【钢管混凝土拱桥拱座结构受力分析】钢管混凝土拱桥结构及受力特点分析
- 格式:docx
- 大小:14.36 KB
- 文档页数:3
【钢管混凝土拱桥拱座结构受力分析】钢管混凝土拱桥结构及受力特点分析某中承式钢管混凝土拱桥拱肋的理论计算跨径为152m,拱肋直径1.5m,厚度为2cm,内部浇筑C50混凝土,计算矢高为47m,矢跨比为1/3,拱肋拱轴线采用倒悬链线,拱轴系数为1.55。
拱肋采用圆形截面,主梁采用扁平流线形钢箱截面,拱肋设18对吊杆。
下部结构为钢筋混凝土拱座及承台接钻孔灌注桩基础。
桥面铺装采用6cm 厚环氧沥青。
钢箱梁主体结构均采用Q345-C钢,钢箱拱肋结构采用Q345D钢,其技术指标应符合《低合金高强度结构钢》(GB/T1591-94)的相关要求,盖梁及墩柱采用C40混凝土,拱座及承台采用C30混凝土,基桩采用C25混凝土。
桥梁设计荷载为公路-I级,人群荷载5.0KN/m2;环境类别为II类;设计安全等级为一级。
Midas/Civil有限元模型使用Midas/Civil建立全桥模型,本桥3D模型按照桥梁设计选择相应的材料和截面特性。
模型划分共计368个节点,378个单元,其中梁单元360个,桁架单元18个,考虑到的各作用效应有:(1)恒载:自重以及设计荷载;(2)均匀温度:结构因均匀温升、温降,梯度温升、温降产生的作用效应按《公路桥涵设计通用规范》(JTG D60-2004)规定计算。
(3)支座沉降:支座不均匀沉降按1cm考虑。
(4)车辆荷载:按最不利车辆荷载考虑,车辆为公路—I级五车道,人群荷载为5.0KN/m。
本桥考虑2.5%的桥梁纵坡。
模型节点单元见图3。
其中,拱肋单元编号为155~322,共计167个单元。
图1 钢管混凝土拱桥有限元模型永久作用分项系数按照作用对结构承载能力不利的情况选取,可变作用分项系数按照规范的要求进行取值。
各荷载组合系数见表3。
表3 荷载组合系数名称荷载工况组合系数结构恒载自重+二期1.1车辆荷载公路—Ⅰ级1.4支座沉降1cm 1.0温度荷载±20℃ 0.7计算结构自重+二期+车辆荷载+升、降温效应(±20℃)+支座沉降(1cm)作用下的拱肋内力。
对钢管混凝土拱桥受力分析及性能探讨摘要:钢管混凝土拱桥设计是常见而又复杂的实际问题,针对钢管混凝土受力性能及抗震横向对提高拱肋的横向稳固性起到了极大的作用, 一同避开了拱顶段管内混凝土不密实的问题.本文笔者以下进行了分析。
关键词:钢管混凝土;拱桥设计;抗震;分析1 有限元模型简介某大桥的受力分析采用大型通用程序A N-SYS 进行计算.建模时, 拱肋、桥面纵梁、横梁采用空间梁单元, 其中钢管混凝土拱肋段采用双单元法建模, 即在模型离散时, 在同一段有限元模型中将钢管和混凝土分别作为两根杆件输人, 但同时保证二者的节点坐标完全相同, 在相同的节点间建立两个单元, 一个单元赋予钢管的材料属性, 另一个单元则赋予混凝土的材料属性, 这样两种材料的应力—应变关系可以得以输人[4]; 系杆与吊杆采用拉杆单元, 桥面系采用梁格法模拟. 桩基的计算模型是用弹簧支承来模拟地基的水平抗力, 用m 法进行计算.全桥共374 个节点,4 2 个梁单元, 有限元模型见图1图1 某大桥有限元模型2 横向一类稳定计算某桥成桥后进行了静动载测试本文在进行横向稳定计算时, 以静载测试的四个工况为模型的荷载, 计算某大桥在各个工况下的一类稳定系数(特征值)静载试验共进行了 4 个工况: 工况一为按口 4 点弯矩最大; 工况二为拱脚负弯矩最大江况三为拱顶正弯矩最大; 工况四为拱脚推力最大布载。
分析时以管内混凝土填充长度系数α为参数(参数a 含义见图3).0 < a < 0.5 时为复合拱; 当a= O 时为钢管拱; 当a = 0.5 时, 为钢管混凝土拱.计算中不考虑材料的非线性计算结果见图2.图2稳定系数变化趋势图对该桥的弹性一类稳定分析表明, 在各种加载工况下, 一阶弹性失稳模态不受混凝土充填系数a的影响, 均为面外失稳,但α对稳定系数有影响.当a 从0 变化至1/ 12 时, 稳定系数缓慢增长, 最大仅增加4.8% ; 此后, 稳定系数增加较快,当a 趋近L/4 时, 稳定系数均达最大值(除工况三) ; 此后随a 增加稳定系数反而下降, 在α=0.4 17 时达到最低点后又开始上升, 到a =0.5(钢管混凝土拱)时稳定系数达到第二个峰值.因此, 从弹性一类稳定系数来看, 坡充系数太小(小于1/ 1 2) 时管内混凝土对稳定系数提高的作用较小, α在0.25 附近时, 效率最高; 超过0.25 时反而降低了拱的稳定性能, 这可能是此时刚度增加的有利作用小于拱肋自重产生的不利影响. 当然,钢管混凝土拱的稳定系数最大, 但从复合拱的角度而言, 钢管与钢管混凝土在拱肋L/4 处相接, 结构一类弹性稳定性最好。
钢管混凝土拱桥钢管混凝土拱桥(Steel-Tube Concrete Arch Bridge)是一种以钢管作为主要构件、混凝土为填充物,采用拱形结构的桥梁。
由于其结构特点,该类型的桥梁具有较高的承载能力、稳定性和整体性能,因此在短跨度桥梁中广泛应用。
本文将从钢管混凝土拱桥的构造特点、设计与施工工艺、应用与发展等方面进行探讨。
一、构造特点钢管混凝土拱桥结构特点主要表现在两个方面:拱形结构和钢管混凝土材料。
拱形结构是钢管混凝土拱桥最显著的结构特点,该结构的力学特性为受力后整体形变,荷载集中于两端,相对于梁式桥梁更加稳定。
而且,拱形结构具有较高的承载能力,在短跨度桥梁中具有明显优势。
钢管混凝土材料则是钢管混凝土拱桥的创新之处。
该材料具有混凝土和钢管的优点,可以更好地发挥两种材料的特性。
钢管可以担任桥梁的主要承载构件,中空部分可以用来加入混凝土,提高承载能力;而混凝土可以保护钢管,延长其寿命,同时具备优秀的抗压强度和耐久性。
二、设计与施工工艺钢管混凝土拱桥的设计与施工工艺需要考虑到以下因素:钢管材料的选择、拱形结构的力学特性、混凝土的浇筑工艺。
钢管材料方面,需要选择品质良好、符合标准的钢管。
在拱形结构的设计中,需要通过建立数学模型,模拟荷载作用下的力学特性,对拱形结构进行优化设计,确保承载能力和稳定性。
混凝土在钢管中的浇筑工艺通常采用顶升法或压力法。
顶升法是将混凝土从一侧注入钢管内,同时在另一侧进行顶升,使混凝土在钢管内均匀分布;压力法是通过在钢管中注入高压水泥浆,将混凝土压入钢管内。
无论采用哪种方法,都需要保证混凝土充实度,避免产生空洞、裂缝等质量问题。
三、应用与发展钢管混凝土拱桥具有优秀的结构特点和性能,已经在我国的短跨度桥梁建设中得到广泛应用。
随着技术的发展,钢管混凝土拱桥在跨度和承载能力方面也已经有了较大的突破,越来越多的工程师开始将其应用于中长跨度桥梁的设计中。
同时,在钢管材料和混凝土浇筑向导方面也有了新的突破。
钢筋混凝土拱桥结构受力特点及设计摘要:钢筋混凝土拱桥形式古朴、优美,是景观桥梁常用的结构形式。
拱桥结构能够充分利用混凝土的抗压能力,养护维修费用低。
本文以北京新八里桥为例,通过有限元软件对该桥梁进行静力、抗震分析,最后得出结论。
希望为今后同类型的桥梁设计提供一些借鉴作用。
关键词:钢筋混凝土拱桥有限元、结构分析设计实例Mechanical Characteristics and Design of Reinforced Concrete Arch Bridge1 前言拱桥造型优美、庄重、大气,同时其结构形式多样,在城市景观桥设计中经常选用拱桥结构。
拱式结构在荷载作用下,两端将产生水平推力,从而使拱内产生轴向压力,从而大大减小了拱圈的截面弯矩,使之成为偏心受压构件,截面应力分布均匀,可以充分利用主拱截面材料强度。
2 钢筋混凝土拱桥结构特点2.1 钢筋混凝土拱桥优点外形美观,跨越能力较大,截面应力均匀,能充分的利用混凝土抗压能力,耐久性好,维修、养护费用低,构造较简单[1]。
2.2 钢筋混凝土拱桥缺点自重较大,相应的水平推力也较大,增加了下部结构工程量,当采用无铰拱时,对地基条件要求较高,由于拱桥水平推力较大,在连续多孔的大、中桥梁中,为防止一孔破坏而影响全桥的安全,需要采用较复杂的措施,如单向推力墩。
3 新八里桥工程3.1 工程概况新建八里桥位于通燕高速旁通惠河上现状八里桥上游。
新建桥梁全长81.0m,桥梁断面全宽26.6m,断面布置为:3.0米(人行道)+10米(行车道)+0.6米(双黄线)+10米(行车道)+3.0米(人行道)。
上部结构为一孔等截面悬链线钢筋混凝土箱型拱桥,主拱跨径为1-55m,矢高f=8.1米,矢跨比f/L =1/6.79,拱轴系数m=2.8398,主拱高1.35m,宽24.3m;腹拱拱轴跨径6.0米、矢高f=1.2米,矢跨比f/L =1/5的等截面圆弧板拱,腹拱高0.3m,宽24.3m;下部结构桥台为薄壁台身接承台, 基础为钻孔灌注桩,台身厚1.2m,在距离承台4.5m位置渐变宽至2.932m,桥台宽26.3m;承台尺寸:长x宽x厚为26.3x13.2x3m;桩基直径2m,每个桥台布置15根桩,顺桥向布置3排,每排5根。
钢管混凝土拱桥设计钢管混凝土拱桥是一种采用钢管作为主要受力构件的混凝土结构桥梁。
它具有强度高、承载能力大、耐久性好等优点,在现代桥梁工程中广泛应用。
本文将围绕钢管混凝土拱桥的设计原理、结构特点和施工技术等方面进行论述,希望能够对读者有所启发和帮助。
一、设计原理钢管混凝土拱桥的设计原理是根据力学和结构力学的基本原理来确定桥梁的承载能力和稳定性。
在拱桥设计中,根据桥梁的跨度、荷载情况以及地质条件等,选取适当的拱形曲线和梁形,通过合理的弯矩分析和受力计算,确定拱桥的结构尺寸和截面形状。
同时,还需要考虑桥梁的自重和外荷载的影响,进行静力和动力分析,确保拱桥在使用过程中的安全性和稳定性。
二、结构特点钢管混凝土拱桥的结构特点主要包括以下几个方面:1. 钢管拱梁:钢管作为主要受力构件,具有较高的抗弯承载能力和刚度,能够有效地分担桥梁荷载,并提高桥梁的整体强度和稳定性。
2. 混凝土浇筑:钢管内注浆混凝土,形成钢管混凝土复合结构。
混凝土的浇筑需要注意控制浆液的流动性和凝结时间,确保混凝土能够充分填充钢管内部,并形成坚固的连接。
3. 施工工艺:钢管混凝土拱桥的施工工艺相对复杂,需要进行模板安装、钢筋绑扎、混凝土浇筑等一系列工序。
在施工过程中,需要注意对各个构件的形状和尺寸进行精确控制,确保各部分能够完美配合。
三、施工技术钢管混凝土拱桥的施工技术是确保桥梁质量和使用寿命的关键。
在施工过程中,需要严格按照设计要求和施工规范进行操作,采取合适的措施,保证每个施工环节的质量和安全。
1. 模板安装:首先需要进行桥墩和拱腿的模板安装,确保其几何形状和尺寸的准确度。
在模板安装过程中,需要密切监测模板的平整度和牢固度,防止模板变形和脱落。
2. 钢筋绑扎:在模板安装完成后,需要进行钢筋的绑扎工作。
绑扎钢筋时需要注意钢筋的位置和间距,确保钢筋能够充分发挥其受力作用,并与混凝土形成紧密的连接。
3. 混凝土浇筑:在钢筋绑扎完成后,开始进行混凝土的浇筑。
基于劲性骨架法的下承式钢管混凝土拱桥受力分析钢管混凝土拱桥是一种具有较高承载力和良好整体性能的桥梁结构,其基于劲性骨架法的受力分析是对桥梁结构进行设计和施工的基本要求。
劲性骨架法是一种常用的桥梁结构力学分析方法,其基本原理是将桥梁结构抽象为一个由杆件连接起来的刚性骨架,在外力作用下进行受力分析。
在钢管混凝土拱桥的受力分析中,劲性骨架法可以有效地模拟和计算各个组成部分的受力情况。
首先,需要根据设计要求和实际情况确定拱桥的结构形式和几何参数,包括拱轴线的几何形状、跨度、高度、板厚等。
然后,将拱桥的结构抽象为一个由许多杆件连接组成的刚性骨架,在外力作用下进行受力计算。
在钢管混凝土拱桥中,主要有以下几个关键受力部位需要进行分析:1.拱腹受力分析:拱腹是拱桥的主要受力构件,承担着桥梁的垂直荷载和弯矩。
通过劲性骨架法可以计算出拱腹的受力分布情况,包括弯矩、剪力和轴力。
同时,还需要对拱腹在不同加载情况下的应力和变形进行分析,以保证拱腹的承载性能和安全性。
2.竖向支座受力分析:竖向支座是拱桥与桥墩之间的连接部位,承担着拱桥的水平荷载和垂直荷载。
通过劲性骨架法可以计算出竖向支座的受力分布情况,包括水平力和垂直力。
同时,还需要对竖向支座在不同加载情况下的应力和变形进行分析,以保证其在使用寿命内的稳定性和安全性。
3.拱腿受力分析:拱腿是拱桥与桥台之间的连接部位,承担着桥梁的水平荷载和垂直荷载。
通过劲性骨架法可以计算出拱腿的受力分布情况,包括水平力和垂直力。
同时,还需要对拱腿在不同加载情况下的应力和变形进行分析,以保证其在使用寿命内的稳定性和安全性。
通过对上述关键受力部位的分析,可以得到钢管混凝土拱桥在不同加载情况下的受力情况,包括各个构件的受力大小、分布和变形情况等。
这些结果可以为钢管混凝土拱桥的设计和施工提供重要参考,并保证其在使用寿命内的安全性和承载性能。
同时,还可以通过对不同参数的敏感性分析,得到对拱桥结构性能影响较大的因素,为拱桥的优化设计提供依据。
【钢管混凝土拱桥拱座结构受力分析】钢管混凝土
拱桥结构及受力特点分析
某中承式钢管混凝土拱桥拱肋的理论计算跨径为152m,拱肋直径1.5m,厚度为2cm,内部浇筑C50混凝土,计算矢高为47m,矢跨比为1/3,拱肋拱轴线采用倒悬链线,拱轴系数为1.55。
拱肋采用圆形截面,主梁采用扁平流线形钢箱截面,拱肋设18对吊杆。
下部结构为钢筋混凝土拱座及承台接钻孔灌注桩基础。
桥面铺装采用6cm 厚环氧沥青。
钢箱梁主体结构均采用Q345-C钢,钢箱拱肋结构采用Q345D钢,其技术指标应符合《低合金高强度结构钢》(GB/T1591-94)的相关要求,盖梁及墩柱采用C40混凝土,拱座及承台采用C30混凝土,基桩采用C25混凝土。
桥梁设计荷载为公路-I级,人群荷载5.0KN/m2;环境类别为II类;设计安全等级为一级。
Midas/Civil有限元模型
使用Midas/Civil建立全桥模型,本桥3D模型按照桥梁设计选择相应的材料和截面特性。
模型划分共计368个节点,378个单元,其中梁单元360个,桁架单元18个,考虑到的各作用效应有:(1)恒载:自重以及设计荷载;
(2)均匀温度:结构因均匀温升、温降,梯度温升、温降产生的作用效应按《公路桥涵设计通用规范》(JTG D60-2004)规定计算。
(3)支座沉降:支座不均匀沉降按1cm考虑。
(4)车辆荷载:按最不利车辆荷载考虑,车辆为公路—I级五车道,人群荷载为5.0KN/m。
本桥考虑2.5%的桥梁纵坡。
模型节点单元见图3。
其中,拱肋单元编号为155~322,共计167个单元。
图1 钢管混凝土拱桥有限元模型
永久作用分项系数按照作用对结构承载能力不利的情况选取,可
变作用分项系数按照规范的要求进行取值。
各荷载组合系数见表3。
表3 荷载组合系数
名称荷载工况组合系数
结构恒载自重+二期1.1
车辆荷载公路—Ⅰ级1.4
支座沉降1cm 1.0
温度荷载±20℃ 0.7
计算结构自重+二期+车辆荷载+升、降温效应(±20℃)+支座沉降(1cm)作用下的拱肋内力。
根据分析结果,提取拱脚处最大荷载,见表3.7。
表4 拱脚处荷载最大值
工况轴力(KN)剪力(KN)弯矩(KN.m)纵
-*****.5 -490.03 *****.51
拱座有限元模型
设计中拱座采用的是强度等级为C30的混凝土,《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ D62-2004)第3.1.2条规定,钢筋混凝土构件混凝土强度等级不应低于C20。
因此,为了便于对比分析采用不同标号的混凝土拱座主拉应力和主压应力的变化情况,建立了C20、C25、C30、C35和C40五组不同强度等级混凝土拱座模型,用以观察拱座内力变化的情况,进而确定合适的混凝土标号。
根据圣维南原理,如果把物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
拱脚的局部应力分布只与邻近区域的应力状态有关,远离拱脚区域的应力状态对拱脚处的应力分布影响很小,可以忽略其对拱脚处应力分布的影响,因此对加载区域进行延长处理消除应力集中的影响,可以满足要求。
分析中取0.5m长的拱肋。
由于五组模型在单元划分、荷载、边界条件等方面均保持一致,区别仅在于选用不同强度等级的混凝土,这种处理方式既方便了模型的建立,又能够在相同条件下比
较准确地分析不同强度因素对主拉应力和主压应力的影响效果。