a b c -;5﹨191636a b -; 6﹨2130n n x y -;7﹨5412m n ;8﹨241.210⨯;9﹨649x y -; 10﹨2.三、解答题:1、解:原式223123[()()]235xyz x y yz =-⨯⨯- 34415x y z = 2、解:原式333333453616a b a b a b =-- 337a b =-3、解:原式222511(14)()74xy x y x =⨯⨯ 8412x y = 当81,4-==y x 时, 原式84114()28=⨯⨯- 1612112()228=⨯⨯=4、解:963273m m =9361263333312612m m m m m ∴=∴=∴=∴=5、解:12303522222c a b a b ++==⨯⨯=⨯⨯= 1c a b ∴=++。
八年级数学上册14-1《整式的乘法》课时同步练习题(含答案)1、下列运算正确的是().A. x3⋅x3=x9B. x8÷x4=x2C. (ab3)2=ab6D. (2x)3=8x32、如果正方体的棱长是(1−2b)3,那么这个正方体的体积是().A. (1−2b)6B. (1−2b)9C. (1−2b)12D. 6(1−2b)63、计算:2(a5)2⋅(a2)2−(a2)4⋅(a3)2.4、若3x=15,3y=5,则3x−y等于().A. 5B. 3C. 15D. 105、已知2x+3y−4=0,则9x⋅27y=.6、已知:2m=a,2n=b,则22m+3n用a、b可以表示为().A. 6abB. a2+b3C. 2a+3bD. a2b37、若x,y均为正整数,且2x+1⋅4y=128,则x+y的值为().A. 3B. 5C. 4或5D. 3或4或58、如果a=355,b=444,c=533,那么a、b、c的大小关系是().A. a>b>cB. c>b>aC. b>a>cD. b>c>a9、根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明的多项式的乘法运算是().A. (a+3b)(a+b)=a2+4ab+3b2B. (a+3b)(a+b)=a2+3b2C. (b+3a)(b+a)=b2+4ab+3a2D. (a+3b)(a−b)=a2+2ab−3b210、已知a+b=m,ab=−4,化简(a−2)(b−2)的结果是().A. 6B. 2m−8C. 2mD. −2m11、已知(x−1)(x+3)=ax2+bx+c,求代数式9a−3b+c的值.12、要使(y2−ky+2y)(−y)的展开式中不含y2项,则k的值为().A. −2B. 0C. 2D. 313、计算:(−6x3+9x2−3x)÷(−3x)=().A. 2x2−3xB. 2x2−3x+1C. −2x2−3x+1D. 2x2+3x−114、下列计算正确的是().A. 10a4b3c2÷5a3bc=ab2cB. (a2bc)2÷abc=aC. (9x2y−6xy2)÷3xy=3x−2yD. (6a2b−5a2c)÷(−3a2)=−2b−53c15、下列等式错误的是().A. (2mn)2=4m2n2B. (−2mn)2=4m2n2C. (2m2n2)3=8m6n6D. (−2m2n2)3=−8m5n516、若(2a m b n)3=8a9b15成立,则().A. m=6,n=12B. m=3,n=12C. m=3,n=5D. m=6,n=517、计算(−32)2018×(23)2019的结果为().A. 23B.32C. −23D. −3218、已知x+4y−3=0,则2x⋅16y的值为.19、若2x=5,2y=3,则22x+y=.20、若5x=16,5y=2,则5x−2y=.21、比较255、344、433的大小().A. 255<344<433B. 433<344<255C. 255<433<344D. 344<433<25522、观察等式(2a−1)a+2=1,其中a的取值可能是().A. −2B. 1或−2C. 0或1D. 1或−2或023、已知x2n=3,则(19x3n)2⋅4(x2)2n的值是().A. 12B. 13C. 27 D. 12724、已知ab=a+b+1,则(a−1)(b−1)=.25、先化简,再求值:3a(2a2−4a+3)−2a2(3a+4),其中a=−2.26、若多项式乘法(x+2y)(2x−ky−1)的结果中不含xy项,则k的值为().A. 4B. −4C. 2D. −227、下列运算正确的是().A. a3+a3=2a6B. (−2ab2)3=−6a3b6C. (28a3−14a2+7a)÷7a=4a2−2aD. a2⋅a3=a528、计算(12x3−8x2+16x)÷(−4x)的结果是().A. −3x2+2x−4B. −3x2−2x+4C. −3x2+2x+4D. 3x2−2x+41 、【答案】 D;【解析】 A选项 : x3⋅x3=x6,故选项A错误.B选项 : x8÷x4=x4,故选项B错误.C选项 : (ab3)2=a2b6,故选项C错误.D选项 : (2x)3=8x3,故选项D正确.2 、【答案】 B;【解析】[(1−2b)3]3=(1−2b)9.3 、【答案】a14.;【解析】4 、【答案】 B;【解析】3x−y=3x÷3y=15÷5=3.5 、【答案】81;【解析】9x⋅27y=32x⋅33y=32x+3y=81.6 、【答案】 D;【解析】∵2m=a,2n=b,∴22m+3n=(2m)2×(2n)3=a2b37 、【答案】 C;【解析】∵2x+1⋅4y=2x+1+2y,27=128,∴x+1+2y=7,即x+2y=6.∵x,y均为正整数,∴{x=2y=2或{x=4y=1,∴x+y=4或5.故选C.8 、【答案】 C;【解析】a=355=(35)11=24311b=444=(44)11=25611,c=533=(53)11=12511,∵256>243>125,∴b>a>c.故选C.9 、【答案】 A;【解析】根据图2的面积得:(a+3b)(a+b)=a2+4ab+3b2.10 、【答案】 D;【解析】(a−2)(b−2)=ab−2a−2b+4=ab−2(a+b)+4,把ab=−4,a+b=m代入原式得原式=−4−2m+4=−2m.故选D.11 、【答案】0.;【解析】∵(x−1)(x+3)=x2+3x−x−3=x2+2x−3,∴a=1,b=2,c=−3,∴9a−3b+c=9×1−3×2−3=9−6−3=0.12 、【答案】 C;【解析】∵(y2−ky+2y)(−y)的展开式中不含y2项,∴−y3+ky2−2y2中不含y2项,∴k−2=0,解得:k=2.13 、【答案】 B;【解析】(−6x3+9x2−3x)÷(−3x)=2x2–3x+1.故选B.14 、【答案】 C;【解析】 A选项 : 10a4b3c2÷5a3bc=2ab2c,故A错误;B选项 : (a2bc)2÷abc=a4b2c2÷abc=a3bc,故B错误;C选项 : (9x2y−6xy2)÷3xy=9x2y÷3xy−6xy2÷3xy=3x−2y,故C正确;D选项 : (6a2b−5a2c)÷(−3a2)=−2b+53c,故D错误.15 、【答案】 D;【解析】(2mn)2=4m2n2,A项正确;(−2mn)2=4m2n2,B项正确;(2m2n2)3=8m6n6,C项正确;(−2m2n2)3=−8m6n6,D项错误.故选D.16 、【答案】 C;【解析】(2a m b n)3=8a9b15,m=3,n=5.17 、【答案】 A;【解析】(−32)2018×(23)2019=(−32)2018×(23)2018×23=23.故选:A.18 、【答案】8;【解析】∵x+4y−3=0,∴x+4y=3,∴2x⋅16y=2x⋅24y=2x+4y=23=8.19 、【答案】 75;【解析】 ∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75. 故答案为:75.20 、【答案】 4;【解析】 5x−2y =5x 52y =5x (5y )2=16(2)2=164=4. 21 、【答案】 C;【解析】 255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选C .22 、【答案】 D;【解析】 ∵(2a −1)a+2=1,∴①2a −1=1,a =1,13=1;②2a −1=−1,且a +2为偶数,即a =0,(−1)2=1; ③{2a −1≠0a +2=0,即a =−2,(−5)0=1; 综上,a 的值为:1,0,−2.23 、【答案】 A;【解析】 根据积的乘方法则,可将待求式化为: (19)2×(x 3n )2×4(x 2)2n , 根据幂的乘方法则,得481×x 6n ×x 4n ,根据同底数幂的乘法法则,得481x 10n , 即4×(x 2n )581,将x 2n =3代入,原式=4×35×181=4×3=12.故选A .24 、【答案】 2;【解析】 当ab =a +b +1时, 原式=ab −a −b +1=a +b +1−a −b +1 =2,故答案为:2.25 、【答案】 −98.;【解析】 3a (2a 2−4a +3)−2a 2(3a +4) =6a 3−12a 2+9a −6a 3−8a 2 =−20a 2+9a .当a =−2时,−20a 2+9a =−20×4−9×2=−98. 26 、【答案】 A;【解析】 (x +2y)(2x −ky −1), =2x 2−kxy −x +4xy −2ky 2−2y , =2x 2+(4−k)xy −x −2ky 2−2y , ∵ 结果中不含xy 项,∴ 4−k =0,解得k=4.27 、【答案】 D;【解析】 A选项 : a3+a3=2a3,故原题计算错误;B选项 : (−2ab2)3=−8a3b6,故原题计算错误;C选项 : (28a3−14a2+7a)÷7a=4a2−2a+1,故原题计算错误;D选项 : a2⋅a3=a5,故原题计算正确.28 、【答案】 A;【解析】解:(12x3−8x2+16x)÷(−4x)=−3x2+2x−4,故选:A.11。
人教版 八年级数学上册 14.1--14.3分节练习(含答案) 14.1 整式的乘法一、选择题(本大题共10道小题) 1. 下列计算正确的是( )A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=2. 单项式乘多项式运算法则的依据是()A .乘法交换律B .加法结合律C .分配律D .加法交换律3. 若a 3=b ,b 4=m ,则m 为() A .a 7B .a 12C .a 81D .a 644. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( ) A .b 2+2ab B .4b 2+4ab C .3b 2+4abD .a 2+2ab5. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .166. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .177. 下列计算错误的是()A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=8. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=9. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是()A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题)11.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是________.12. 填空:()()()324a a a -⋅-⋅-= ;13. 填空:()()3223x x x --⋅=14. 计算:a 3·(a 3)2=________.15. 一个长方体的长、宽、高分别是3x -4,2x ,x ,它的体积等于________.16. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共3道小题)17. 已知x满足22x+2-4x=48,求x的值.18. 阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴2100<375.请根据上述解答过程解决下列问题:比较255,344,433的大小.19. 小明在做多项式乘法的时候发现,两个多项式相乘在合并同类项后的结果存在缺项的可能.比如x+2和x-2相乘的结果为x2-4,x的一次项没有了.(1)请计算x2+2x+3与x-2相乘后的结果,并观察x的几次项没有了;(2)请想一下,x2+2x+3与x+a相乘后的结果有没有可能让一次项消失?如果可能,那么a的值应该是多少?人教版八年级数学上册14.1 整式的乘法同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】根据同底数幂相乘除的法则,应选D2. 【答案】C3. 【答案】B [解析] 因为a3=b,b4=m,所以m=(a3)4=a12.4. 【答案】A[解析] 因为一个长方形的周长为4a +4b ,若它的一边长为b ,则另一边长=2a +2b -b =2a +b , 故面积=(2a +b)b =b 2+2ab.5. 【答案】D[解析] 由于a m =4,因此a 2m =(a m )2=42=16.6. 【答案】C[解析] 因为x a =2,x b =3,所以x 3a +2b =(x a )3·(x b )2=23×32=72.7. 【答案】C【解析】根据积的乘方运算法则,应选C8. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C9. 【答案】B[解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab -ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.10. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共6道小题)11. 【答案】100 【解析】根据公式可得109÷107=102=100.12. 【答案】9a -【解析】原式()99a a =-=-13. 【答案】65x x - 【解析】原式65x x =-14. 【答案】a 9[解析] a 3·(a 3)2=a 3·a 6=a 9.15. 【答案】6x 3-8x 216. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题(本大题共3道小题)17. 【答案】解:因为22x+2-4x=48,所以(22)x+1-4x=48.所以4x+1-4x=48.所以4x(4-1)=48.所以4x=16.所以4x=42.所以x=2.18. 【答案】解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,且32<64<81,所以255<433<344.19. 【答案】解:(1)(x2+2x+3)(x-2)=x3-2x2+2x2-4x+3x-6=x3-x-6,x的二次项没有了.(2)(x2+2x+3)(x+a)=x3+ax2+2x2+2ax+3x+3a=x3+(a+2)x2+(2a+3)x+3a.当2a+3=0,即a=-1.5时,x的一次项消失了.故x2+2x+3与x+a相乘后的结果有可能让一次项消失,此时a=-1.5.14.2乘法公式一.选择题1.如果x2+6xy+m是一个完全平方式,则m的值为()A.9y2B.3y2C.y2D.6y2 2.若M(5x﹣y2)=y4﹣25x2,那么代数式M应为()A.﹣5x﹣y2B.﹣y2+5x C.5x+y2D.5x2﹣y2 3.下列运算正确的是()A.a2+2a=3a3B.A.x3x2=x6B.x(x﹣3)=x2﹣3xC.=x2+y2D.﹣2x3y2÷xy2=2x47.下列各式中,不能用平方差公式计算的是()A.B.C.D.8.已知4﹣8x+mx2是关于x的完全平方式,则m的值为()A.2 B.±2 C.4 D.±49.如果x2﹣6x+N是一个完全平方式,那么N是()A.11 B.9 C.﹣11 D.﹣910.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.B.C.D.二.填空题11.已知a+b=2,ab=1,则a2+b2=.12.已知:a+b=6,ab=﹣10,则a2+b2=.13.若x2﹣10x+m2是一个完全平方式,那么m的值为.14.若(x+y)2=11,(x﹣y)2=1,则x2﹣xy+y2的值为.15.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长为20,宽为10的长方形,如图2,则图2中(1)部分的面积是.三.解答题16.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.17.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.18.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.19.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a 的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.参考答案与试题解析一.选择题1.【解答】解:∵x2+6xy+m是一个完全平方式,∴m==9y2.故选:A.2.【解答】解:∵M(5x﹣y2)=y4﹣25x2=(y2+5x)(y2﹣5x)=(5x﹣y2)(﹣5x﹣y2),∴M=﹣5x﹣y2.故选:A.3.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.4.【解答】解:A、原式=2m2,不符合题意;B、原式=m2+4m+4,不符合题意;C、原式=8m3n6,不符合题意;D、原式=m8,符合题意.故选:D.5.【解答】解:A.结果是a5,故本选项不符合题意;B.结果是﹣8a9,故本选项不符合题意;C.结果是a2,故本选项符合题意;D.结果是a2+2ab+b2,故本选项不符合题意;故选:C.6.【解答】解:A、x3x2=x5,原计算错误,故此选项不符合题意;B、x(x﹣3)=x2﹣3x,原计算正确,故此选项符合题意;C、=x2﹣y2,原计算错误,故此选项不符合题意;D、﹣2x3y2与xy2不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.7.【解答】解:A、=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.8.【解答】解:∵4﹣8x+mx2是关于x的完全平方式,∴﹣8=﹣2×2,解得:m=4,故选:C.9.【解答】解:∵x2﹣6x+N=x2﹣2x3+N是一个完全平方式,∴N=32=9.故选:B.10.【解答】解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为,故选:A.二.填空题11.【解答】解:∵a+b=2,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=4+2=6,故答案为:6.12.【解答】解:∵a+b=6,ab=﹣10,∴a2+b2=(a+b)2﹣2ab=62﹣2×(﹣10)=56,故答案为:56.13.【解答】解:∵x2﹣10x+m2是一个完全平方式,∴m=±5,故答案为:±5.14.【解答】解:∵(x+y)2=x2+y2+2xy=11①,(x﹣y)2=x2+y2﹣2xy=1②,∴①+②得:2(x2+y2)=12,即x2+y2=6,①﹣②得:4xy=10,即xy=2.5,则原式=6﹣2.5=3.5.故答案为:3.5.15.【解答】解:根据题意得,a+b=20,a﹣b=10,解得,a=15,b=5,图2中(1)的面积为a(a﹣b)=15×10=150,故答案为:150.三.解答题16.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.17.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=333.18.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.19.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块C型卡片的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2)14.3因式分解一.选择题(共10小题)1.下列从左到右的变形是因式分解的是()A.ma+mb﹣c=m(a+b)﹣cB.﹣a2+3ab﹣a=﹣a(a+3b﹣1)C.(a﹣b)(a2+ab+b2)=a3﹣b3D.4x2﹣25y2=(2x+5y)(2x﹣5y)2.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1983.关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是()A.﹣6B.±6C.12D.±124.把多项式﹣2x3+12x2﹣18x分解因式,结果正确的是()A.﹣2x(x2+6x﹣9)B.﹣2x(x﹣3)2C.﹣2x(x+3)(x﹣3)D.﹣2x(x+3)25.下列分解因式正确的是()A.a2﹣9=(a﹣3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2﹣2a+1=a(a﹣2)+16.分解因式:4﹣12(a﹣b)+9(a﹣b)2=()A.(2+3a﹣3b)2B.(2﹣3a﹣3b)2C.(2+3a+3b)2D.(2﹣3a+3b)2 7.下列因式分解中:①x3+2xy+x=x(x+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(y﹣x);④x3﹣9x=x(x﹣3)2,正确的个数为()A.1个B.2个C.3个D.4个8.已知a,b,c为△ABC三边,且满足ab+bc=b2+ac,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定9.已知多项式6x3+13x2+9x+2可以写成两个因式的积,又已知其中一个因式为3x2+5x+2,那么另一个因式为()A.2x﹣1B.2x+1C.﹣2x﹣1D.﹣2x+110.已知x﹣5是多项式2x2+8x+a的一个因式,则a可为()A.65B.﹣65C.90D.﹣90二.填空题(共5小题)11.因式分解:(1)m2﹣4=.(2)2x2﹣4x+2=.12.因式分解:4a2﹣9a4=.13.如果x2+Ax+B因式分解的结果为(x﹣3)(x+5),则A+B=.14.分解因式:=.15.多项式4x3y2﹣2x2y+8x2y3的公因式是.三.解答题(共3小题)16.分解因式:(1)3x2﹣6x+3;(2)2ax2﹣8a.17.因式分解:(1)2ax2﹣8a;(2)a3﹣6a2b+9ab2;(3)(a﹣b)2+4ab.18.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.参考答案1.解:A、没将一个多项式化成几个整式的乘积的形式,不是因式分解,故本选项不符合题意;B、提公因式变号错误,不是正确的因式分解,故本选项不符合题意;C、不是因式分解,是整式的乘法,故本选项不符合题意;D、符合因式分解定义,是因式分解,故本选项符合题意;故选:D.2.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.3.解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴a=±12.故选:D.4.解:﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.故选:B.5.解:A、原式=(a+3)(a﹣3),不符合题意;B、原式=3a(2a+1),不符合题意;C、原式=(a+3)2,符合题意;D、原式=(a﹣1)2,不符合题意.故选:C.6.解:原式=[2﹣3(a﹣b)]2=(2﹣3a﹣3b)2.故选:D.7.解:①x3+2xy+x=x(x2+2y+1),故原题分解错误;②x2+4x+4=(x+2)2,故原题分解正确;③﹣x2+y2=y2﹣x2=(x+y)(y﹣x),故原题分解正确;④x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3),故原题分解错误;正确的个数为2个,故选:B.8.解:∵ab+bc=b2+ac,∴ab﹣ac=b2﹣bc,即a(b﹣c)=b(b﹣c),∴(a﹣b)(b﹣c)=0,∴a=b或b=c,∴△ABC是等腰三角形,故选:C.9.解:设另一个因式为(mx+n),根据题意得:6x3+13x2+9x+2=(3x2+5x+2)(mx+n)=3mx3+(5m+3n)x2+(2m+5n)x+2n,∴2n=2,2m+5n=9,解得:m=2,n=1,所以另一个因式为2x+1,故选:B.10.解:设多项式的另一个因式为2x+b.则(x﹣5)(2x+b)=2x2+(b﹣10)x﹣5b=2x2+8x+a.所以b﹣10=8,解得b=18.所以a=﹣5b=﹣5×18=﹣90.故选:D.11.解:(1)原式=(m+2)(m﹣2);(2)原式=2(x2﹣2x+1)=2(x﹣1)2.故答案为:(1)(m+2)(m﹣2);(2)2(x﹣1)2.12.解:原式=a2(4﹣9a2)=a2(2+3a)(2﹣3a).故答案为:a2(2+3a)(2﹣3a).13.解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15,∴A+B=2﹣15=﹣13.故答案为:﹣13.14.解:原式=(x2﹣x+)=(x﹣)2.故答案为:(x﹣)2.15.解:多项式4x3y2﹣2x2y+8x2y3的公因式是2x2y,故答案为:2x2y.16.解:(1)原式=3(x2﹣2x+1)=3(x﹣1)2;(2)原式=2a(x2﹣4)=2a(x+2)(x﹣2).17.解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=a(a2﹣6ab+9b2)=a(a﹣3b)2;(3)原式=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.18.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.。
14.1 整式的乘法一.选择题(共30小题)1.(2015•连云港)下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3a C.a2•a3=a6 D.(a+b)2=a2+b2 2.(2015•包头)下列计算结果正确的是()A.2a3+a3=3a6 B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣13.(2015•营口)下列计算正确的是()A.|﹣2|=﹣2 B.a2•a3=a6 C.(﹣3)﹣2=D.=34.(2015•金华)计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a25.(2015•宿迁)计算(﹣a3)2的结果是()A.﹣a5 B.a5 C.﹣a6 D.a66.(2015•宁波)下列计算正确的是()A.(a2)3=a5 B.2a﹣a=2 C.(2a)2=4a D.a•a3=a47.(2015•泸州)计算(a2)3的结果为()A.a4 B.a5 C.a6 D.a98.(2015•丽水)计算(a2)3的正确结果是()A.3a2 B.a6 C.a5 D.6a9.(2015•德州)下列运算正确的是()A.﹣=B.b2•b3=b6 C.4a﹣9a=﹣5 D.(ab2)2=a2b410.(2015•潍坊)下列运算正确的是()A.+=B.3x2y﹣x2y=3C.=a+b D.(a2b)3=a6b311.(2015•泉州)计算:(ab2)3=()A.3ab2 B.ab6 C.a3b6 D.a3b212.(2015•哈尔滨)下列运算正确的是()A.(a2)5=a7 B.a2•a4=a6 C.3a2b﹣3ab2=0 D.()2=13.(2015•株洲)下列等式中,正确的是()A.3a﹣2a=1 B.a2•a3=a5 C.(﹣2a3)2=﹣4a6 D.(a﹣b)2=a2﹣b214.(2015•荆州)下列运算正确的是()A.=±2 B.x2•x3=x6 C.+=D.(x2)3=x615.(2015•潜江)计算(﹣2a2b)3的结果是()A.﹣6a6b3 B.﹣8a6b3 C.8a6b3 D.﹣8a5b316.(2015•长沙)下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b217.(2015•茂名)下列各式计算正确的是()A.5a+3a=8a2 B.(a﹣b)2=a2﹣b2 C.a3•a7=a10 D.(a3)2=a718.(2015•河池)下列计算,正确的是()A.x3•x4=x12 B.(x3)3=x6 C.(3x)2=9x2 D.2x2÷x=x19.(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8 B.(a5)2=a7 C.(a﹣b)2=a2﹣b2 D.(ab)2=a2b220.(2015•北海)下列运算正确的是()A.3a+4b=12a B.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab D.x12÷x6=x221.(2015•本溪)下列运算正确的是()A.5m+2m=7m2 B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a2 22.(2015•湘潭)下列计算正确的是()A.B.3﹣1=﹣3 C.(a4)2=a8 D.a6÷a2=a323.(2015•丹东)下列计算正确的是()A.2a+a=3a2 B.4﹣2=﹣C.=±3 D.(a3)2=a624.(2015•西宁)下列计算正确的是()A.a•a3=a3 B.a4+a3=a2 C.(a2)5=a7 D.(﹣ab)2=a2b225.(2015•巴彦淖尔)下列运算正确的是()A.x3•x2=x5 B.(x3)2=x5 C.(x+1)2=x2+1 D.(2x)2=2x226.(2015•张家界)下列运算正确的是()A.x2•x3=x6 B.5x﹣2x=3x C.(x2)3=x5 D.(﹣2x)2=﹣4x227.(2015•龙岩)下列运算正确的是()A.x2•x3=x6 B.(x2)3=x6 C.x3+x2=x5 D.x+x2=x328.(2015•宜昌)下列运算正确的是()A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x429.(2015•东莞)(﹣4x)2=()A.﹣8x2 B.8x2 C.﹣16x2 D.16x230.(2015•昆明)下列运算正确的是()A.=﹣3 B.a2•a4=a6 C.(2a2)3=2a6 D.(a+2)2=a2+414.1 整式的乘法11111参考答案与试题解析一.选择题(共30小题)1.(2015•连云港)下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3a C.a2•a3=a6 D.(a+b)2=a2+b2考点:同底数幂的乘法;合并同类项;完全平方公式.分析:根据同类项、同底数幂的乘法和完全平方公式计算即可.解答:解:A、2a与3b不能合并,错误;B、5a﹣2a=3a,正确;C、a2•a3=a5,错误;D、(a+b)2=a2+2ab+b2,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.2.(2015•包头)下列计算结果正确的是()A.2a3+a3=3a6 B.(﹣a)2•a3=﹣a6 C.(﹣)﹣2=4 D.(﹣2)0=﹣1考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、2a3+a3=3a3,故错误;B、(﹣a)2•a3=a5,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.3.(2015•营口)下列计算正确的是()A.|﹣2|=﹣2 B.a2•a3=a6 C.(﹣3)﹣2=D.=3考点:同底数幂的乘法;绝对值;算术平方根;负整数指数幂.分析:分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.解答:解:A、原式=2≠﹣2,故本选项错误;B、原式=a5≠a6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.点评:本题考查的是同底数幂的乘法,熟知绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则是解答此题的关键.4.(2015•金华)计算(a2)3的结果是()A.a5 B.a6 C.a8 D.3a2考点:幂的乘方与积的乘方.分析:根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.解答:解:(a2)3=a6.故选:B.点评:本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.5.(2015•宿迁)计算(﹣a3)2的结果是()A.﹣a5 B.a5 C.﹣a6 D.a6考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:(﹣a3)2=a6,故选D点评:此题考查幂的乘方问题,关键是根据法则进行计算.6.(2015•宁波)下列计算正确的是()A.(a2)3=a5 B.2a﹣a=2 C.(2a)2=4a D.a•a3=a4考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.7.(2015•泸州)计算(a2)3的结果为()A.a4 B.a5 C.a6 D.a9考点:幂的乘方与积的乘方.分析:根据幂的乘方,即可解答.解答:解:(a2)3=a6.故选:C.点评:本题考查了幂的乘方,理清指数的变化是解题的关键.8.(2015•丽水)计算(a2)3的正确结果是()A.3a2 B.a6 C.a5 D.6a考点:幂的乘方与积的乘方.分析:根据幂的乘方,即可解答.解答:解:(a2)3=a6,故选:B.点评:本题考查了幂的乘方,理清指数的变化是解题的关键.9.(2015•德州)下列运算正确的是()A.﹣=B.b2•b3=b6 C.4a﹣9a=﹣5 D.(ab2)2=a2b4考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可;B:根据同底数幂的乘法法则判断即可;C:根据合并同类项的方法判断即可;D:积的乘方法则:(ab)n=a n b n(n是正整数),据此判断即可.解答:解:∵,∴选项A错误;∵b2•b3=b5,∴选项B错误;∵4a﹣9a=﹣5a,∴选项C错误;∵(ab2)2=a2b4,∴选项D正确.故选:D.点评:(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了合并同类项问题,要熟练掌握,解答此题的关键是要明确合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.(4)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.10.(2015•潍坊)下列运算正确的是()A.+=B.3x2y﹣x2y=3C.=a+b D.(a2b)3=a6b3考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵,∴选项A不正确;∵3x2y﹣x2y=2x2y,∴选项B不正确;∵,∴选项C不正确;∵(a2b)3=a6b3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.11.(2015•泉州)计算:(ab2)3=()A.3ab2 B.ab6 C.a3b6 D.a3b2考点:幂的乘方与积的乘方.分析:根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.解答:解:(ab2)3,=a3(b2)3,=a3b6故选C.点评:主要考查积的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号的运算.12.(2015•哈尔滨)下列运算正确的是()A.(a2)5=a7 B.a2•a4=a6 C.3a2b﹣3ab2=0 D.()2=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(a2)5=a10,错误;B、a2•a4=a6,正确;C、3a2b与3ab2不能合并,错误;D、()2=,错误;故选B.点评:此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.13.(2015•株洲)下列等式中,正确的是()A.3a﹣2a=1 B.a2•a3=a5 C.(﹣2a3)2=﹣4a6 D.(a﹣b)2=a2﹣b2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.解答:解:A、3a﹣2a=a,原式计算错误,故本选项错误;B、a2•a3=a5,原式计算正确,故本选项正确;C、(﹣2a3)2=4a6,原式计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,原式计算错误,故本选项错误.故选B.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等知识,掌握运算法则是解答本题关键.14.(2015•荆州)下列运算正确的是()A.=±2 B.x2•x3=x6 C.+=D.(x2)3=x6考点:幂的乘方与积的乘方;实数的运算;同底数幂的乘法.分析:根据算术平方根的定义对A进行判断;根据同底数幂的乘法对B进行运算;根据同类二次根式的定义对C进行判断;根据幂的乘方对D进行运算.解答:解:A.=2,所以A错误;B.x2•x3=x5,所以B错误;C.+不是同类二次根式,不能合并;D.(x2)3=x6,所以D正确.故选D.点评:本题考查实数的综合运算能力,综合运用各种运算法则是解答此题的关键.15.(2015•潜江)计算(﹣2a2b)3的结果是()A.﹣6a6b3 B.﹣8a6b3 C.8a6b3 D.﹣8a5b3考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2a2b)3=﹣8a6b3.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.16.(2015•长沙)下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b2考点:幂的乘方与积的乘方;合并同类项;完全平方公式.分析:根据同类项、幂的乘方和完全平方公式计算即可.解答:解:A、x3与x不能合并,错误;B、(x2)3=x6,正确;C、3x﹣2x=x,错误;D、(a﹣b)2=a2﹣2ab+b2,错误;故选B点评:此题考查同类项、幂的乘方和完全平方公式,关键是根据法则进行计算.17.(2015•茂名)下列各式计算正确的是()A.5a+3a=8a2 B.(a﹣b)2=a2﹣b2 C.a3•a7=a10 D.(a3)2=a7考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:利用幂的运算性质、合并同类项及完全平方公式进行计算后即可确定正确的选项.解答:解:A、5a+3a=8a,故错误;B、(a﹣b)2=a2﹣2ab+b2,故错误;C、a3•a7=a10,正确;D、(a3)2=a6,故错误.故选C.点评:本题考查了幂的运算性质、合并同类项及完全平方公式,解题的关键是能够了解有关幂的运算性质,难度不大.18.(2015•河池)下列计算,正确的是()A.x3•x4=x12 B.(x3)3=x6 C.(3x)2=9x2 D.2x2÷x=x考点:幂的乘方与积的乘方;同底数幂的乘法;整式的除法.分析:根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,整式的除法的法则,对各选项分析判断后利用排除法求解.解答:解:A、x3•x4=x7,故错误;B、(x3)3=x9,故错误;C、正确;D、2x2÷x=2x,故错误;故选:C.点评:本题考查了整式的除法,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.19.(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8 B.(a5)2=a7 C.(a﹣b)2=a2﹣b2 D.(ab)2=a2b2考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:运用同底数幂的乘法,幂的乘方,积的乘方,完全平方公式运算即可.解答:解:A.a4•a2=a6,故A错误;B.(a5)2=a10,故B错误;C.(a﹣b)2=a2﹣2ab+b2,故C错误;D.(ab)2=a2b2,故D正确,故选D.点评:本题考查了完全平方公式,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.20.(2015•北海)下列运算正确的是()A.3a+4b=12a B.(ab3)2=ab6C.(5a2﹣ab)﹣(4a2+2ab)=a2﹣3ab D.x12÷x6=x2考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的除法.分析:根据同底数幂的除法的性质,整式的加减,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、3a与4b不是同类项,不能合并,故错误;B、(ab3)2=a2b6,故错误;C、正确;D、x12÷x6=x6,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的除法,幂的乘方,积的乘方,理清指数的变化是解题的关键.21.(2015•本溪)下列运算正确的是()A.5m+2m=7m2 B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3 D.(b+2a)(2a﹣b)=b2﹣4a2考点:幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.分析:A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.解答:解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.点评:本题主要考查的是整式的计算,掌握合并同类项法则、单项式乘单项式法则、积的乘方法则以及平方差公式是解题的关键.22.(2015•湘潭)下列计算正确的是()A.B.3﹣1=﹣3 C.(a4)2=a8 D.a6÷a2=a3考点:幂的乘方与积的乘方;同底数幂的除法;负整数指数幂;二次根式的加减法.分析:A.不是同类二次根式,不能合并;B.依据负整数指数幂的运算法则计算即可;C.依据幂的乘方法则计算即可;D.依据同底数幂的除法法则计算即可.解答:解:A.不是同类二次根式,不能合并,故A错误;B.,故B错误;C.(a4)2=a4×2=a8,故C正确;D.a6÷a2=a6﹣2=a4,故D错误.故选:C.点评:本题主要考查的是数与式的运算,掌握同类二次根式的定义、负整数指数幂、积的乘方、幂的乘方的运算法则是解题的关键.23.(2015•丹东)下列计算正确的是()A.2a+a=3a2 B.4﹣2=﹣C.=±3 D.(a3)2=a6考点:幂的乘方与积的乘方;算术平方根;合并同类项;负整数指数幂.分析:A、依据合并同类项法则计算即可;B、根据负整数指数幂的法则计算即可;C、根据算术平方根的定义可做出判断;D、依据幂的乘方的运算法则进行计算即可.解答:解:A、2a+a=3a,故A错误;B、4﹣2==,故B错误;C、,故C错误;D、(a3)2=a3×2=a6,故D正确.故选:D.点评:本题主要考查的是数与式的计算,掌握合并同类项、负整数指数幂、算术平方根以及幂的乘方的运算法则是解题的关键.24.(2015•西宁)下列计算正确的是()A.a•a3=a3 B.a4+a3=a2 C.(a2)5=a7 D.(﹣ab)2=a2b2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:A:根据同底数幂的乘法法则判断即可.B:根据合并同类项的方法判断即可.C:根据幂的乘方的运算方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵a•a3=a4,∴选项A不正确;∵a4+a3≠a2,∴选项B不正确;∵(a2)5=a10,∴选项C不正确;∵(﹣ab)2=a2b2,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了合并同类项的方法,要熟练掌握.25.(2015•巴彦淖尔)下列运算正确的是()A.x3•x2=x5 B.(x3)2=x5 C.(x+1)2=x2+1 D.(2x)2=2x2考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:把原式各项计算得到结果,即可做出判断.解答:解:A、x3•x2=x5,此选项正确;B、(x3)2=x6,此选项错误;C、(x+1)2=x2+2x+1,此选项错误;D、(2x)2=4x2,此选项错误;故选A.点评:此题考查了幂的乘方,积的乘方,同底数幂的乘法,完全平方公式,熟练掌握运算法则是解本题的关键.26.(2015•张家界)下列运算正确的是()A.x2•x3=x6 B.5x﹣2x=3x C.(x2)3=x5 D.(﹣2x)2=﹣4x2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:利用幂的有关性质及合并同类项的知识分别判断后即可确定正确的选项.解答:解:A、x2•x3=x5,故错误;B、5x﹣2x=3x,故正确;C、(x2)3=x6,故错误;D、(﹣2x)2=4x2,故错误,故选B.点评:本题考查了幂的运算性质及合并同类项的知识,解题的关键是能够熟练掌握有关幂的运算性质,属于基本知识,比较简单.27.(2015•龙岩)下列运算正确的是()A.x2•x3=x6 B.(x2)3=x6 C.x3+x2=x5 D.x+x2=x3考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同底数幂的乘法、同类项和幂的乘方判定即可.解答:解:A、x2•x3=x5,错误;B、(x2)3=x6,正确;C、x3与x2不是同类项,不能合并,错误;D、x与x2不是同类项,不能合并,错误;故选B点评:此题考查同底数幂的乘法、同类项和幂的乘方,关键是根据法则进行计算.28.(2015•宜昌)下列运算正确的是()A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:A:根据合并同类项的方法判断即可.B:根据幂的乘方的运算方法判断即可.C:根据完全平方公式的计算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵x4+x4=2x4,∴选项A不正确;∵(x2)3=x6,∴选项B不正确;∵(x﹣y)2=x2﹣2xy+y2,∴选项C不正确;∵x3•x=x4,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了完全平方公式,以及合并同类项的方法,要熟练掌握.29.(2015•东莞)(﹣4x)2=()A.﹣8x2 B.8x2 C.﹣16x2 D.16x2考点:幂的乘方与积的乘方.专题:计算题.分析:原式利用积的乘方运算法则计算即可得到结果.解答:解:原式=16x2,故选D.点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.30.(2015•昆明)下列运算正确的是()A.=﹣3 B.a2•a4=a6 C.(2a2)3=2a6 D.(a+2)2=a2+4考点:幂的乘方与积的乘方;算术平方根;同底数幂的乘法;完全平方公式.分析:根据同底数幂的乘法的性质,积的乘方的性质,二次根式的性质,完全平分公式,对各选项分析判断后利用排除法求解.解答:解:A、=3,故错误:B、正确;C、(2a2)3=8a6,故正确;D、(a+2)2=a2+4a+4,故错误;故选:B.点评:本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.14.1 整式的乘法2一.选择题(共19小题)1.(2015•岳阳)下列运算正确的是()A.a﹣2=﹣a2 B.a+a2=a3 C.+=D.(a2)3=a62.(2015•徐州)下列运算正确的是()A.3a2﹣2a2=1 B.(a2)3=a5 C.a2•a4=a6 D.(3a)2=6a23.(2015•长春)计算(a2)3的结果是()A.3a2 B.a5 C.a6 D.a34.(2015•大连)计算(﹣3x)2的结果是()A.6x2 B.﹣6x2 C.9x2 D.﹣9x25.(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a56.(2015•遂宁)下列运算正确的是()A.a•a3=a3 B.2(a﹣b)=2a﹣b C.(a3)2=a5 D.a2﹣2a2=﹣a27.(2015•日照)计算(﹣a3)2的结果是()A.a5 B.﹣a5 C.a6 D.﹣a68.(2015•重庆)计算(a2b)3的结果是()A.a6b3 B.a2b3 C.a5b3 D.a6b9.(2015•南京)计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6 C.x2y9 D.﹣x2y910.(2015•怀化)下列计算正确的是()A.x2+x3=x5 B.(x3)3=x6 C.x•x2=x2 D.x(2x)2=4x311.(2015•黄石)下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5 C.(﹣m3)2=m9 D.﹣(m+2n)=﹣m+2n12.(2015•吉林)下列计算正确的是()A.3a﹣2a=a B.2a•3a=6a C.a2•a3=a6 D.(3a)2=6a213.(2015•淮安)计算a×3a的结果是()A.a2 B.3a2 C.3a D.4a14.(2015•恩施州)下列计算正确的是()A.4x3•2x2=8x6 B.a4+a3=a7 C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣b215.(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4 B.2a2×a3=2a6 C.3a﹣2a=1 D.(a2)3=a616.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5 B.3a6 C.﹣3a6 D.3a517.(2015•聊城)下列运算正确的是()A.a2+a3=a5 B.(﹣a3)2=a6C.ab2•3a2b=3a2b2 D.﹣2a6÷a2=﹣2a318.(2015•黔东南州)下列运算正确的是()A.(a﹣b)2=a2﹣b2 B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.19.(2015•佛山)若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D. 2二.填空题(共10小题)20.(2015•苏州)计算:a•a2=.21.(2015•黔西南州)a2•a3=.22.(2015•柳州)计算:a×a=.23.(2015•天津)计算;x2•x5的结果等于.24.(2015•大庆)若a2n=5,b2n=16,则(ab)n=.25.(2015•漳州)计算:2a2•a4=.26.(2015•福州)计算(x﹣1)(x+2)的结果是.27.(2014•西宁)计算:a2•a3=.28.(2014•滨州)写出一个运算结果是a6的算式.29.(2014•佛山)计算:(a3)2•a3=.三.解答题(共1小题)30.(2013•张家界)阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).14.1 整式的乘法222参考答案与试题解析一.选择题(共19小题)1.(2015•岳阳)下列运算正确的是()A.a﹣2=﹣a2 B.a+a2=a3 C.+=D.(a2)3=a6考点:幂的乘方与积的乘方;合并同类项;负整数指数幂;二次根式的加减法.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能合并,错误;C、原式不能合并,错误;D、原式=a6,正确,故选D点评:此题考查了幂的乘方与积的乘方,合并同类项,负整数指数幂,以及二次根式的加减法,熟练掌握运算法则是解本题的关键.2.(2015•徐州)下列运算正确的是()A.3a2﹣2a2=1 B.(a2)3=a5 C.a2•a4=a6 D.(3a)2=6a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据同类项、幂的乘方、同底数幂的乘法计算即可.解答:解:A、3a2﹣2a2=a2,错误;B、(a2)3=a6,错误;C、a2•a4=a6,正确;D、(3a)2=9a2,错误;故选C.点评:此题考查同类项、幂的乘方、同底数幂的乘法,关键是根据法则进行计算.3.(2015•长春)计算(a2)3的结果是()A.3a2 B.a5 C.a6 D.a3考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:(a2)3=a6,故选C.点评:此题考查幂的乘方,关键是根据法则进行计算.4.(2015•大连)计算(﹣3x)2的结果是()A.6x2 B.﹣6x2 C.9x2 D.﹣9x2考点:幂的乘方与积的乘方.分析:根据积的乘方进行计算即可.解答:解:(﹣3x)2=9x2,故选C.点评:此题考查积的乘方,关键是根据法则进行计算.5.(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a5考点:幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.分析:A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.解答:解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.6.(2015•遂宁)下列运算正确的是()A.a•a3=a3 B.2(a﹣b)=2a﹣b C.(a3)2=a5 D.a2﹣2a2=﹣a2考点:幂的乘方与积的乘方;合并同类项;去括号与添括号;同底数幂的乘法.分析:根据同底数幂的乘法、幂的乘方和同类项进行计算.解答:解:A、a•a3=a4,错误;B、2(a﹣b)=2a﹣2b,错误;C、(a3)2=a6,错误;D、a2﹣2a2=﹣a2,正确;故选D点评:此题考查同底数幂的乘法、幂的乘方和同类项,关键是根据法则进行计算.7.(2015•日照)计算(﹣a3)2的结果是()A.a5 B.﹣a5 C.a6 D.﹣a6考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣a3)2=a6.故选C.点评:本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题关键.8.(2015•重庆)计算(a2b)3的结果是()A.a6b3 B.a2b3 C.a5b3 D.a6b考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出(a2b)3的结果是多少即可.解答:解:(a2b)3=(a2)3•b3=a6b3即计算(a2b)3的结果是a6b3.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).9.(2015•南京)计算(﹣xy3)2的结果是()A.x2y6 B.﹣x2y6 C.x2y9 D.﹣x2y9考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.解答:解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).10.(2015•怀化)下列计算正确的是()A.x2+x3=x5 B.(x3)3=x6 C.x•x2=x2 D.x(2x)2=4x3考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=x9,错误;C、原式=x3,错误;D、原式=4x3,正确,故选D点评:此题考查了单项式乘以单项式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.11.(2015•黄石)下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5 C.(﹣m3)2=m9 D.﹣(m+2n)=﹣m+2n考点:单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.解答:解:A、4m﹣m=3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)2=m6,故此选项错误;D、﹣(m+2n)=﹣m﹣2n,故此选项错误;故选:B.点评:此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则等知识,正确掌握运算法则是解题关键.12.(2015•吉林)下列计算正确的是()A.3a﹣2a=a B.2a•3a=6a C.a2•a3=a6 D.(3a)2=6a2考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,单项式乘以单项式,同底数幂的乘法,积的乘方,即可解答.解答:解:A、正确;B、2a•3a=6a2,故错误;C、a2•a3=a5,故错误;D、(3a)2=9a2,故错误;故选:A.点评:本题考查了合并同类项,单项式乘以单项式,同底数幂的乘法,积的乘方,解决本题的关键是熟记合并同类项,单项式乘以单项式,同底数幂的乘法,积的乘方的法则.13.(2015•淮安)计算a×3a的结果是()A.a2 B.3a2 C.3a D.4a考点:单项式乘单项式.分析:根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:a×3a=3a2,故选:B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.14.(2015•恩施州)下列计算正确的是()A.4x3•2x2=8x6 B.a4+a3=a7 C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣b2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:A、原式利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;D、原式利用完全平方公式化简得到结果,即可做出判断.解答:解:A、原式=8x5,错误;B、原式不能合并,错误;C、原式=﹣x10,正确;D、原式=a2﹣2ab+b2,错误,故选C点评:此题考查了单项式乘单项式,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.15.(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4 B.2a2×a3=2a6 C.3a﹣2a=1 D.(a2)3=a6考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=1,故本选项错误;D、(a2)3=a6,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.16.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5 B.3a6 C.﹣3a6 D.3a5考点:单项式乘单项式.分析:利用单项式相乘的运算性质计算即可得到答案.解答:解:﹣3a2×a3=﹣3a2+3=﹣3a5,故选A.。
七年级数学下册《1.4.1 整式的乘法》同步练习(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册《1.4.1 整式的乘法》同步练习(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册《1.4.1 整式的乘法》同步练习(新版)北师大版的全部内容。
1.4.1 整式的乘法一、选择题:1.下列计算正确的是( ).A.6x2·3xy=9x3y B.(2ab2)·(-3ab)=-a2b3C.(mn)2·(-m2n)=-m3n3 D.(-3x2y)·(-3xy)=9x3y22.用科学记数法表示(2×102)×(15×106)的结果应为().A.30×108 B.3.0×107 C.3.0×109 D.3.0×10103.(-a3)2·(-a3)·(-a)+(-a3)3等于( ).A.0 B.a10-a9 C.a10-a12 D.a9-a124.已知x3y m-1·x m+n y2n+2=x9y9,则4m-3n等于().A.8 B.9 C.10 D.115.m为偶数,则(a-b)m·(b-a)n与(b-a)m+n的结果是( ).A.相等 B.互为相反数 C.不相等 D.以上说法都不对6.下图为小李家住房的结构,小李打算把卧室和客厅铺上木地板,•请你帮他算一算,他至少应买木地板().A.12xym3 B.10xym2C.8xym2 D.6xym2二、填空题:7.(4x4y)(-xy3)5的计算结果是_______.8.计算:(-12x2y)3·(-3xy2)2=______.9.(-3a2b3)2·4(-a3b2)5=________.10.若(mx3)·(2x k)=-8x18,则适合此等式的m=______,k=______.11.若(2x a)2·(3y b x4)与x8y是同类项,则a6=_______.12.(-12x2y)3·3xy2·(2xy2)2=_______.13.卫星绕地球的运转速度为7。
人教版八年级上册:14.1--14.3同步测试题含答案14.1 整式的乘法一.选择题1.计算(﹣)0=()A.B.﹣C.1D.02.计算a3•(﹣a2)结果正确的是()A.﹣a5B.a5C.﹣a6D.a63.下列运算中,计算正确的是()A.a3+a3=a6B.(2a2)3=6a6C.a2•a3=a6D.(2a3)2=4a6 4.计算(x3)2÷x的结果是()A.x7B.x6C.x5D.x45.下列各式,计算结果为a6的是()A.a2+a4B.a7÷a C.a2•a3D.(a2)46.计算﹣2a3b4÷3a2b•ab3正确答案是()A.B.ab C.﹣a6b8D.a2b67.()×ab=2ab2,则括号内应填的单项式是()A.2B.2a C.2b D.4b8.化简:a(a﹣2)+4a=()A.a2+2a B.a2+6a C.a2﹣6a D.a2+4a﹣29.计算(﹣0.25)2019×(﹣4)2020等于()A.﹣1B.+1C.+4D.﹣410.若单项式﹣8x a y和x2y b的积为﹣2x5y6,则ab的值为()A.2B.30C.﹣15D.1511.关于x的代数式(3﹣ax)(3+2x)的化简结果中不含x的一次项,则a的值为()A.1B.2C.3D.412.已知(x﹣7)(x+4)=x2+mx+n,则6m+n的值为()A.﹣46B.﹣25C.﹣16D.﹣10二.填空题13.计算﹣5a2•2a3的结果等于.14.(3a2﹣6ab)÷3a=.15.若2x=3,2y=5,则23x﹣2y=.16.计算()•()=.17.已知m+n﹣3=0,则2m•2n的值为.18.若等式(2﹣x)0=1成立,则x的取值范围是.19.若(x﹣m)(x+n)=x2﹣5x﹣6,则m+n的值为.20.若(x2+mx﹣5)(x2﹣3x+n)的展开式中不含x2和x3项,则m+n=.三.解答题21.计算(1)2x2yz•3xy3z2 (2)(﹣2x3)3﹣3x3(x6﹣y2).22.计算:m4•m5+m10÷m﹣(m3)3.23.已知(x3)n+1=(x n﹣1)4•(x3)2,求(﹣n2)3的值.24.已知:(x2+px+2)(x﹣1)的结果中不含x的二次项,求p2020的值.25.已知10x=3,10y=2.(1)求102x+3y的值.(2)求103x﹣4y的值.26.(1)若4a+3b=3,求92a•27b.(2)已知3×9m×27m=321,求m的值27.规定a*b=2a×2b,求:(1)求1*3;(2)若2*(2x+1)=64,求x的值.28.如图,有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(空白部分),已知道路宽为a米,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.29.如图,某小区有一块长为(4a+b)米,宽为(3a+b)米的长方形土地,物业管理公司计划在阴影部分的区域进行绿化,中间修建一个正方形喷水池.(1)求绿化的面积是多少平方米?(2)若a=1,b=2时,求绿化面积.参考答案一.选择题1.解:(﹣)0=1,故选:C.2.解:a3•(﹣a2)=﹣a3+2=﹣a5.故选:A.3.解:A.a3+a3=2a3,故本选项不合题意;B.(2a2)3=8a6,故本选项不合题意;C.a2•a3=a5,故本选项不合题意;D.(2a3)2=4a6,故本选项符合题意.故选:D.4.解:原式=x6÷x=x6﹣1=x5,故选:C.5.解:A、a2+a4,无法计算,故此选项错误;B、a7÷a=a6,故此选项正确;C、a2•a3=a5,故此选项错误;D、(a2)4=a8,故此选项错误.故选:B.6.解:﹣2a3b4÷3a2b•ab3=﹣2×(a3﹣2+1b4﹣1+3)=﹣a2b6,故选:D.7.解:∵2b×ab=2ab2,∴括号内应填的单项式是2b,故选:C.8.解:a(a﹣2)+4a=a2﹣2a+4a=a2+2a,故选:A.9.解:原式=(﹣)2019×(﹣4)2019×(﹣4)=[×(﹣4)]2019×(﹣4)=﹣4,故选:D.10.解:﹣8x a y×x2y b=﹣2x a+2y b+1=﹣2x5y6,∴a+2=5,b+1=6,解得a=3,b=5,∴ab=3×5=15,故选:D.11.解:原式=9+6x﹣3ax﹣2ax2=﹣2ax2+(6﹣3a)x+9,由结果不含x的一次项,得到6﹣3a=0,解得:a=2.故选:B.12.解:(x﹣7)(x+4)=x2﹣3x﹣28=x2+mx+n,∴m=﹣3,n=﹣28,∴6m+n=6×(﹣3)﹣28=﹣46.故选:A.二.填空题13.解:原式=﹣10a5,故答案为:﹣10a5.14.解:(3a2﹣6ab)÷3a=3a2÷3a﹣6ab÷3a=a﹣2b.故答案为:a﹣2b.15.解:∵2x=3,2y=5,∴23x﹣2y=23x÷22y=(2x)3÷(2y)2=33÷52=.故答案为:.16.解:()•()=x2y•()﹣6xy•(﹣xy2)=﹣x3y3+3x2y3.故答案为:﹣x3y3+3x2y3.17.解:由m+n﹣3=0可得m+n=3,∴2m•2n=2m+n=23=8.故答案为:8.18.解:∵等式(2﹣x)0=1成立,∴2﹣x≠0,解得:x≠2.故答案为:x≠2.19.解:∵(x﹣m)(x+n)=x2+nx﹣mx﹣mn=x2+(n﹣m)x﹣mn=x2﹣5x﹣6,∴,∴(n﹣m)2=25,∴n2﹣2mn+m2=25,∴n2+m2=25+2mn,∴(m+n)2=n2+m2+2mn=25+2mn+2mn=25+4mn=25+24=49,∴m+n的值为±7;故答案为:±7.20.解:原式=x4﹣3x3+nx2+mx3﹣3mx2+mnx﹣5x2+15x﹣5n=x4+(m﹣3)x3+(n﹣3m﹣5)x2+(mn+15)x﹣5n,由题意知:展开式中不含x2和x3项,则有m﹣3=0且n﹣3m﹣5=0,解得:m=3,n=14,故m+n=17.故答案为:17.三.解答题21.解:(1)2x2yz•3xy3z2=6x3y4z3;(2)(﹣2x3)3﹣3x3(x6﹣y2)=﹣8x9﹣3x9+3x3y2=﹣11x9+3x3y2.22.解:原式=m9+m9﹣m9=m9.23.解:∵x3n+3=x4n﹣4•x6,∴3n+3=4n﹣4+6,解得n=1,∴(﹣n2)3=(﹣12)3=﹣1.24.解:(x2+px+2)(x﹣1)=x3﹣x2+px2﹣px+2x﹣2=x3+(﹣1+p)x2+(﹣p+2)x﹣2,∵结果中不含x的二次项,∴﹣1+p=0,解得:p=1,∴p2020=12020=1.25.解:(1)102x+3y=102x•103y=(10x)2•(10y)3=9×8=72;(2)103x﹣4y=103x÷104y=(10x)3÷(10y)4=27÷16=.26.解:(1)∵4a+3b=3,∴92a•27b=34a•33b=33=27;(2)∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,解得m=4.27.解:(1)由题意得:1*3=2×23=16;(2)∵2*(2x+1)=64,∴22×22x+1=26,∴22+2x+1=26,∴2x+3=6,∴x=.28.解:根据题意得:(3a+b﹣a)(2a+b﹣a)=(2a+b)(a+b)=2a2+3ab+b2(平方米),则绿化的面积是(2a2+3ab+b2)平方米;当a=3,b=2时,绿化面积是:2×32+3×3×2+22=40(平方米).29.解:(1)由图形可得:(4a+b)(3a+b)﹣(a+b)2=12a2+4ab+3ab+b2﹣a2﹣2ab﹣b2=11a2+5ab.∴绿化的面积是(11a2+5ab)平方米.(2)当a=1,b=2时,绿化面积为:11×1+5×1×2=21(平方米).∴当a=1,b=2时,绿化面积为21平方米.14.2 乘法公式一、选择题1. 计算(2x+1)(2x-1)的结果为()A.4x2-1B.2x2-1C.4x-1D.4x2+12. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+93. 若(a +3b )2=(a -3b )2+A ,则A 等于( )A .6abB .12abC .-12abD .24ab4. 如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数5. 下列计算正确的是( )A. (a +2)(a -2)=a 2-2B. (a +1)(a -2)=a 2+a -2C. (a +b )2=a 2+b 2D. (a -b )2=a 2-2ab +b 26. 若M ·(2x -y 2)=y 4-4x 2,则M 应为 ( )A .-(2x +y 2)B .-y 2+2xC .2x +y 2D .-2x +y 27. 若a 2+ab +b 2=(a -b )2+X ,则整式X 为( )A .abB .0C .2abD .3ab8. 将9.52变形正确的是 ( )A .9.52=92+0.52B .9.52=(10+0.5)×(10-0.5)C .9.52=92+9×0.5+0.52D .9.52=102-2×10×0.5+0.529. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( )A .2,3B .2,-3C .-2,-3D .-2,310. 设a =x -2018,b =x -2020,c =x -2019,若a 2+b 2=34,则c 2的值是() A .16 B .12 C .8 D .4二、填空题11. 计算:9982=________.12. 如果(x+my)(x-my)=x2-9y2,那么m=________.13. 如图,在边长为a的正方形中剪去一个边长为b的小正方形(a b),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.abba14. 课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的.已知(a+b)4=a4+4a3b+6a2b2+4ab3+b4,则(a-b)4=________________.15. 如图,从边长为a的正方形内去掉一个边长为b的小正方形,然后将剩余部分拼成一个长方形,上述操作所能验证的公式是__________.b三、解答题16. 用简便方法计算:(1)2021×1979;(2)90×89;(3)99×101×10001;(4)20202-2021×2019.17. 如图,王大妈将一块边长为a m 的正方形土地租给了邻居李大爷种植,今年,她对李大爷说:“我把你这块地的一边减少4 m ,另一边增加4 m ,继续租给你,你也没有吃亏,你看如何?”李大爷一听,就答应了.同学们,你认为李大爷吃亏了吗?为什么?18. 探索、归纳与证明:(1)比较以下各题中两个算式结果的大小(在横线上填“>”“<”或“=”): ①32+42________2×3×4; ②52+52________2×5×5; ③(-2)2+52________2×(-2)×5; ④(12)2+(23)2________2×12×23.(2)观察上面的算式,用含字母a ,b 的关系式表示上面算式中反映的一般规律. (3)证明(2)中你所写规律的正确性.19. 计算:2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.14.2 乘法公式-答案一、选择题1. 【答案】A2. 【答案】A[解析] 原式=(-2x-3)(-2x+3)=(-2x)2-32=4x2-9.3. 【答案】B[解析] 由(a+3b)2=(a-3b)2+A,得A=(a+3b)2-(a-3b)2=a2+6ab+9b2-(a2-6ab+9b2)=12ab.4. 【答案】C【解析】将原式展开,合并后得到1ab ,选择C.5. 【答案】D【解析】6. 【答案】A[解析] M与2x-y2的相同项应为-y2,相反项应为-2x与2x,所以M为-2x-y2,即-(2x+y2).7. 【答案】D8. 【答案】D[解析] 9.52=(10-0.5)2=102-2×10×0.5+0.52.9. 【答案】C[解析] 因为(2x+3y)(mx-ny)=2mx2-2nxy+3mxy-3ny2=9y2-4x2,所以2m=-4,-3n=9,-2n+3m=0,解得m=-2,n=-3.10. 【答案】A[解析] 因为a=x-2018,b=x-2020,a2+b2=34,所以(x-2018)2+(x-2020)2=34.所以(x-2019+1)2+(x-2019-1)2=34.所以(x-2019)2+2(x-2019)+1+(x-2019)2-2(x-2019)+1=34.所以2(x-2019)2=32.所以(x -2019)2=16.又c =x -2019,所以c 2=16.二、填空题11. 【答案】996004[解析] 原式=(1000-2)2=1000000-4000+4=996004.12. 【答案】±3[解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m=±3.13. 【答案】22()()a b a b a b +-=-【解析】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为1(22)()()()2b a a b a b a b +-=+-,故验证了公式22()()a b a b a b +-=-(反过来写也可)14. 【答案】a 4-4a 3b +6a 2b 2-4ab 3+b 4[解析] 因为(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4, 所以(a -b)4=[a +(-b)]4=a 4+4a 3(-b)+6a 2(-b)2+4a(-b)3+(-b)4 =a 4-4a 3b +6a 2b 2-4ab 3+b 4.15. 【答案】22()()a b a b a b +-=-【解析】如图,左图中阴影部分的面积为22a b -,右图中阴影部分的面积为()()a b a b +-,而两图中阴影部分的面积应该是相等的,故验证的公式为22()()a b a b a b +-=-(反过来写也可)三、解答题16. 【答案】解:(1)原式=(2000+21)×(2000-21)=20002-212=3999559.(2)原式=×=902-=8100-=8099.(3)99×101×10001=(100-1)×(100+1)×10001=(1002-1)×10001=(1002-1)×(1002+1)=(1002)2-12=99999999.(4)原式=20202-(2020+1)×(2020-1)=20202-(20202-1) =20202-20202+1 =1.17. 【答案】解:李大爷吃亏了.理由:原来正方形土地的面积为a 2 m 2,当一边减少4 m ,另一边增加4 m 时,面积为(a +4)(a -4)=(a 2-16)m 2. 因为a 2-16<a 2, 所以李大爷吃亏了.18. 【答案】解:(1)①> ②= ③> ④>(2)a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (3)由完全平方公式(a -b)2=a 2-2ab +b 2≥0, 得a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.19. 【答案】41122n --【解析】原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.20. 【答案】解:(1)由已知可得:(a +b)1展开式中共有2项,(a+b)2展开式中共有3项,(a+b)3展开式中共有4项,……则(a+b)n展开式中共有(n+1)项.(2)(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,…则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.人教版八年级数学14.3 因式分解(答案)一、选择题1.模拟计算1252-50×125+252的结果是( )A.100 B.150 C.10000 D.225002. 若a+b=3,a-b=7,则b2-a2的值为( )A.-21 B.21 C.-10 D.103. 计算552-152的结果是( )A.40 B.1600 C.2400 D.28004. 2019·唐山滦州期末若关于x的二次三项式x2-ax+36是完全平方式则a的值是( ) A.-6 B.±6 C.12 D.±125. 将3a2m-6amn+3a分解因式,下面是四位同学分解的结果:①3am(a-2n+1);②3a(am+2mn-1);③3a(am-2mn);④3a(am-2mn+1).其中正确的是( )A.①B.②C.③D.④6. 计算(-2)2020+(-2)2019所得的正确结果是( ) A .22019B .-22019C .1D .27. 如图,长、宽分别为a ,b 的长方形的周长为10,面积为6,则a 2b +ab 2的值为( )A .15B .30C .60D .788. 计算(a -1)2-(a +1)2的结果是( )A .-2B .-4C .-4aD .2a 2+29. 若1x y +=-,则43222234585x x y x y x y xy xy y ++++++的值等于( )A.0B.1-C.1D.310. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零 D .小于或等于零二、填空题11. 因式分解:m 2n -6mn +9n =________.12. 分解因式:(2a +b )2-(a +2b )2=________.13. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+ ⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填括号)14. 分解因式(x +2)2-3(x +2)的结果是____________.15. 分解因式:x 2-4=________.16. 2019·张家港期末 已知x ,y 满足⎩⎪⎨⎪⎧2x +y =9,x +2y =6,则x 2-y 2=________.三、解答题17. 分解因式:(a -b )2-2(a -b )+1.设M =a -b 则原式=M 2-2M +1=(M -1)2. 将M =a -b 代入还原得原式=(a -b -1)2.上述解题中用到的是“整体思想”它是数学中常用的一种思想请你用整体思想解决下列问题:(1)分解因式:(x +y )(x +y -4)+4;(2)若a 为正整数则(a -1)(a -2)(a -3)(a -4)+1为整数的平方试说明理由.18. 分解因式:3232x x y y +--19. 分解因式:32acx bcx adx bd+++20. 分解因式:42471x x -+人教版 八年级数学14.3 因式分解(答案)-一、选择题1. 【答案】C [解析] 1252-50×125+252=(125-25)2=10000.2. 【答案】A3. 【答案】D [解析] 552-152=(55+15)×(55-15)=70×40=2800.4. 【答案】D [解析] 依题意得ax =±2×6x解得a =±12.5. 【答案】D6. 【答案】A [解析] (-2)2020+(-2)2019=-2×(-2)2019+(-2)2019=(-2)2019×(-2+1)=22019.7. 【答案】B [解析] 根据题意,得a +b =5,ab =6,则a 2b +ab 2=ab(a +b)=30.8. 【答案】C [解析] (a -1)2-(a +1)2=(a -1+a +1)(a -1-a -1)=2a ·(-2)=-4a.9. 【答案】1【解析】43222234585x x y x y x y xy xy y ++++++4322342233224642x x y x y xy y x y xy xy x y x y =+++++++++ 42()()()1x y xy x y xy x y =+++++=10. 【答案】B【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】n(m-3)2【解析】m2n-6mn+9n=n(m2-6m+9)=n(m-3)2.12. 【答案】3(a+b)(a-b)【解析】(2a+b)2-(a+2b)2=[(2a+b)+(a+2b)][(2a+b)-(a+2b)]=(3a+3b)(a-b)=3(a+b)(a-b).13. 【答案】其中⑴是单项式变形,⑷是多项式的乘法运算,⑵中并没有写成几个整式的乘积的形式,只有⑶是因式分解14. 【答案】(x+2)(x-1) [解析] (x+2)2-3(x+2)=(x+2)(x+2-3)=(x+2)(x-1).15. 【答案】(x+2)(x-2)16. 【答案】15 [解析] 由已知可得3x+3y=15,则x+y=5,x-y=3,故x2-y2=(x+y) (x-y)=15.三、解答题17. 【答案】解:(1)设M=x+y则原式=M(M-4)+4=M2-4M+4=(M-2)2.将M=x+y代入还原得原式=(x+y-2)2.(2)原式=(a-1)(a-4)(a-2)(a-3)+1=(a2-5a+4)(a2-5a+6)+1.令N=a2-5a+4.因为a为正整数所以N=a2-5a+4也是整数则原式=N(N+2)+1=N2+2N+1=(N+1)2.因为N为整数所以原式=(N+1)2为整数的平方.18. 【答案】22-++++()()x y x xy y x y【解析】原式3322=-+++-+22()()x y x xy y x y=-++++()()()()()()x y x y=-+-22x y x xy y x y x y19. 【答案】2++()()cx d ax bword 版 初中数学21 / 21 【解析】322()()acx bcx adx bd cx d ax b +++=++20. 【答案】22(17)(17)x x x x +++-【解析】42422224712149(17)(17)x x x x x x x x x -+=++-=+++-。
整式的乘法 计算80道(含答案)14.1.1 同底数幂的乘法14.1.2幂的乘方14.1.3积的乘方14.1.4 整式的乘法(1)单项式乘单项式 (2)多项式乘以多项式(3)同底数幂的除法【公式回顾】1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.单项式乘以单项式:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.6.单项式乘以多项式:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).7.多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.8.单项式相除:把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.9.多项式除以单项式:先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++计算练习:(1)y 4•y 3•y 2•y ; (2)(﹣x 2y 3)4; (3)82019×(﹣0.125)2019;(4)(a 3)2•(2ab 2)3. (5)(﹣x 3y 2)3 (6)5a 2•(﹣3a 3)2(7)(﹣2a n b3n)2+(a2b6)n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4 (9)2100×4100×0.12599.(10)a3•a4•a+(a2)4+(﹣2a4)2.(11)(2x2)3+x4•x2+(﹣2x2)3 (12)x•x3+x2•x2.(13)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.(14)(b2n)3(b3)4n÷(b5)n+1(15)(a2)3﹣a3•a3+(2a3)2;(16)(﹣4a m+1)3÷[2(2a m)2•a].(17)8a(a2+a+);(18)5x2y•(﹣2xy2)3.(19)7x4•x5•(﹣x)7+5(x4)4.(20)(﹣1)0+(﹣1)2020;(21)(10a2﹣5a)÷(5a).(22)(14a3﹣7a2)÷(7a);(23)(a+b)(a2﹣ab+b2)(24)3x2y•(﹣2x3y2)2;(25)(﹣2a2)•(3ab2﹣5ab3).(26)a5•a3÷a2;(27)(﹣2m)3﹣(m3)2;(28)(﹣2a2b)•(abc);(29)(﹣2x)3(2x3﹣x﹣1)﹣2x(2x3+4x2)(30)(x+3)(x﹣7)﹣x(x﹣1).(31)2xy2•(﹣3xy4)(32)(y3﹣3y2+y)÷y(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2(34)a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)(35)(﹣2xy2)6+(﹣3x2y4)3;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4).(37)﹣b2×(﹣b)2×(﹣b3)(38)(x﹣y)3×(y﹣2)2×(y﹣2)5(39)﹣a4•a3•a+(a2)4﹣(﹣2a4)2(40)(a2b2)3÷(﹣ab3)2 (41)5x2•x4﹣(﹣2x3)2+x8÷x2(42)(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)(44)3x3y3•(﹣x2y2)+(﹣x2y)3•9xy2.(45)(3a2b)2•(a2)4•(﹣b2)5.(46)[2(a﹣b)3]2+[(a﹣b)2]3﹣[﹣(a﹣b)2](47)x2y3(﹣2xy3)2(48)(3m2+15m3n﹣m4)÷(﹣3m2)(49)(2x3y4﹣3x3y2z)÷x2y2(50)(x﹣y)(x2+xy+y2).(51)[(x2)3]2﹣3(x2•x3•x)2;(52)3a•(a2+2a)﹣2a2(a﹣3)(53)(x2y3)2+(﹣xy)3•xy3(54)(55)x•(﹣x)•(﹣x)4(56)y•x5+(﹣2x2)2+(﹣2x2)3(57)y4+(y2)4÷y4﹣(﹣y2)2(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3](59)(2×102)4(60)x•x2•x3+(x2)3﹣2(x3)2;(61)(﹣a2)3﹣3a2•a•a3(62)(x﹣y)9÷(y﹣x)6÷(x﹣y)(63)﹣2x6﹣(x)2•8x5+(2x4)3÷(﹣x)5(64)(﹣2x3y)2•(﹣2x)(65)(﹣4)2012×(0.25)2013(66)若3m=6,9n=2,求3m﹣4n+1的值.(67)(x﹣3y)(﹣6x);(68)(6x4﹣8x2y)÷(﹣2x2).(69)(﹣1+3x)(﹣3x﹣1);(70)(x+1)2﹣(1﹣3x)(1+3x).(71)已知(a x)y=a6,(a x)2÷a y=a3(1)求xy和2x﹣y的值;(2)求4x2+y2的值.(72)15mn2÷5mn×m3n;(73)(3x+1)(2x﹣5).(74)(75)(x3y)•(﹣3xy2)3•(x)2.(76)(x﹣2y)(x+2y﹣1)+4y2(77)(a2b)[(ab2)2+(2ab)3+3a2].(78)(a3b4)2÷(ab2)3;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy.(80)(﹣2a2)3+2a2•a4;(81)(﹣2×105)2÷(8×105)整式的乘法计算80道参考答案与试题解析(1)原式=y10;(2)原式=x8y12;(3)原式=(﹣0.125×8)2019=﹣1;(4)原式=a6×8a3b6=8a9b6.(5)(﹣x3y2)3=﹣x9y6;(6)原式=5a2•9a6=45a8;(7)原式=4a2n b6n+a2n b6n=5a2n b6n;(8)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(9)原式=299×2×499×4×0.12599=(2×4×0.125)99×2×4=199×2×4=1×2×4=8.(10)a3•a4•a+(a2)4+(﹣2a4)2=a8+a8+4a8=6a8.(11)原式=8x6+x6﹣8x6=x6;(12)原式=x4+x4=2x4;(13)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.(14)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(15)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(16)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+2(17)8a(a2+a+)=8a•a2+8a•a+8a•=8a3+6a2+5a;(18)原式=5x2y•(﹣8x3y6)=﹣40x5y7;(19)原式=7x4•x5•(﹣x7)+5x16=﹣7x16+5x16=﹣2x16.(20)(﹣1)0+(﹣1)2020=1+1=2;(21)(10a2﹣5a)÷(5a)=2a﹣1.(22)(14a3﹣7a2)÷(7a)=14a3÷7a﹣7a2÷7a=2a2﹣a;(23)(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+ba2﹣ab2+b3=a3+b3.(24)3x2y•(﹣2x3y2)2=3x2y•4x6y4=12x8y5;(25)(﹣2a2)•(3ab2﹣5ab3)=(﹣2a2)•(3ab2)﹣(﹣2a2)•(5ab3)=﹣6a3b2+10a3b3.(26)a5•a3÷a2=a5+3﹣2=a6;(27)(﹣2m)3﹣(m3)2=﹣8m3﹣m6;(28)(﹣2a2b)•(abc)=﹣a3b2c.(29)原式==﹣16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(30)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.(31)原式=﹣6x2y6;(32)原式=y2﹣y+1;(33)(﹣2y3)2+(﹣4y2)3﹣(﹣2y)2•(﹣3y2)2=4y6﹣64y6﹣4y2•(9y4)=4y6﹣64y6﹣36y6=﹣96y6.(34)原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0.(35)(﹣2xy2)6+(﹣3x2y4)3=64x6y12﹣27x6y12=37x6y12;(36)﹣x2•(﹣x)3+3x3(﹣x)2﹣4(﹣x)•(﹣x4)=x5+3x5﹣4x5=0.(37)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(38)(x﹣y)3×(y﹣2)2×(y﹣2)5=(x﹣y)3(y﹣2)7.(39)原式=﹣a8+a8﹣4a8,=﹣4a8;(40)原式=a6b6÷a2b6=a4.(41)原式=5x6﹣4x6+x6=2x6(42)==﹣4x5y3+9x4y2﹣2x2y;(43)(x﹣1)(2x+1)﹣2(x﹣5)(x+2)=2x2+x﹣2x﹣1﹣2(x2+2x﹣5x﹣10)=2x2﹣x﹣1﹣2x2+6x+20=5x+19.(44)原式=3x3y3•(﹣x2y2)+(﹣x6y3)•9xy2=﹣2x5y5﹣x7y5.(45)原式=9a4b2•a8•(﹣b10)=﹣9a4b2•a8•b10=﹣9a12b12.(46)原式=4(a﹣b)6+(a﹣b)6+(a﹣b)2=5(a﹣b)6+(a﹣b)2.(47)x2y3(﹣2xy3)2=x2y3•(4x2y6)=4x4y9;(48)(3m2+15m3n﹣m4)÷(﹣3m2)=﹣1﹣5mn+m2.(49)(2x3y4﹣3x3y2z)÷x2y2=2xy2﹣3xz;(50)(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.(51)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(52)原式=3a3+6a2﹣2a3+6a2=a3+12a2.(53)(x2y3)2+(﹣xy)3•xy3=x4y6﹣x4y6=0;(54)=(﹣0.25)15×415+××=(﹣0.25×4)15+×=﹣1+(﹣1)×=﹣1﹣=.(55)原式=﹣x2•x4=﹣x6;(56)原式=x5y+4x4﹣8x6.(57)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4;(58)(x﹣y)2•(y﹣x)7•[﹣(x﹣y)3]=(y﹣x)2•(y﹣x)7•(y﹣x)3=(y﹣x)12.(59)(2×102)4=1.6×109;(60)原式=x6+x6﹣2x6=0;(61)(﹣a2)3﹣3a2•a•a3=﹣a6﹣3a6=﹣4a6.(62)原式=(x﹣y)9÷(x﹣y)6÷(x﹣y)=(x﹣y)2=x2﹣2xy+y2;(63)原式=﹣2x6﹣•8x5+(8x12)÷(﹣x5)=﹣2x6﹣2x7﹣8x7=﹣2x6﹣10x7.(64)(﹣2x3y)2•(﹣2x)=(4x6y2)•(﹣2x)=﹣8x7y2(65)(﹣4)2012×(0.25)2013=(﹣4)2012×(0.25)2012×(0.25)=(﹣4×0.25)2012×0.25=(﹣1)2012×0.25=1×0.25=0.25(66)9n=(32)n=32n=2∴3 m﹣4n+1=3m÷34n×3=3m÷(32n)2×3=6÷4×3=(67)原式=﹣6x2+18xy;(68)原式=﹣3x2+4y.(69)原式=(﹣1)2﹣(3x)2=1﹣9x2;(70)原式=x2+2x+1﹣(1﹣9x2)=x2+2x+1﹣1+9x2=10x2+2x.(71)(1)∵(a x)y=a6,(a x)2÷a y=a3∴a xy=a6,a2x÷a y=a2x﹣y=a3,∴xy=6,2x﹣y=3.(2)4x2+y2=(2x﹣y)2+4xy=32+4×6=9+24=33.(72)15mn2÷5mn×m3n=3n×m3n=3m3n2;(73)(3x+1)(2x﹣5)=6x2﹣15x+2x﹣5=6x2﹣13x﹣5.(74)(﹣x2y﹣xy2)•(﹣xy)2=(﹣x2y﹣xy2)•x2y2=﹣x4y3﹣x3y4.(75)原式=x3y•(﹣27x3y6)•x2=﹣x8y7.(76)原式=(x﹣2y)(x+2y)﹣x+2y+4y2=x2﹣4y2﹣x+2y+4y2=x2﹣x+2y;(77)原式=a2b(a2b4+8a3b3+3a2)=a4b5+8a5b4+3a4b.(78)(a3b4)2÷(ab2)3=a6b8÷a3b6=a3b2;(79)(﹣2x3y2﹣3x2y2+2xy)÷2xy=﹣x2y﹣xy+1.(80)(﹣2a2)3+2a2•a4=(﹣2)3(a2)3+2a6=﹣8a6+2a6=﹣6a6;(81)(﹣2×105)2÷(8×105)=4×1010÷(8×105)=40×109÷(8×105)=5×104.。
第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。
14.1整式的乘法同步课后练习一、单选题1.下列运算结果正确的是( )A . (x 3﹣x 2+x )÷x=x 2﹣xB . (﹣a 2)•a 3=a 6C . (﹣2x 2)3=﹣8x 6D . 4a 2﹣(2a )2=2a 22.下面计算中,正确的是( )A . (a+b )2=a 2+b 2B . 3a+4a=7a 2C . (ab )3=ab 3D . a 2•a 5=a 73.计算3x 2y ·2x 3y 2÷xy 3的结果是( ).A . 5x 5B .6x 4C .6x 5 D6x 4y .4.若3m =5,9n =10,则3m+2n 的值是( )A . 50B . 500C . 250D . 25005.若(-5a m +1b 2n -1)·(2a n b m )=-10a 4b 4,则m -n 的值为( )A . -1B . 1C . -3D . 36.若(x+2y)(2x-ky-1)的结果中不含xy 项,则k 的值为( )A . 4B . -4C . 2D . -27.已知,n 的值是( ) A . -2 B . 2 C .0.5 D .-0.58.如果,,,那么a 、b 、c 的大小关系是( )A .B .C .D .9.现有纸片:4张边长为a 的正方形,3张边长为b 的正方形,8张宽为a 、长为b 的长方形,用这15张纸片重新拼出一个长方形,那么该长方形的长为( )A . 2a+3bB .2a+bC .A+3bD . 无法确定10.计算的结果是( ) A . 32 B . -32 C . 23 D .-23 11.下列各式中:;;;正确的个数( )A.1个B.2个C.3个D.4个二、填空题12.(a·a2·a3)³ =__________.13.计算:22018×0.52018=_____.14.若x+4y=-1,则2x•16y的值为_____.15.若,求=___.16.已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是_____.17.若,,则的值为_________________三、解答题18.计算:(1)(-2a2)3+2a2·a4-a8÷a2 ;(2)2a(a-b) (a+b).19.计算:(1)a·a5-(2a3)2+(-2a2)3;(2)(2x+3)(2x-3)-4x(x-1)+(x-2)2. 20.计算:21.先化简,再求值:(1)x(x-1)+2x(x+1)-(3x-1)(2x-5),其中x=2.(2),其中m=-222.已知, .(1)填空:= ;=__________.(2)求m与n的数量关系.23.回答下列问题:(1)计算:①(x+2)(x+3)=;②(x +7)( x-10)=;③(x-5)(x-6)=.(2)总结公式:(x+a)(x+b)=.(3)已知a,b,m均为整数,且(x+a)(x+b)=x2+mx+6,求m的所有可能值参考答案1.C 2.D 3.D 4.A 5.A 6.A 7.B 8.C 9.A 10.C 11.A 12.a 18 13.1114.215.116.817.1818.(1)-7a6;(2)2a3-2a b2详解:(1)原式=-8 a6+2a6-a6=-7a6(2)原式=2a(a2-b2)=2a3-2a b219.(1)-11a6;(2)x2-5.详解:(1)原式(2)原式点睛:考查整式的混合运算,熟练掌握运算法则是解题的关键.20.(1) ;(2)3x-y+2;(3).【详解】(1)y3•y3+(-2y3)2=y6+4y6=5y6;(2)(3x2y-xy2+2xy)÷xy=3x-y+2;(3)(a+2b-c)(a-2b+c)=[a+(2b-c)][a-(2b-c)]=a2-(2b-c)2=a2-4b2+4bc-c2.21.(1)-3x2+18x-5,19 ;(2)m9,-512.解:(1)原式=x2-x+2x2+2x-6x2+17x-5=(x2+2x2-6x2)+(-x+2x+17x)-5=-3x2+18x-5当x=2时,原式=19(2)原式=-m2•m4•(-m3)=m2•m4•m3=m9当m=-2时,则原式=(-2)9=-51222.(1)16;4;(2)m=3n;【详解】(1)=a m×a n=16;=a m÷a n=4;(2)∵,∴∴23.(1)①;②;③;(2)(x+a)(x+b)=.(3)详解:(1)①(x+2)(x+3)=;②(x+7)(x-10)=;③(x-5)(x-6)=.(2)总结公式:(x+a)(x+b)=.(3)∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+6∴ab=6,m=a+b.∵a、b、m均为整数,∴当a=1时b=6,m=1+6=7,当a=-1时b=-6,m=(-1)+(-6)=-7,当a=2时b=3,m=2+3=5,当a=-2时b=-3,m=-2+(-3)=-5.综上所述:m的值为±7,±5.。
《整式的乘法》同步测试班级姓名成绩一、选择题:(60’)1.下列各式中,正确的是()A.t5·t5 = 2t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t2·t3 = t52.下列计算错误的是()A.−a2·(−a)2 = −a4 B.(−a)2·(−a)4 = a6C.(−a3)·(−a) 2 = a5 D.(−a)·(−a)2 = −a33.下列计算中,运算正确的个数是()①5x3−x3 = x3 ② 3m·2n = 6m+n③a m+a n = a m+n ④x m+1·x m+2 = x m·x m+3A.1 B. 2 C.3 D.44.计算a6(a2)3的结果等于()A.a11 B.a 12 C.a14 D.a365.下列各式计算中,正确的是()A.(a3)3 = a6 B.(−a5)4 = −a 20 C.[(−a)5]3 = a15 D.[(−a)2]3 = a66.下列各式计算中,错误的是()A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (−x n)2 D.x2n = (−x2)n7.下列计算正确的是()A.(xy)3 = xy3 B.(2xy)3 = 6x3y3C.(−3x2)3 = 27x5 D.(a2b)n = a2n b n 8.下列各式错误的是()A.(23)4 = 212 B.(− 2a)3 = − 8a3C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b2 9.下列计算中,错误的是()A.m n·m2n+1 = m3n+1 B.(−a m−1)2 = a 2m−2 C.(a2b)n = a2n b n D.(−3x2)3 = −9x6 10.下列计算中,错误的是()A.(−2ab2)2·(− 3a2b)3 = − 108a8b7B.(2xy)3·(−2xy)2 = 32x5y5C.(m2n)(−mn2)2 =m4n4D.(−xy)2(x2y) = x4y311.下列计算结果正确的是()A.(6ab2− 4a2b)•3ab = 18ab2− 12a2b B.(−x)(2x+x2−1) = −x3−2x2+1C.(−3x2y)(−2xy+3yz−1) = 6x3y2−9x2y2z2+3x2yD.(34a3−12b)•2ab =32a4b−ab212.若(x−2)(x+3) = x2+a+b,则a、b的值为()A.a = 5,b = 6 B.a = 1,b = −6C.a = 1,b = 6 D.a = 5,b = −6二、解答题:1.计算(25’)(1). (− 5a3b2)·(−3ab 2c)·(− 7a2b);(2). 2(a5)2·(a2)2-(a2)4·(a2)2·a2;(3).(x+3)(x-3)-(x+1)(x+5)(4). 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a);(5). (3x2−5y)(x2+2x−3).2.当x = −3时,求8x2−(x−2)(x+1)−3(x−1)(x−2)的值.(8’)3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.(7’)参考答案:一、选择题1.A说明:t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4 = t3+4 = t7≠t12,C错;t5•t5 = t5+5 = t10≠2t5,D错;t2•t3 = t2+3 = t5,A正确;答案为A.2.C说明:−a2·(−a)2 = −a2·a2 = −a2+2 = −a4,A计算正确;(−a)2·(−a)4 = a2·a4 = a2+4 = a6,B计算正确;(−a3)·(−a)2 = −a3·a2 = −a5≠a5,C计算错误;(−a)·(−a)2 = −a·a2 = −a3,D计算正确;所以答案为C3.A说明:5x3−x3 = (5−1)x3 = 4x3≠x3,①错误;3m与2n不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m = 1,n = 2,则3m·2n = 31·22 = 3·4 = 12,而6m+n = 61+2 = 63 = 216≠12,②错误;a m与a n只有在m = n时才是同类项,此时a m+a n = 2a m≠a m+n,而在m≠n时,a m与a n无法合并,③错;x m+1·x m+2 = x m+1+m+2 = x m+m+3 = x m·x m+3,④正确;所以答案为A.4.B说明:a6(a2)3 = a6·a2×3 = a6·a6 = a6+6 = a12,所以答案为B.5.D说明:(a3)3 = a3×3 = a9,A错;(−a5)4 = a5×4 = a20,B错;[(−a)5]3 = (−a)5×3 = (−a)15 = −a15,C错;[(−a)2]3 = (−a)2×3 = (−a)6 = a6,D正确,答案为D.6.D说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−x n)2 = x2n,C计算正确;当n为偶数时,(−x2)n = (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.7.D说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(−3x2)3 = (−3)3(x2)3 = −27x6,C错;(a2b)n = (a2)n b n = a2n b n,D正确,答案为D.8.C说明:(23)4 = 23×4 = 212,A中式子正确;(− 2a)3 = (−2) 3a3 = − 8a3,B中式子正确;(3ab)2 = 32a2b2 = 9a2b2,C中式子错误;(2mn2)4 = 24m4(n2)4 = 16m4n8,D中式子正确,所以答案为C.9.D说明:m n ·m 2n+1 = m n+2n+1 = m 3n+1,A 中计算正确;(−a m −1)2 = a 2(m −1) = a 2m −2,B 中计算正确; (a 2b)n = (a 2)n b n = a 2n b n ,C 中计算正确;(−3x 2)3 = (−3)3(x 2)3 = −27x 6,D 中计算错误;所以答案为D .10.C说明:(−2ab 2)2·(− 3a 2b)3 = (−2) 2a 2(b 2)2·(−3)3(a 2)3b 3 = 4a 2b 4·(−27)a 6b 3 = − 108a 2+6b 4+3 = − 108a 8b 7, A 中计算正确;(2xy)3·(−2xy)2 = (2xy)3·(2xy)2 = (2xy)3+2 = (2xy)5 = 25x 5y 5 = 32x 5y 5,B 中计算正确;(13m 2n)(− 13mn 2)2 =13m 2n(−13) 2m 2(n 2)2 =13m 2n·19m 2n 4 =127m 2+2n 1+4 =127m 4n 5,C 中计算错误;(−23xy)2(94x 2y) = (−23)2x 2y 2·94x 2y =49x 2y 2·94x 2y = x 4y 3,D 中计算正确,所以答案为C . 11.D说明:(6ab 2− 4a 2b)•3ab = 6ab 2·3ab − 4a 2b·3ab = 18a 2b 3− 12a 3b ,A 计算错误;(−x)(2x+x 2−1) = −x·2x+(−x)·x 2−(−x) = −2x 2−x 3+x = −x 3−2x 2+x ,B 计算错误;(−3x 2y)(−2xy+3yz −1) = (−3x 2y) • (−2xy)+(−3x 2y) •3yz−(−3x 2y) = 6x 3y 2−9x 2y 2z+3x 2y ,C 计算错误;(34a 3−12b)•2ab = (34a 3) •2ab−(12b)•2ab =32a 4b −ab 2,D 计算正确,所以答案为D . 12.B说明:因为(x −2)(x+3) = x•x−2x+3x −6 = x 2+x −6,所以a = 1,b = −6,答案为B .二、解答题1.解:(1)(− 5a 3b 2)·(−3ab 2c)·(− 7a 2b) = [(−5)×(−3)×(−7)](a 3·a·a 2)(b 2·b 2·b)c = − 105a 6b 5c .(2)− 2a 2b 3·(m −n)5·13ab 2·(n −m)2+13a 2(m −n)·6ab 2 = (−2·13)·(a 2·a)·(b 3·b 2)[(m −n)5·(m −n)2]+( 13·6)(a 2·a)(m −n)b 2 = −23a 3b 5(m −n)7+ 2a 3b 2(m −n). (3) 3a 2(13ab 2−b)−( 2a 2b 2−3ab)(− 3a) = 3a 2·13ab 2− 3a 2b+ 2a 2b 2· 3a −3ab· 3a = a 3b 2− 3a 2b+ 6a 3b 2− 9a 2b = 7a 3b 2− 12a 2b .(4)(3x 2−5y)(x 2+2x −3) = 3x 2·x 2−5y·x 2+3x 2·2x −5y·2x+3x 2·(−3)−5y·(−3)= 3x 4−5x 2y+6x 3−10xy −9x 2+15y= 3x 4+6x 3−5x 2y −9x 2−10xy+15y .2. 解:8x 2−(x −2)(x+1)−3(x −1)(x −2) = 8x 2−(x 2−2x+x −2)−3(x 2−x −2x+2)= 8x 2−x 2+x+2−3x 2+9x −6 = 4x 2+10x −4.当x = −3时,原式 = 4·(−3)2+10·(−3)−4 = 36−30−4 = 2.3. 解:设长方形的长为x ,宽为y ,则由题意有即解得xy = 36.答:长方形的面积是36.4. 解:(x+my−1)(nx−2y+3) = nx2−2xy+3x+mnxy−2my2+3my−nx+2y−3= nx2−(2−mn)xy−2my2+(3−n)x+( 3m+2)y−3∵x、y项系数为0,∴得故3m+n = 3·(−23)+3 = 1.。
第14章——14.1《整式的乘法》同步练习及(含答案) 14.1.4 单项式乘单项式
一、选择题
1.计算2322)(xy y x -⋅的结果是( )
A. 105y x
B. 84y x
C. 85y x -
D.126y x
2.计算)()41()21(22232y x y x y x -⋅+-的结果为( ) A. 36163y x - B. 0 C. 36y x - D. 3612
5y x - 3.计算2233)108.0()105.2(⨯-⨯⨯ 的结果是( )
A. 13106⨯
B. 13106⨯-
C. 13102⨯
D. 1410
4.计算)3()2
1(23322y x z y x xy -⋅-⋅的结果是( ) A. z y x 663 B. z y x 663- C. z y x 553 D. z y x 553-
5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )
A. 3617b a -
B. 3618b a -
C. 3617b a
D. 3618b a
6.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )
A. 8
B. 9
C. 10
D.无法确定
7.计算))(3
2()3(32m n m y y x x -⋅-⋅-的结果是( ) A. mn m y x 43 B. m m y x 223
11+- C. n m m y x ++-232 D. n m y x ++-5)(3
11 8.下列计算错误的是( )
A.122332)()(a a a =-⋅
B.743222)()(b a b a ab =-⋅-
C.212218)3()2(++=-⋅n n n n y x y x xy
D.333222))()((z y x zx yz xy -=---
二、填空题
1..___________))((22=x a ax
2.3522)_)((_________y x y x -=
3..__________)()()3(343=-⋅-⋅-y x y x
4.._____________)21(622=⋅-abc b a
5.._____________)(4)3(523232=-⋅-b a b a
6..______________21511=⋅⋅--n n n y x y x
7.._____________)2
1()2(23=-⋅-⋅mn mn m 8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯
9.若单项式423a b x y --与33a b x y +是同类项,则它们的积为 .
10.若1221253()()m n n m a b a b a b ++-=,则m+n 的值为 .
三、解答题
1.计算)5
3(32)21(322yz y x xyz -⋅⋅- 2.计算23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅
3.已知:8
1,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值. 4.已知:693273=⋅m m ,求m .
5.若32=a ,52=b ,302=c ,试用a .b 表示出c .
14.1.4 单项式乘单项式
一、选择题:BADA CCCB
二、填空题:1、33a x ;2、-xy ;3、743x y ;4、43232
a b c -;5、191636a b -; 6、2130n n x y -;7、5412
m n ;8、241.210⨯;9、649x y -; 10、2.
三、解答题:
1、解:原式223123[()()]235
xyz x y yz =-⨯⨯- 2、解:原式333333453616a b a b a b =--
3、解:原式222511(14)()74
xy x y x =⨯⨯
当8
1,4-==y x 时, 原式84114()28
=⨯⨯- 4、解:963273m m =
5、解:12303522222c a b a b ++==⨯⨯=⨯⨯=。