云南省八年级数学上册152分式的运算1521分式的乘除第2课时分式的乘方及乘除混合运算作业课件新版新人教版
- 格式:ppt
- 大小:2.30 MB
- 文档页数:20
第2课时分式混合运算
◇教学目标◇
【知识与技能】
明确分式混合运算的顺序.
【过程与方法】
经历探索分式混合运算步骤的过程,能熟练地进行分式的混合运算.【情感、态度与价值观】
结合已有的数学经验解决新问题,获得成就感和克服困难的方法和勇气.
◇教学重难点◇
【教学重点】
分式混合运算的顺序.
【教学难点】
分式的混合运算.
◇教学过程◇
一、情境导入
我们学习了分式的加减乘除、乘方运算,你能解决下面的问题吗?
化简:.
二、合作探究
探究点1分式乘除混合运算
典例1化简:.
[解析]原式=-=-.
探究点2分式混合运算
第 1 页共 2 页
典例2先化简,再求值:,其中x=5.
[解析]原式=
=
=-(x-2)
=-x+2.
当x=5时,原式=-5+2=-3.
探究点3化简求值
典例3先化简,再求值:.其中x的值从不等式组的整数解中选取.
[解析]由不等式组可解得-1<x≤2.
∵x是整数,
∴x=0或1或2.
∴原式==(x+2)·,
当x=0时,原式=0.
当x=2时,原式=.
当x=1时,原式=.
三、板书设计
分式混合运算
分式混合运算
◇教学反思◇
本节是一节习题课,内容是分式的混合运算,要把握运算顺序.不少学生在分式运算中出错,就是因为不重视审题,题没看完就动笔计算,或者受题中部分算式的特殊结构的影响而不遵循运算顺序,如化简,就常出现乱约分而不遵循运算顺序的典型错误,要同学通过练习、板演充分暴露问题所在,纠正,最后总结出容易忽视和出错的地方,提醒自己.
第 2 页共 2 页。
15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》教学设计一. 教材分析人教版数学八年级上册15.2.1.3《分式的乘方及乘方与乘除混合运算》这一节主要介绍了分式的乘方运算以及乘方与乘除混合运算的法则。
学生需要掌握分式乘方的概念,了解分式乘方的运算规则,并能灵活运用到实际问题中。
教材通过具体的例题和练习,帮助学生理解和掌握分式乘方的运算方法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习这一节内容前,已经学习了分式的基本概念和运算规则,对分式的加减乘除有一定的了解。
但是,对于分式的乘方运算,学生可能还存在一定的困惑和难度。
因此,在教学过程中,需要引导学生将已知的分式运算规则与乘方运算相结合,通过实例和练习,让学生逐步理解和掌握分式的乘方运算方法。
三. 教学目标1.了解分式的乘方概念,掌握分式乘方的运算规则。
2.能够运用分式乘方的运算规则,解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.分式的乘方概念的理解和掌握。
2.分式乘方运算规则的应用和实际问题的解决。
五. 教学方法1.讲授法:通过讲解和解释,让学生理解和掌握分式的乘方概念和运算规则。
2.案例分析法:通过具体的例题和练习,让学生将分式乘方的运算规则应用到实际问题中,培养学生的解决问题的能力。
3.小组合作学习法:学生进行小组讨论和合作,共同解决问题,培养学生的团队合作能力和交流能力。
六. 教学准备1.教材和教案。
2.投影仪和幻灯片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考和讨论分式的乘方问题,激发学生的学习兴趣和思考能力。
2.呈现(10分钟)讲解和解释分式的乘方概念,引导学生理解和掌握分式乘方的运算规则。
通过具体的例题,让学生观察和分析分式乘方的运算过程,总结和归纳运算规则。
3.操练(10分钟)让学生进行一些分式乘方的练习题,巩固学生对分式乘方运算规则的理解和掌握。
初中数学人教版八年级上册实用资料第2课时分式的乘方◇教学目标◇【知识与技能】理解并记住分式乘方的法则,能运用乘方法则熟练地进行分式乘方运算.【过程与方法】经历探索分式乘方的法则,理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.【情感、态度与价值观】通过引导学生分析、归纳,培养学生用类比的方法探索新知识的能力.◇教学重难点◇【教学重点】分式的乘方运算.【教学难点】分式的乘除、乘方混合运算.◇教学过程◇一、情境导入复习乘方的意义:a m=a×a×a×a×…×a(m为正整数)指出底数a可以代表一个数,一个整式或代数式,所以也可以是一个分式,当底数为分式,当m为正整数时,,表示分式的乘方,该怎么计算呢?二、合作探究探究点1分式的乘方典例1计算:的结果是()A. B.C. D.[解析]原式=.[答案] C【技巧点拨】分式的乘方运算,就是分子分母分别乘方,转化为积的乘方进行运算.探究点2分式乘除、乘方混合运算典例2计算的结果是()A. B.C. D.[解析].[答案] B变式训练计算:÷4a3b.[解析]原式=.三、板书设计分式的乘方分式的乘方◇教学反思◇本节的内容是分式的乘方,教学中从乘方的意义入手,学生探究、归纳容易得到乘方的法则,关键是计算过程的应用,体现分组——交流——合作——探究这种新的课程理念,充分发挥学生的主体作用,全面调动学生的学习积极性,增强课堂的教学效果.在备课中认真分析教材的每一个环节,用心体会教材编排的用意,包括课后的每一道练习题及其安排顺序都要仔细推敲,联系我们学生的实际做好适合自己学生的教学设计.。
、学习目标1 •掌握分式的乘除混合运算2 •掌握分式的乘方(乖二、检查预习效果根据P182预习检测第2题,思考:1•如何进行分式的乘除混合运算?铳一转化签乘法运其2•如何确定结果符号?根据负号的个毅定符号.偶正奇负三、例题讲解例4 (课本P138)计算:S 宀9 5+练一练:课本P139练习1 (注意步骤及规范)归纳: 混合运算顺序:四、自学探究阅读课本P13 “思考”内容,讨论并归纳分式的乘方法则:今式的乘方,要把今3、今母今别乘方,7、" _ an试一试:P182预习检测第1题注:乘方运算要先确定符号,正确运用幕的运算法则五、例题讲解练一练:课本P139练习2 (注意步骤及规范)例5 (课本P139) 计算: 先乘六、巩固练习1.P184分层练习A组题独更完咸,同集互对答嚓2.B组题小爼耐俺,合作完咸四'1當鳖测忤〕X6iZj rX (3汀4 8 兀y3V= (18x 2-12x 2y + 30x 4)x一9(一押 一丄X 〉。
丄兀y27• 36*亠八聖=27x 2/(4)(1 &Y 2 -12x 2y + 3Qr 4)4- (-9x 2)卜"(洽)+ 30讥一£—12/+纬—233 33= _2 + 4y_10£2 •计算: (1) 3心c 、32x 2}8x 4X99'x_2 4x '-------- '—7 ----u x + 2 — 4 丿例3、计算:0)( 、4— a宀丿 tz (x-2 4x ) 卫+ 2十宀4,(x-2)x+2x 2 -4- ・(x+ 2)(x — 2)+=宀44xX 2-4x 2~2~2宀 24•a 2(x — a)L 3(d + x)2 _L a 2 J_ 23a 8a l4x 4 (a — x)4(a+x)49(a +x)48x 4(x — a)4 43~5x y x y8a\x —aY(宀4)a 4~4~4七、当堂小测P当堂小测独宣完咸,5今钟达标检测••…做一做(3m 2«2^2‘ 2m n 、 3_ 2k 2m n 丿<3m 3/i 2 丿3 m4 n(2)(―二)2・(_丄)口 (—与X [ x + yy( \2丁一兀X:(5 y+ x2x 2-184-4x + x 2一(x + 3)・3 —x x 2 + x-6-x 52x + 6入r -r •1 •计算(1)::号(2)x 2+x(xy-x 2)^-_-4x 2-l x + 111 —2x x2.如果m 个人完成一项工程需要d 天 ,那么(m+ri )个人完成此项工作 需要多少天?。
第十五章 15.2.2分式的乘方及乘除混合运算
知识点1:分式的乘方
(1)分式乘方的法则:分式的乘方等于分子、分母分别乘方.
(2)分式乘方法则的分式表示: =(A、B是整式,B中含有字母,且B≠0,n为正整数).
关键提醒:(1)分式乘方运算时,一定要把分式加上括号;(2)分式乘方时,应把分子、分母看做一个整体. 知识点2:分式的乘、除混合运算
分式的乘除混合运算统一为乘法运算.
关键提醒:(1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即按照从左到右的顺序,有括号先算括号里面的.
(2)分式的乘除混合运算要注意每个分式中分子、分母符号的处理,可先确定积或商的符号.
(3)分式的乘除混合运算结果仍是最简分式或整式.
考点1:分式乘方的运算
【例1】计算:(1);(2).
解:(1)==;
(2)===-.
点拨:先运用分式乘方的法则,将分子、分母分别乘方,再综合运用幂的乘方和积的乘方法则计算.
考点2:分式的乘除混合运算
【例2】计算:
(1)1÷·(m2-1);(2)÷(x+3)·.
解:(1)原式=1××(m+1)(m-1)=-(m-1)2=-m2+2m-1.
(2)原式=··=-.
点拨:(1)因为分式的分子、分母中的多项式能分解因式,故先因式分解再进行分式的乘除计算;(2)(x+3)是一个整式,在运算中,需把(x+3)看作是分母为1的式子,然后按分式的乘除法法则运算.。
第十五章 15.2.2分式的乘方及乘除混合运算
知识点1:分式的乘方
(1)分式乘方的法则:分式的乘方等于分子、分母分别乘方.
(2)分式乘方法则的分式表示: =(A、B是整式,B中含有字母,且B≠0,n为正整数).
关键提醒:(1)分式乘方运算时,一定要把分式加上括号;(2)分式乘方时,应把分子、分母看做一个整体. 知识点2:分式的乘、除混合运算
分式的乘除混合运算统一为乘法运算.
关键提醒:(1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即按照从左到右的顺序,有括号先算括号里面的.
(2)分式的乘除混合运算要注意每个分式中分子、分母符号的处理,可先确定积或商的符号.
(3)分式的乘除混合运算结果仍是最简分式或整式.
考点1:分式乘方的运算
【例1】计算:(1);(2).
解:(1)==;
(2)===-.
点拨:先运用分式乘方的法则,将分子、分母分别乘方,再综合运用幂的乘方和积的乘方法则计算.
考点2:分式的乘除混合运算
【例2】计算:
(1)1÷·(m2-1);(2)÷(x+3)·.
解:(1)原式=1××(m+1)(m-1)=-(m-1)2=-m2+2m-1.
(2)原式=··=-.
点拨:(1)因为分式的分子、分母中的多项式能分解因式,故先因式分解再进行分式的乘除计算;(2)(x+3)是一个整式,在运算中,需把(x+3)看作是分母为1的式子,然后按分式的乘除法法则运算.。