图像分割方法综述
- 格式:pdf
- 大小:475.16 KB
- 文档页数:10
医学图像分割方法综述林瑶,田捷1北京,中国科学院自动化研究所人工智能实验室,100080摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。
本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。
关键词:医学图像分割 综述1.背景介绍医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。
随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。
图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。
分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。
所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。
定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...:g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。
(b) 是连通的区域。
g k (c) ,即任意两个子区域不存在公共元素。
(d) 区域满足一定的均一性条件。
均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。
g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。
在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。
图像分割方法综述图像分割方法综述摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。
同时也对图像分割未来的发展趋势进行了展望。
关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation.Key words: image segmentation; regional growing; active contour; clusteringanalysis genetic algorithm1 引言图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。
所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。
简单的说就是在一副图像中,把目标从背景中分离出来。
对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。
关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。
虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。
图像分割方法综述【摘要】本文简要介绍了几种典型的图像分割方法,主要有阈值分割算法、边缘检测算法、区域分割算法。
它们均是基于不同的理论,十分具有代表性,且在计算机上易于实现,实验效果比较好。
【关键词】图像分割;算法图像分割是一种基本的计算机视觉技术,是图像分割的需要解决的首要和基础问题,是图像处理到图像分析的关键步骤。
图像分割及目标表达和参数测量为图像分析和理解提供基本的信息。
1.图像分割的定义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤。
图像分割可以用数学描述如下:令集合R代表整幅图像,对R的划分可以看成满足五个条件的非空子集R1,R2,…,Rn。
(1)Ri=R;(2)对于所有的i和j,i≠j,RiRj=?;(3)对i=1,2,…,n,有P(Ri)=TRUE;(4)对i≠j,有P(RiRj)=TRUE;(5)对i=1,2,…,n,Ri是连通的区域。
上述的五个条件:(1)指出分割应将图像中的每个像素都分进某个子区域,也就是说分割结果中得到的全部子区域的总和要包括图像中的所有的像素点。
(2)指出分割结果得到的各个子区域之间是互不相交的。
(3)指出分割结果中每个子区域都有各自的特性。
(4)指出同一个区域的像素应该具有一些不同的特性。
(5)是指同一个子区域的任两个像素是连通的。
2.阈值分割算法灰度阈值分割法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。
阈值分割方法实际上是输入图像到输出图像的如下变换:g(i,j)=1,f(i,j)≥T0,f(i,j)≥T其中,T为阈值,对于物体的图像元素g(i,j),对于背景的图像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。
阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
图像分割方法综述
图像分割是图像处理的一个重要研究课题,它的目的是将图像分
割成若干个不重叠的区域,每一个区域对应着图像中的一个物体,分
割结果有助于进一步提取它们的相关信息。
近年来,已有许多图像分割方法被提出,其中包括基于标签传播、模板与聚类、基于特征聚类、图割等。
基于标签传播的图像分割是一种非监督学习方法,它的基本思想
是通过将图像的局部结构和对象的先验信息投影到相应的标签空间上,通过传播把他们之间的关系扩展到整个图像,从而实现分割的目的。
模板与聚类法是一种经典的图像分割方法,它的基本思想是基于
模板匹配机制,将图像区域进行分类,再利用聚类算法对区域进行聚类,从而实现图像分割。
基于特征聚类是一种基于计算机视觉的图像分割方法,它是基于
目标特征空间应用聚类的方法,通过分析图像的纹理、色彩、颜色变
化等,以实现图像分割的目的。
图割作为图像分割中的一个重要方法,它将图像分割问题转化为
求解图形分割问题,将图像分割问题转化为在相关能量函数中寻求使
能量函数最小值的最小割集。
以上是近年来几种图像分割方法的大致介绍,每种方法都有自己
的特点和优势,根据不同的图像情况选择合适的分割方法可以获得较
好的处理结果。
图像分割综述对图像分割进行综合阐述,并详细介绍几种常用图像分割法,以及他们主要的特点。
标签:图像分割;阈值;区域1 图像分割概念图像分割是一种主要应用于图像处理及模式识别中的比较重要的分割图像的方式。
图像分割的根本目的是在整体或是大区域图像中分割出有意义或是感兴趣的局部区域,这些区域一般对应于现实世界的各类不同目标。
为了有效的辨别、分析目标,我们就有必要将目标区域单独划分出来,只有在基础上才有可能进一步对目标图像的特征进行提取、分析和测量。
因此,我们认为图像分割是进行图像分析、图像理解和图像描述的前提条件。
图像分割的一个主要方法就是阈值分割法。
阈值分割法主要利用阈值将一幅灰度图变成简单的二值图像,从而达到分割图像的目的。
该方法的主要难度在于确定合适的灰度值,将高于该值的像素归于一类,而将低于该值的像素归于另一类。
这个灰度值就是我们所说的“阈值”。
该方法是一种简单而有效的图像分割法,尤其是对于有较大对比度的图像,利用阈值分割法分割将会得到很好的分割效果。
阈值分割法一般作为图像处理、分析的第一步。
简单的阈值分割法只能产生一个二值图来区分两个不同的类,这是图像分割法要局限性之一。
阈值分割法的另一个局限性就是:在分割时,一般未考虑图像的空间特征,使得它对噪声特别敏感。
因此,就出现了一些针对阈值法的改进分割算法。
简单的理解,图像分割就是将一幅图像分成几个不同的区域,或是说在一幅图像中提取一个或是几个有用的区域。
在图像分割时,也需要考虑图像噪声的影响及图像特征的识别与提取。
其中,遥感图像的分割难度比较大,因为要饭图像一般被噪声污染较为严重,噪声会影响阈值的选取。
所以阈值法图像分割的关键问题是选取一个恰当的阈值。
2 图像分割的关键问题2.1 阈值选取阈值分割法的主要原理是:将高于设定阈值的像素确定为目标物体对象,而将低于设定阈值的像素全部确定为背景对象。
所以,该方法适用于物体和背景之间有着较大对比度的图像。
在现在的各种图形图像处理系统中,一般都会使用阈值法进行图像处理。
计算机视觉技术中的图像分割方法综述计算机视觉技术已经成为了现代科学和工程领域中的重要研究方向之一。
在计算机视觉领域中,图像分割是一项关键技术,用于将图像分割成多个区域,以便进一步分析和理解图像的内容。
在本文中,我们将综述计算机视觉技术中的图像分割方法。
图像分割在许多应用中具有重要的作用,例如医学图像分析、目标检测和识别、图像编辑和增强等。
根据分割的目标和应用需求,可以将图像分割方法分为基于区域的方法、基于边缘的方法和基于深度学习的方法。
基于区域的方法是根据图像中的颜色、纹理、亮度等特征将图像分割成不同的区域。
其中,基于阈值分割是最简单和常用的方法。
它根据像素的灰度值和预定的阈值将图像分为前景和背景区域。
另外,基于区域增长的方法根据相似像素的邻域关系将图像分割成具有相似特征的区域。
这些方法在处理简单的图像场景时表现良好,但在复杂的场景下效果可能不理想。
基于边缘的方法主要关注图像中物体的边界。
这些方法首先检测出图像中的边缘,然后根据边缘将图像分割为不同的区域。
其中,基于边缘检测算子(如Canny 算子)的方法是最常用的。
它通过检测图像中的强边缘来实现分割。
此外,还有基于水平分割和基于边缘的分水岭算法等方法。
这些方法在处理具有复杂边缘结构的图像时表现较好。
基于深度学习的图像分割方法在最近的研究中取得了显著的进展。
深度学习模型,特别是卷积神经网络(CNN),可以学习到图像的高层特征和语义信息,从而实现准确的图像分割。
其中,全卷积网络(FCN)是最著名的方法之一,它使用卷积和反卷积操作来预测每个像素的类别。
另外,U-Net、DeepLab和Mask R-CNN等方法也被广泛应用于图像分割领域。
这些深度学习方法在处理复杂的图像场景时具有很强的鲁棒性和准确性。
除了上述方法,还有一些其他的图像分割方法值得关注。
例如,基于图割的方法可以将图像分割问题转化为图论中的最小割问题,并使用最小割算法求解。
此外,基于形状的方法将图像分割问题转化为形状匹配或曲线演化问题,并通过优化方法求解。
图像分割方法概述图像分割是一种基本的计算机视觉任务,旨在将图像划分成不同的区域或对象。
图像分割在许多应用领域中都有重要的应用,如医学影像分析、目标检测与识别等。
本文将概述几种常用的图像分割方法。
一、阈值分割法阈值分割法是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像按照灰度值的高低进行分类。
通过设定一个或多个阈值,将图像的像素划分为前景和背景。
根据不同的阈值选择方法,阈值分割法可以分为全局阈值分割和局部阈值分割两种。
二、基于边缘的分割法基于边缘的分割法是另一种常见的图像分割方法。
它利用图像中明显的边缘信息将图像分割成不同的区域。
常用的边缘检测方法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像中的物体从背景中分离出来。
三、区域生长法区域生长法是一种基于相似性的图像分割方法。
它从某个种子像素开始,逐渐将与其相似的像素聚合到同一区域中。
相似性度量可以基于像素的灰度值、颜色、纹理等特征来定义。
区域生长法适用于分割相对均匀的区域,但对于高噪声或复杂纹理的图像效果可能不理想。
四、基于聚类的分割法基于聚类的分割法通过将图像像素聚类成不同的类别来实现图像分割。
常用的聚类算法有K均值聚类、高斯混合模型等。
聚类分割法适用于分割具有明显不同特征的目标,如自然景观图像中的不同物体。
综上所述,图像分割方法有多种多样,每种方法都有其适用的场景和局限性。
在实际应用中,我们需要根据图像的特点和任务需求选择合适的方法。
此外,还可以通过组合多个方法或使用深度学习等方法来提高图像分割的精度和鲁棒性。
随着计算机视觉技术的不断进步,图像分割将在更多领域发挥重要作用。
文献综述电子信息工程图像分割方法综述摘要:图像分割是图像理解的基础,图像分割的算法研究越来越受到关注,早期的图像分割算法在之后的研究中得到完善。
活动轮廓模型是图像分割和边界提取的重要工具之一,主要包括了参数形式活动轮廓模型和几何形式活动轮廓模型两大类,本文对这两类模型进行了大概的说明,简单叙述了相对的优点,如几何活动轮廓模型在变形的过程中能处理曲线拓扑变化。
鉴于活动轮廓模型所存在的缺点,提出了水平集算法,使得计算的范围和简易程度有了很大的发展。
最后指出了图像分割的算法还有一些进一步优化的研究发展方向。
关键词:图像分割,参数活动轮廓模型,几何活动轮廓模型,水平集1.引言对图像进行处理,通过图像分割、目标分离、特征提取、参数测量等技术,将原始的图象转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
其中图像分割已经越来越受到人们的关注,作为一种图像处理与计算机视觉操作的预处理手段,已经应用到了很多的领域,图像分割可以定义为:根据图像特征对图像进行区域划分[1]过程,图像分割的效果好坏会直接影响到后续的处理结果,所以图像分割是一个基本而又关键的技术,为此人们提出了很多有效的、具有鲁棒性的分割算法。
图像分割方法有很多,按知识的特点和层次可分为数据驱动和模型驱动两大类[2],前者有Roberts算子、Sobel算子和Canny算子、阈值分割、分水岭算法和模糊聚类分割算法等;后者是直接建立在先验知识的基础上的,如基于活动轮廓模型的图像分割。
水平集的应用领域是隐含曲线(曲面)的运动[3],现在水平集已经广泛应用于图像恢复、图像增强、图像分割、物体跟踪、形状检测与识别、曲面重建、最小曲面、最优化以及流体力学中的一些方面。
一个好的图像分割算法应具有以下特点:1、有效性,能将图像中感兴趣的区域或目标分割出来的有效规则。
2、整体性。
能得到图像中感兴趣区域或目标的无断点和离散点的封闭边界。
3、精确性,分割所得到的感兴趣区域或目标边界与实际情况贴近。
图像分割方法综述图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出上千种分割算法。
主要分类:基于边缘的算法、阈值分割法、基于区域的分割算法、结合特定理论工具的分割方法。
一、基于边缘的算法:通过检测出不同区域边界来进行分割。
边缘点往往是图像某些特征变化剧烈的点,这些点往往是一阶导数极大的点或者二阶过零的点,基于此提出了一系列边缘检测的算法.图像的边缘是图像最基本的特征之一,基于边缘的分割方法可以说是人们最早研究的方法。
1959年,Julez在“一种基于边缘检测的电视信号编码方法”一文中首次提及边缘检测技术,开创了边缘检测的先河。
边缘检测方法试图通过检测不同区域间的边缘来解决图像分割问题。
边缘检测技术可以按照处理的顺序分为串行边缘检测以及并行边缘检测。
边缘检测主要包括以下几种方法:基于灰度直方图的边缘检测分割技术、梯度最大值的检测方法、二阶导数的零交叉点检测方法以及小波多尺度边缘检测的方法基于灰度直方图的边缘检测分割技术:1962年,Doyle提出的基于灰度直方图的边缘检测分割技术,计算量小,有一定的抗噪声性能,能够较理想的得到图像的边缘分割效果代表文章:基于灰度与边缘的图像分割方法A Grouping-Feature and Nesting-Kernel Scene Image Segmentation Algorithm优点:边缘定位准确缺点:对噪声敏感,检测到的边缘经常不能闭合。
二、阈值分割法:是灰度图像分割的一个比较常用的方法,通过阈值,把图像中灰度级大于阈值的像素和小于阈的像素分类,从而实现图像分割。
比较经典的算法有Otsu阈值分割法、最大熵阈值法、迭代阈值法、基于直方图的阈值分割算法。
1、最大类间方差法是在判决分析最小二乘法原理的基础上推导得出的求最佳阈值的方法。
发展:大津:1979 年基于最大类间方差的阈值分割算法,刘健庄:1993 年推广到二维,增加了其抗噪性,达到了较好的分割效果;景晓军:2003 年发展到三维,范九伦:2007 年进行了修正,给出了新的递推公式。
第10卷 第1期2005年1月中国图象图形学报Journal of I m age and Graphics Vol .10,No .1Jan .,2005收稿日期:2003208228;改回日期:2004206229第一作者简介:林开颜(1975~ ),男,先后于1998年、2001年获长春光学精密机械学院机械设计与制造专业工学学士学位、机械电子工程专业工学硕士学位,2004年获同济大学控制理论与控制工程专业博士学位,现在同济大学现代农业科学与工程研究院工作。
研究方向为智能控制理论与技术、农业计算机视觉技术等。
E 2mail:ky .lin@;linkaiyan@yahoo 彩色图像分割方法综述林开颜1) 吴军辉1) 徐立鸿1),2)1)(同济大学现代农业科学与工程研究院,上海 200092) 2)(同济大学控制科学与工程系,上海 200092)摘 要 由于彩色图像提供了比灰度图像更为丰富的信息,因此彩色图像处理正受到人们越来越多的关注。
彩色图像分割是彩色图像处理的重要问题,彩色图像分割可以看成是灰度图像分割技术在各种颜色空间上的应用,为了使该领域的研究人员对当前各种彩色图像分割方法有较全面的了解,因此对各种彩色图像分割方法进行了系统论述,即先对各种颜色空间进行简单介绍,然后对直方图阈值法、特征空间聚类、基于区域的方法、边缘检测、模糊方法、神经元网络、基于物理模型方法等主要的彩色图像分割技术进行综述,并比较了它们的优缺点,通过比较发现模糊技术由于能很好地表达和处理不确定性问题,因此在彩色图像分割领域会有更广阔的应用前景。
关键词 彩色图像分割 颜色空间 直方图阈值化 边缘检测 模糊方法 神经网络中图法分类号:TP391.41 文献标识码:A 文章编号:100628961(2005)0120001210A Survey on Color I mage Seg m en t a ti on Techn i quesL I N Kai 2yan 1),WU Jun 2hui 1),XU L i 2hong1),2)1)(M odern Agricultural Science &Engineering Institute of Tongji U niversity,Shanghai 200092)2)(Control Science &Engineering D epart m ent of Tongji U niversity,Shanghai 200092)Abstract Due t o col or i m age p r oviding more infor mati on than monochr ome i m age,col or i m age p r ocessing is being paid more and more attenti on .I m age seg mentati on is critical t o i m age p r ocessing and pattern recogniti on,s o all the typ icalapp r oaches are p resented and discussed in this paper .Basically,col or i m age seg mentati on techniques are based on monochr ome ones operating in different col or s paces .This paper first revie wed s ome maj or col or rep resentati on methods,then su mmarized the maj or col or i m age seg mentati on app r oaches including hist ogra m thresholding,characteristic feature clustering,regi on 2based app r oaches,edge detecti on,fuzzy techniques,neural net w orks,physics 2based method .The merits and dra wbacks of the methods were discussed t oo .Fuzzy set theory p r ovides a mechanis m t o p resent and mani pulate uncertainty and a mbiguity,which is desirable for i m age p r ocessing .So,the fuzzy app r oaches will have a p r om isingapp licati on in the col or i m age seg mentati on area .Keywords col or i m age seg mentati on,col or s pace,hist ogra m thresholding,edge detecti on,fuzzy techniques,neural net w orks1 引 言图像分割是图像分析和模式识别的首要问题,也是图像处理的经典难题之一,它是图像分析和模式识别系统的重要组成部分,并决定图像的最终分析质量和模式识别的判别结果。
所谓图像分割是指将图像中具有特殊意义的不同区域分开来,并使这些区域相互不相交,且每个区域应满足特定区域的一致性条件。
定义[1,2] 对一幅图像g (x,y )(0≤x ≤x max ,0≤y ≤y max )进行分割就是将图像划分为满足如下中国图象图形学报 第10卷条件的N个子区域gi(x,y),i=1,2…N,(1)∪Ni=1g i(x,y)=g(x,y),即由所有子区域组成整幅图像;(2)gi(x,y)是连通的区域,连通性是指在该区域内存在连接任意两点的路径;(3)gi(x,y)∩g j(x,y)= (i,j=1,2…,N, i≠j),即任意两个子区域不存在公共元素;(4)区域gi(x,y)满足一定的均匀性条件,所谓均匀性(或相似性)是指区域内所有像素点满足灰度、纹理、颜色等特征的某种相似性准则。
因为人眼对亮度具有适应性,即在一幅复杂图像的任一点上只能识别几十种灰度级,但可以识别成千上万种颜色,所以许多情况下,单纯利用灰度信息无法从背景中提取出目标,还必须借助于色彩信息。
由于彩色图像提供了比灰度图像更加丰富的信息,因此随着计算机处理能力的快速提高,彩色图像处理正受到人们越来越多的关注。
2 颜色特征空间众所周知,人眼所感知的色彩是由通常称为三基色的红(R)、绿(G)、蓝(B)3种颜色混合而成。
RG B适合于显示系统,但不适合于图像分割和分析,因为R、G、B3个分量是高度相关的,即只要亮度改变,3个分量都会相应改变,而且,由于RG B是一种很不均匀的颜色空间,所以两种颜色之间的知觉差异(色差)不能表示为该颜色空间中两点间的距离,而利用线性或非线性变换,则可以由RG B颜色空间推导出其他的颜色特征空间。
目前虽有多种颜色空间用于彩色图像处理,但由于无论哪一种都无法替代其他的颜色空间而适用于所有彩色图像处理,故选择最佳的颜色空间是彩色图像分割的一个难题[3]。
线性变换空间有YI Q、Y UV、I1I2I3[4]等,它们部分消除了RG B的相关性,由于其是线性变换,因此计算量小,其中,Y分量常用于边缘检测,而I1I2I3则能够有效地用于彩色图像处理。
非线性变换空间有HSI(HS B、HS L、HS V为HSI 的变形)、归一化RG B[5](nor malized RG B,N rgb)、YT1T2[6](另一种归一化颜色空间)、均匀颜色空间C I E(L3a3b3)及C I E(L3u3v3)等,其中HSI与人眼的色彩感知相吻合,其在一些照明不均的场合特别有用,因色调与高亮、阴影无关,色调对区分不同颜色的物体非常有效;N rgb虽降低了图像亮度对色彩的影响,但不足之处是在低亮度情况下对噪声敏感;C I E是一种均匀颜色空间,能够直接用颜色空间的几何距离进行不同颜色的比较,因此可有效地用于测量小的色差。
虽然非线性变换空间消除了3个颜色分量间的相关性,适合于图像处理,但由于其是非线性变换,因此计算量较大,且颜色空间存在奇异点问题。
彩色图像分割方法=灰度图像分割方法(1)直方图阈值法(2)特征空间聚类(3)基于区域的方法(4)边缘检测(5)模糊方法(6)神经元网络(7)物理模型方法(8)以上方法组合+颜色空间(1)RG B(2)YI Q(3)Y UV(4)I1I2I3(5)HSI(6)N rgb(7)C I E(L3a3b3)(8)C I E(L3u3v3)(9)以上空间组合图1 常用彩色图像分割方法Fig.1 The typ ical col or i m age seg mentati on thchniques3 彩色图像分割方法目前,彩色图像分割有多种分类方法,如把图像分割问题看作是基于颜色和空间特征的分类问题,可以分为有监督和无监督分类问题。
Power等将有监督学习算法用于不同的颜色空间(RG B、HSI、N rgb、混合颜色空间)进行果实图像分割[7]。
有监督算法包括最大似然、决策树、K2最近邻、神经元网络等。
Hance等比较了自适应阈值法、模糊C2均值、球坐标变换/中心分裂、主分量变换(p rinci pal components transf or m,PCT)、分裂合并、多分辨率等6种无监督彩色图像分割方法在边界识别算法中的效率,结果显示,自适应阈值法、主分量变换具有较低的错误分割率,若将不同的方法相结合则可以进一步提高肿瘤边界的正确识别率,并且在合并过程中加入启发算法还可以潜在地提高成功率[8]。
Pal 等对彩色图像分割进行了简要介绍[9],并称彩色图像可以作为多光谱图像的一个特例,且任何适用于多光谱图像的分割方法都可以用于彩色图像分割。
另外,大部分的灰度图像分割技术(如直方图2 第1期林开颜等:彩色图像分割方法综述阈值法、聚类、区域增长、边缘检测、模糊方法、神经元网络等)也可以扩展到彩色图像。
目前,许多彩色图像分割方法不仅把灰度图像分割方法应用于不同的颜色空间,而且可以直接应用于每个颜色分量上,其结果再通过一定的方式进行组合,即可获取最后的分割结果[10]。
本文将按图1所示的分类方法对彩色图像分割展开论述。