八年级数学分式的乘除法
- 格式:ppt
- 大小:263.00 KB
- 文档页数:18
分式的乘除与乘方分式是数学中的一个重要概念,它在乘除与乘方运算中有着特殊的应用。
本文将探讨分式在乘除与乘方中的运算规则,帮助读者更好地理解和应用这些概念。
一、分式的乘法分式的乘法可以用以下公式描述:若a/b和c/d是两个分式,其中a、b、c、d为实数,且b和d不为0,则它们的乘积为:(a/b) * (c/d) = (a * c) / (b * d)通过这个公式,我们可以看出分子相乘得到新分式的分子,分母相乘得到新分式的分母。
例如,我们计算1/2乘以3/4,可以按照上述公式进行计算:(1/2) * (3/4) = (1 * 3) / (2 * 4) = 3/8二、分式的除法分式的除法可以用以下公式描述:若a/b和c/d是两个分式,其中a、b、c、d为实数,且b和c不为0,则它们的除法为:(a/b) / (c/d) = (a * d) / (b * c)同样地,我们可以看出分式的分子乘以除数的倒数得到新分式的分子,分母乘以被除数的倒数得到新分式的分母。
举例来说,如果我们计算2/3除以4/5,可以按照上述公式进行计算:(2/3) / (4/5) = (2/3) * (5/4) = (2 * 5) / (3 * 4) = 10/12 = 5/6三、分式的乘方分式的乘方可以用以下公式描述:若a/b是一个分式,其中a和b为实数,且b不为0,则它的n次幂为:(a/b)^n = a^n / b^n通过这个公式,我们可以看出分式的分子和分母分别取n次幂得到新分式的分子和分母。
例如,我们计算(2/3)^2,可以按照上述公式进行计算:(2/3)^2 = (2^2) / (3^2) = 4/9总结:在分式的乘除与乘方运算中,我们可以运用特定的公式进行计算,以得到正确的结果。
分式乘法中,分子相乘得到新分式的分子,分母相乘得到新分式的分母;分式除法中,分子乘以除数的倒数得到新分式的分子,分母乘以被除数的倒数得到新分式的分母;分式乘方中,分子和分母分别取指数的幂得到新分式的分子和分母。
分式的乘除法教学设计课型:新授 教师姓名:教学目标: 1、理解分式的乘除运算法则2、会进行简单的分式的乘除法运算教学重点:分式的乘除法运算教学难点:1、分式的乘除法法则的理解2、分子与分母是多项式的分式乘除法运算一、复习回顾1、化简:(1)bc a ac 22142- (2)aa a 2422+- 设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。
2、计算:(1),10932⨯ (2)211075÷ 3、思考:(1)说出分数的乘除法的法则;分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)试一试计算:猜一猜:=⨯c d a b;=÷cd a b 你能总结分式乘除法的法则吗?与同伴交流。
c bd a c d b a ⨯⨯=⨯, db c a d c b a c d b a ⨯⨯=⨯=÷ 二、小组讨论与归纳通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。
三、例题学习,计算:例题1:(1)226283a y y a⋅ 例题2(1)x y xy 2262÷ 注意:计算结果一定要化为最简分式四、巩固练习,计算:化简:(1)2a b b a⋅ (2) )(x y y x x y -⋅÷ (3)xy xy 3232÷- (4))21()3(43x y x y x -⋅-÷ 5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: aa a a 21222+•-+ 尝试之后老师提问:1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?2、分子与分母能进行约分吗?3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?五、例题学习,计算:1、 bb a a b -+•-2239 2、41441222--÷+--a a a a a注意:当分式的分子与分母都是单项式时:(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②约分(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
1.2 分式的乘法和除法(第1课时)【教学目标】1、 理解并掌握分式的乘、除法运算法则。
2、能够灵活进行分式的乘法。
3、培养学生自主学习能力,类比学习能力,培养学生的创新意识和应用数学的意识。
【教学重点】让学生掌握分式的乘、除法运算【教学难点】分子、分母为多项式的乘法与除法运算【教学过程】一、情境引入1、计算:269⨯=.3245⨯=.42155÷=.2、分数的乘法与除法运算法则是什么?3、尝试计算:=⋅22332a b b a .=+÷+1212x x x x .4、引入:通过上面的练习,我们发现分式的乘法与除法又如何计算呢?二、自主学习1、自学教材,回答下列问题:分式的乘法法则是什么?分式的除法法则是什么?2、自主练习:计算:⑴ 336()4b a b a -⋅⑵5344(24)(36)x y x y -÷(3)24112x x x -⋅+- 3、归纳:分式的乘法与除法运算法则与分数的乘法与除法运算法则类似,其中要运用到幂的意义,因式分解等知识。
三、典例精析例1:计算:(1)22325x y y x •(2)12132-÷-x x x x例2:计算:(1);142122-⋅+x x x x (2)1212822+÷++x x x x x 。
让学生独立完成上述的计算题,然后交流,教师作个别辅导,最后总结归纳,分式的乘法与除法步骤:①分子、分母是整式,要先分解因式;②分式除以分式,按法则转换为乘法计算;③分式乘分式,分子乘分子、分母乘分母分别作为积的分子、分母,然后约去分子、分母的公式因。
特别要让学生展示自己的错误经验,比如未先因式分解的,或者结果没有化为最简分式的。
例3:先化简,再求值:2222111x x x x x x +++÷--,其中2x =。
本题可让学生先独立计算,教师作出个别辅导后,全班交流,并总结经验。
四、练习反馈⒈教材练习1,2⒉教材习题1.2 B 组5题 ⑴()1121224+÷++-x x x x ⑵()y x y xy x x y 244222++-÷- 让学生独立完成,并展示错误经验,集中点评。
人教版数学八年级上册《分式的乘除法的应用》教学设计一. 教材分析人教版数学八年级上册《分式的乘除法的应用》是分式部分的一个重要内容。
这部分内容主要让学生掌握分式的乘除法运算,并能应用于实际问题中。
教材通过丰富的例题和练习题,引导学生掌握分式乘除法的运算规则,并能够灵活运用。
二. 学情分析学生在学习本节课之前,已经学习了分式的基本概念、分式的加减法运算。
他们对于分式的运算规则有一定的了解,但可能在实际应用中遇到困难。
因此,在教学过程中,需要关注学生的学习困难,并通过实例引导学生将分式的乘除法应用于实际问题中。
三. 教学目标1.理解分式的乘除法运算规则,并能熟练进行计算。
2.能够将分式的乘除法应用于实际问题中,解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.分式的乘除法运算规则的理解和应用。
2.将分式的乘除法应用于实际问题中,解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等教学方法。
通过设置问题情境,引导学生主动探究分式的乘除法运算规则,并通过案例教学,让学生将所学知识应用于实际问题中。
同时,采用小组合作学习法,鼓励学生相互讨论、交流,提高学生的合作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作详细的PPT,包括教材内容、例题、练习题等。
2.教学案例:准备一些实际问题,用于引导学生将分式的乘除法应用于实际问题中。
3.练习题:准备一些练习题,用于巩固学生对分式的乘除法运算的理解和应用。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何利用分式的乘除法来解决这些问题。
2.呈现(10分钟)通过PPT呈现分式的乘除法运算规则,并解释规则的含义。
同时,给出一些例题,让学生跟随讲解,理解并掌握分式的乘除法运算方法。
3.操练(10分钟)让学生独立完成一些练习题,巩固对分式的乘除法运算的理解。
教师在过程中进行巡视指导,解答学生的疑问。
第02讲分式的乘除法(6类热点题型讲练)
1.掌握分式的乘除运算法则;
2.能够进行分子、分母为多项式的分式乘除法运算.
知识点01分式的乘法
乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a c
b d b d
⋅⋅
=⋅.知识点02分式的除法
除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:
a c a d a d
b d b
c b c
⋅÷=⋅=⋅.知识点03分式的乘方
乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:((n
n n a a n b b
=为正整数,0)b ≠.
题型01分式的乘法运算
【变式训练】
题型02分式的除法运算
【变式训练】
题型03分式乘除混合运算
【变式训练】
题型04分式的乘方运算
【变式训练】
题型05含乘方的分式乘除混合运算
【变式训练】
题型06分式乘除混合运算中化简求值
【变式训练】
则第4次运算的结果4y=.三、解答题。
2.分式的乘除法一、教学目标:1、知识与技能目标:1、分式的乘除运算法则2、会进行简单的分式的乘除法运算2、过程与方法目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
3、情感态度与价值观目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
二、教学重点:分式乘除法的法则三、教学难点:分式乘除法的法则四、课时安排1课时五、教具学具准备小黑板一块六、教学方法类比方法七、教学过程活动一:黑板展示1442225599⎧⎪⎨⨯÷⨯÷⎪⎩、复习小学分数乘除法法则;2255、计算下列各题:,,,3377活动二:联想猜测:黑板背面展示:a d a db c b c?,a d a cb c b d−−→÷⨯←−−?阅读课本74p至例1——例2结束(除“做一做”外),仔细观察各步运算,通过小组讨论交流,并与分数的乘除法的法则类比,总结出分式的乘除法的法则。
(分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.)活动三:当堂训练1、根据题意,列出分式,完成“做一做”2、76p随堂练习,习题3.3知识技能第1题八、课堂小结:1.分式的乘除法的法则2.分式运算的结果通常要化成最简分式或整式.3. 学会类比的数学方法九、巩固练习课本P77习题3.3第2、4题3.分式的加减法 一、教学目标:1、知识与技能目标:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;2、过程与方法目标:根据学生已有的经验,通过一些问题的提出。
诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结出规律。
3、情感态度与价值观目标:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
《分式的乘除》教学反思(通用5篇)《分式的乘除》教学反思1在上节课介绍了分式的乘除运算法则的基础上介绍了分式的混合运算以及整式和分式的混合运算。
并通过思考栏目中的问题,根据乘方的意义和分式的乘法法则,归纳出分式的乘方法则。
学生有了分式的乘除运算法则做为基础,很容易探究出并掌握住乘除混合运算的计算方法。
有乘方的意义和分式的乘法法则做基础,学生很容易探究出分式的乘方运算法则。
本节课各个环节我紧紧围绕学习目标展开,让学生在每个环节学完后都要进行反思、反悟,感觉效果较好分式的乘除以及乘方混合运算,是《分式》一章中的重要内容,在考试中常以计算题的面貌出现,在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,一批学生做好题目,再让一批学生上去批改,如果错的,直接让他把正确的做在旁边,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来。
教学中我发现分式的运算错的较多。
分解因式的熟练程度成了这里的障碍。
我知道。
分解因式的好坏直接影响分式的有关学习。
总之,通过对上课方式的尝试,我从学生身上学到了很多东西。
也促使我更加对课堂进行研究。
《分式的乘除》教学反思2本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。
只是需注意的是,分式乘除运算的结果要化为最简分式。
在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。
学生反应较好,能基本上完整地讲出分式的乘除法法则。
在分式运算的中,学生主要出现以下问题:1、分式的乘法,如:运算方法有两种:一种是先乘后约分,另一种是先约分再乘,特别是多项式的时候更明显一些,学生不能很好的选择恰当的方法进行计算,从而使计算变得复杂,导致计算错误,计算结果要求必须为最简分式。
2、分式的加减法,有些学生总是在通分的时候忘记给分子乘代数式;再有就是遇到减法,而且后面分式的分子是多项式的时候,总是会出现符号上的错误(忘记变号),使得后面的计算全部错误。
10.3 分式的乘除法基础能力训练◆分式的乘除运算1.计算:=+-•-+aa a a a 22222_______. 2.d d c cb b a 1112⨯÷⨯÷⨯÷等于( ) A.2a B.2222d cb a C.bcd a 2 D.其他结果 3.计算dd c c b b a 111•÷•÷•÷.4.计算41441222--÷+--a a a a a . 5.计算123)1(212232+++•+÷-+-x x x x x x x x . ◆分式的乘方运算 6.3)32(ba . 7.332)2(cb a -. ◆分式的乘除、乘方混合运算 8.43222)()()(xy x y y x -÷-•-. 9.)()(632c b acb -÷. 10.42232)()()(abc ab c c b a ÷-•-. 11.2222)()()(ba mnb a n m ÷•. 综合创新训练◆综合运用12.已知a =1,b =1 001,求ba ab a b a b a ab a -÷-+•+-22)(的值.13.已知31=+x x ,求221x x +的值.14.已知a x =3,则x x xx a a a a ----22的值是多少?15.已知2x -3y+z =0且3x -2y -6z =0,求2222222z y x z y x -+++的值.参考答案1答案:a 1解析:原式aa a a a a a a a a a 1)2)(2()2)(2()2(222=+--+=+-•-+=. 2答案:B 解析:同级运算应遵循从左到右的顺序进行. 3答案:解析:原式222111111d cb a d dc c b b a =••••••=. 4答案:解析:原式)2)(1(2)1)(1()2)(2()2(12-++=-+-+•--=a a a a a a a a a . 5答案:解析:原式xx x x x x x x x x 11)2)(1()1(1)1)(2()1)(1(=+++•+•-+-+=. 6答案:解析:333278)32(b a b a =. 7答案:解析:9363328)2(cb ac b a -=-. 8答案:解析:原式5443624x yx x y y x -=••-=. 9答案:解析:原式63363411b a c b c a c=-⋅=-. 10答案:解析:原式338444224336cb ac b a b a c c b a -=••-= 11答案:解析:原式44222222224ab m a b n m b a n m =••=. 12答案:解析:2222()()()()a ab a b a a a b a b a b a b a b a b a b a b a b a-+-+-⋅÷=⋅⋅=++--+- ∵a=1,b =1 001,∴原式=1+1 001=1 002. 13答案:解析:∵31=+x x ∴9)1(2=+x x , 即71,9212222=+∴=++x x x x . 14答案:解析:∵x x x x x x x x x x a a a a a a a a aa 1112222+=--=----.∵a x =3,∴311=x a , ∴原式310313=+=.15答案:解析:由⎩⎨⎧=--=+-0623032z y x z y x 得⎩⎨⎧==z y z x 34,所以,原式2013)3()4(2)3()4(222222=-+++=z z z z z z。