上海市各区2017-2018届九年级中考二模数学试卷精选汇编:几何证明专题
- 格式:pdf
- 大小:394.45 KB
- 文档页数:15
几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠ ∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分 ∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分 ∴△ACM ∽△ANE …………1分图6图6∴ANACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且AGGF BE AD =. (1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)AC DEFGB第23题图崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥(第23题图)ABK MCDE∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.黄浦区23.(本题满分12分)如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .23. 证:(1)∵四边形ABCD 为菱形,∴AB =BC =AD =CD ,∠A =∠C ,——————————————————(2分)ACD E图7B又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD. —————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线, M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形AEBD是平行四边形;(2)如果AC=3AF,求证四边形AEBD是矩形.E AFM23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE //BC ,∴AF AEFB BC=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分) ∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分) 又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分)第23题图AB DEFA D又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分) ∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分)∴△ADB ∽△EBF ∴DB ABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分) 闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ABEGCFD(第23题图)∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.23.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ······ (2分)∵FG ∥AD ,∴FG CFAD CA=. ···················· (1分) 同理EF CFAB CA= . ························ (1分) ABC DE F G图9得FG AD =EFAB∵FG EF =,∴AD AB =. ···················· (1分) ∴四边形ABED 是菱形. ····················· (1分) (2)联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ········ (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=. ······················· (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ············ (1分)∴EH DEEF AE =. ························· (1分) ∴212AE EF ED =. ······················· (1分) 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F . (1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB ,··············· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ·········· (1分) ∴AE //DC , ························ (1分)∴=FM AMMD MC. ····················· (1分) ∵AD //BC ,∴=AM DMMC MB, ················ (1分) ∴=FM DMMD MB, ····················· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ············· (1分)MFE DCBA图7由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ······················· (1分) ∴3==DF BF a . ····················· (1分) ∵AD //BC ,∴1==AF DFEF BF, ················ (1分) ∴=AF EF , ······················· (1分) ∴四边形ABED 是平行四边形. ················· (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E ,F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE ∴∠AEB =90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分 ∴∠FEB =∠CBE …………………………………………………1分 ∴EF ∥BC …………………………………………………1分 ∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分(第23题图)FCD EC∵EF BF =∴四边形BCEF 是菱形……………………………………1分(2) ∵四边形BCEF 是菱形,∴BC =BF ∵12BF AB = ∴AB =2BC ………………………………………………1分∵ AB ∥CD∴ ∠DEA =∠EAB∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AE BE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,求证:4EF FC DE BD ⋅=⋅.杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD 于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。
上海市各区2018届九年级中考二模数学试卷精选汇编函数综合运用专题宝山区、嘉定区22、有一座抛物线拱型桥,在正常水位时,水面BC 的宽为10米,拱桥的最高点D 到水面BC 的距离DO 为4米,点O 是BC 的中点,如图5,以点O 为原点,直线BC 为x 轴,建立直角坐标系xOy .(1)求该抛物线的表达式;(2)如果水面BC 上升3米(即3=OA )至水面EF ,点E 在点F 的左侧, 求水面宽度EF 的长.22.解:(1)根据题意:该抛物线的表达式为:b ax y +=2………………1分 ∵该抛物线最高点D 在y 轴上,4=DO ,∴点D 的坐标为)4,0(………1分 ∵10=BC ,点O 是BC 的中点 ∴点B 的坐标为)0,5(- ∴254-=a ,4=b …2分 ∴抛物线的表达式为:42542+-=x y …………………1分 (2)根据题意可知点E 、点F 在抛物线42542+-=x y 上,EF ∥BC ……1分∵3=OA ∴点E 、点F 的横坐标都是3,…1分∴点E 坐标为)3,25(-……………1分 , 点F 坐标为)3,25(……1分∴5=EF (米)……………1分 答水面宽度EF 的长为5米.长宁区22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x =70或者x =250(舍去) (2分) 答:门票价格应该定为70元. (1分)崇明区22.(本题满分10分,第(1)、(2)小题满分各5分)温度通常有两种表示方法:华氏度(单位:℉)与摄氏度(单位:℃),已知华氏度数y 与摄氏度数x 之间是一次函数关系,下表列出了部分华氏度与摄氏度之间的对应关系:(1)选用表格中给出的数据,求y 关于x 的函数解析式;(2)有一种温度计上有两个刻度,即测量某一温度时左边是摄氏度,右边是华氏度,那么在多少摄氏度时,温度计上右边华氏度的刻度正好比左边摄氏度的刻度大56?22.(本题满分10分,每小题5分)(1)解:设(0)y kx b k =+≠ ………………………………………………1分把0x =,32y =;35x =,95y =代入,得323595b k b =⎧⎨+=⎩ ……………1分解得9532k b ⎧=⎪⎨⎪=⎩ ……………………………………………………………………2分∴y 关于x 的函数解析式为9325y x =+ ……………………………………1分 (2)由题意得:932565x x +=+ ………………………………………………4分解得30x = …………………………………………………1分 ∴在30摄氏度时,温度计右边华氏度的刻度正好比左边摄氏度的刻度大56奉贤区22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠? 22、(1)0.27100(0)y x x =+>; (2)乙;黄浦区22.(本题满分10分)今年1月25日,上海地区下了一场大雪.这天早上王大爷去买菜,他先去了超市,发现蔬菜普遍涨价了,青菜、花菜和大白菜这两天的价格如下表.王大爷觉得超市的菜不够新鲜,所以他又去了菜市场,他花了30元买了一些新鲜菠菜,他跟卖菜阿姨说:“你今天的菠菜比昨天涨了5元/斤。
上海市各区2018届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)在圆O 中,AO 、BO 是圆O 的半径,点C 在劣弧AB 上,10=OA,12=AC ,AC ∥OB ,联结AB . (1)如图8,求证:AB 平分OAC ∠;(2)点M 在弦AC 的延长线上,联结BM ,如果△AMB 是直角三角形,请你在如图9中画出 点M 的位置并求CM 的长;(3)如图10,点D 在弦AC 上,与点A 不重合,联结OD 与弦AB 交于点E ,设点D 与点C 的 距离为x ,△OEB 的面积为y ,求y 与x 的函数关系式,并写出自变量x 的取值范围.25.(1)证明:∵AO 、BO 是圆O 的半径 ∴BO AO =…………1分 ∴B OAB ∠=∠…………1分 ∵AC ∥OB∴B BAC ∠=∠…………1分 ∴BAC OAB ∠=∠∴AB 平分OAC ∠…………1分 (2)解:由题意可知BAM ∠不是直角,所以△AMB 是直角三角形只有以下两种情况:︒=∠90AMB 和︒=∠90ABM① 当︒=∠90AMB ,点M 的位置如图9-1……………1分 过点O 作AC OH ⊥,垂足为点H图8图10图8∵OH 经过圆心 ∴AC HC AH 21== ∵12=AC ∴6==HC AH 在Rt △AHO 中,222OA HO AH =+ ∵10=OA ∴8=OH∵AC ∥OB ∴︒=∠+∠180OBM AMB ∵︒=∠90AMB ∴︒=∠90OBM ∴四边形OBMH 是矩形 ∴10==HM OB∴4=-=HC HM CM ……………2分 ②当︒=∠90ABM ,点M 的位置如图9-2 由①可知58=AB ,552cos =∠CAB 在Rt △ABM 中,552cos ==∠AM AB CAB∴20=AM8=-=AC AM CM ……………2分综上所述,CM 的长为4或8.说明:只要画出一种情况点M 的位置就给1分,两个点都画正确也给1分. (3)过点O 作AB OG ⊥,垂足为点G 由(1)、(2)可知,CAB OAG ∠=∠sin sin 由(2)可得:55sin =∠CAB ∵10=OA ∴52=OG ……………1分 ∵AC ∥OB ∴ADOBAE BE =……………1分 又BE AE -=58,x AD -=12,10=OB ∴xBEBE -=-121058 ∴x BE -=22580 ……………1分∴52225802121⨯-⨯=⨯⨯=xOG BE y ∴xy -=22400……………1分自变量x 的取值范围为120<≤x ……………1分图10长宁区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD . 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC =x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB =8, ∴OD ⊥AB ,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO Θ,AO =5, ∴322=-=AC AO CO (1分)5=OD Θ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB ,垂足为点H ,则由(1)可得AH =4,OH =3 ∵AC =x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO Θ,AO =5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO O AC DBO BA C DBAOxx x x 5402582-+-= (80<<x ) (3分)(3)①当OB //AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF =AE , AE OB OH AB S ABO ⋅=⋅=∆2121Θ ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO Θ,AO =5, ∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分) ②当OA //BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G , 则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO Θ,DO =5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG , 在Rt △GAD 中,︒=∠90DGA Θ,∴622=+=DG AG AD ( 3分)综上得6514或=AD 崇明区25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,已知ABC △中,8AB =,10BC =,12AC =,D 是AC 边上一点,且2AB AD AC =⋅,联结BD ,点E 、F 分别是BC 、AC 上两点(点E 不与B 、C 重合),AEF C ∠=∠,AE 与BD 相交于点G . (1)求证:BD 平分ABC ∠;(2)设BE x =,CF y =,求y 与x 之间的函数关系式; (3)联结FG ,当GEF △是等腰三角形时,求BE 的长度.25.(满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)(第25题图)A BCDGEF(备用图)ABCD(1)∵8AB =,12AC = 又∵2AB AD AC =g ∴163AD =∴16201233CD =-= ……………………………1分 ∵2AB AD AC =g ∴AD AB AB AC= 又∵BAC ∠是公共角 ∴ADB ABC △∽△ …………………………1分 ∴ABD C =∠∠,BD ADBC AB= ∴203BD =∴BD CD = ∴DBC C =∠∠ ………………………1分 ∴ABD DBC =∠∠ ∴BD 平分ABC ∠ ………………………1分 (2)过点A 作AH BC ∥交BD 的延长线于点H∵AH BC ∥ ∴16432053AD DH AH DC BD BC ==== ∵203BD CD ==,8AH = ∴163AD DH == ∴12BH = ……1分 ∵AH BC ∥ ∴AH HG BE BG = ∴812BG x BG -= ∴128xBG x =+…1分 ∵BEF C EFC =+∠∠∠ 即BEA AEF C EFC +=+∠∠∠∠ ∵AEF C =∠∠ ∴BEA EFC =∠∠ 又∵DBC C =∠∠∴BEG CFE △∽△ ……………………………………………………………1分∴BE BGCF EC= ∴12810x x x y x +=-∴228012x x y -++= …………………………………………………………1分(3)当△GEF 是等腰三角形时,存在以下三种情况:1° GE GF = 易证23GE BE EF CF == ,即23x y =,得到4BE = ………2分 2° EG EF = 易证BE CF =,即x y =,5BE =-+…………2分 3° FG FE = 易证 32GE BE EF CF == ,即32x y =3BE =-+ ………2分奉贤区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD .(1)若C 是半径OB 中点,求∠OCD 的正弦值; (2)若E 是弧AB 的中点,求证:BC BO BE ⋅=2;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图9备用图ABO备用图ABO黄浦区25.(本题满分14分)如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.(1)设BC=x,CD=y,求y关于x的函数关系式,并写出定义域;(2)当∠B=70°时,求∠AEC的度数;(3)当△ACE为直角三角形时,求边BC的长.25. 解:(1)过A作AH⊥BC于H,————————————————————(1分)由∠D=∠BCD=90°,得四边形ADCH为矩形.在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,所以22221y x =+-,——————————————————————(1分) 则()22303y x x x =-++<<.———————————————(2分)(2)取CD 中点T ,联结TE ,————————————————————(1分) 则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD .∴∠AET =∠B =70°. ———————————————————————(1分) 又AD =AE =1,∴∠AED =∠ADE =∠DET =35°. ——————————————————(1分) 由ET 垂直平分CD ,得∠CET =∠DET =35°,————————————(1分) 所以∠AEC =70°+35°=105°. ——————————————————(1分)(3)当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2. ——————————————————————(2分)当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-=-,则2241174AD CAx x AC CBx -±=⇒=⇒=-(舍负)—————(2分) 易知∠ACE <90°.所以边BC 的长为2或117+.——————————————————(1分)金山区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5 分)如图9,已知在梯形ABCD 中,AD ∥BC ,AB =DC =AD =5,3sin 5B =,P 是线段BC 上 一点,以P 为圆心,PA 为半径的⊙P 与射线AD 的另一个交点为Q ,射线PQ 与射线CD 相交于点E ,设BP =x .(1)求证△ABP ∽△ECP ;(2)如果点Q 在线段AD 上(与点A 、D 不重合),设△APQ 的面积为y ,求y 关于x 的函数关系式,并写出定义域; (3)如果△QED 与△QAP 相似,求BP 的长.25.解:(1)在⊙P 中,PA =PQ ,∴∠PAQ =∠PQA ,……………………………(1分)∵AD ∥BC ,∴∠PAQ =∠APB ,∠PQA =∠QPC ,∴∠APB =∠EPC ,……(1分) ∵梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠B =∠C ,…………………………(1分) ∴△APB ∽△ECP .…………………………………………………………(1分) (2)作AM ⊥BC ,PN ⊥AD ,∵AD ∥BC ,∴AM ∥PN ,∴四边形AMPN 是平行四边形,∴AM =PN ,AN =MP .………………………………………………………(1分) 在Rt △AMB 中,∠AMB =90°,AB =5,sinB =35, ∴AM =3,BM =4,∴PN =3,PM =AN =x -4,……………………………………(1分) ∵PN ⊥AQ ,∴AN =NQ ,∴AQ = 2x -8,……………………………………(1分) ∴()1128322y AQ PN x =⋅⋅=⋅-⋅,即312y x =-,………………………(1分) 定义域是1342x <<.………………………………………………………(1分) (3)解法一:由△QED 与△QAP 相似,∠AQP =∠EQD ,①如果∠PAQ =∠DEQ ,∵△APB ∽△ECP ,∴∠PAB =∠DEQ ,又∵∠PAQ =∠APB ,∴∠PAB =∠APB ,∴BP =BA =5.………………………(2分)ABCD图9备用图②如果∠PAQ =∠EDQ ,∵∠PAQ =∠APB ,∠EDQ =∠C ,∠B =∠C ,∴∠B =∠APB ,∴ AB =AP ,∵AM ⊥BC ,∴ BM =MP =4,∴ BP =8.………(2分) 综上所述BP 的长为5或者8.………………………………………………(1分) 解法二:由△QAP 与△QED 相似,∠AQP =∠EQD , 在Rt △APN 中,AP PQ ===∵QD ∥PC ,∴EQ EPQD PC=, ∵△APB ∽△ECP ,∴AP EPPB PC=,∴AP EQ PB QD =, ①如果AQ EQ QP QD =,∴AQ AP QP PB =x=,解得5x =………………………………………………………………………(2分) ②如果AQ DQ QP QE =,∴AQ PBQP AP==解得8x =………………………………………………………………………(2分) 综上所述BP 的长为5或者8.…………………………………………………(1分)静安区25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分) 如图,平行四边形ABCD 中,已知AB =6,BC =9,31cos =∠ABC .对角线AC 、BD 交于点O .动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .设BP = x .(1) 求AC 的长;(2) 设⊙O 的半径为y ,当⊙P 与⊙O 外切时, 求y 关于x 的函数解析式,并写出定义域; (3) 如果AC 是⊙O 的直径,⊙O 经过点E , 求⊙O 与⊙P 的圆心距OP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)作AH ⊥BC 于H ,且31cos =∠ABC ,AB =6, A 第25题图B P OC DE · 第25题备用图ABOCDDA · POE那么2316cos =⨯=∠⋅=ABC AB BH …………(2分) BC =9,HC =9-2=7,242622=-=AH , ……………………(1分) 9493222=+=+=HC AH AC ﹒ ………(1分)(2)作OI ⊥AB 于I ,联结PO , AC =BC =9,AO =4.5 ∴∠OAB =∠ABC ,∴Rt △AIO 中, 31cos cos ==∠=∠AO AI ABC IAO∴AI =1.5,IO =2322=AI ……………………(1分) ∴PI =AB -BP -AI =6-x -1.5=x -29, ……………………(1分) ∴Rt △PIO 中,41539481918)29()23(2222222+-=+-+=-+=+=x x x x x OI PI OP ……(1分) ∵⊙P 与⊙O 外切,∴y x x x OP +=+-=415392 ……………………(1分) ∴y =x x x x x x -+-=-+-153364214153922…………………………(1分) ∵动点P 在边AB 上,⊙P 经过点B ,交线段PA 于点E .∴定义域:0<x ≤3…………(1分) (3)由题意得:∵点E 在线段AP 上,⊙O 经过点E ,∴⊙O 与⊙P 相交 ∵AO 是⊙O 半径,且AO >OI ,∴交点E 存在两种不同的位置,OE =OA =29① 当E 与点A 不重合时,AE 是⊙O 的弦,OI 是弦心距,∵AI =1.5,AE =3, ∴点E 是AB 中点,321==AB BE ,23==PE BP ,3=PI , IO =23 3327)23(32222==+=+=IO PI OP ……………………(2分)② 当E 与点A 重合时,点P 是AB 中点,点O 是AC 中点,2921==BC OP ……(2分) ∴33=OP 或29. 闵行区25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)如图,已知在Rt △ABC 中,∠ACB = 90o,AC =6,BC = 8,点F 在线段AB 上,以点B 为圆心,BF 为半径的圆交BC 于点E ,射线AE 交圆B 于点D (点D 、E 不重合).(1)如果设BF = x ,EF = y ,求y 与x 之间的函数关系式,并写出它的定义域;第25题图(2)(2)如果»»2EDEF =,求ED 的长; (3)联结CD 、BD ,请判断四边形ABDC 是否为直角梯形?说明理由.25.解:(1)在Rt △ABC 中,6AC =,8BC =,90ACB ∠=o∴10AB =.……………………………………………………………(1分) 过E 作EH ⊥AB ,垂足是H , 易得:35EH x =,45BH x =,15FH x =.…………………………(1分) 在Rt △EHF 中,222223155EF EH FH x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∴(08)y x x =<<.………………………………………(1分+1分) (2)取»ED的中点P ,联结BP 交ED 于点G ∵»»2EDEF =,P 是»ED 的中点,∴»»»EP EF PD ==. ∴∠FBE =∠EBP =∠PBD .∵»»EPEF =,BP 过圆心,∴BG ⊥ED ,ED =2EG =2DG .…………(1分) 又∵∠CEA =∠DEB ,∴∠CAE =∠EBP =∠ABC .……………………………………………(1分)又∵BE 是公共边,∴BEH BEG ∆∆≌.∴35EH EG GD x ===.在Rt △CEA 中,∵AC = 6,8BC =,tan tan AC CECAE ABC BC AC∠=∠==, ∴66339tan 822CE AC CAE ⨯⨯=⋅∠===.……………………………(1分) (备用图)CBA (第25题图)CBEF DADEBACF∴9169782222BE =-=-=.……………………………………………(1分) ∴6672125525ED EG x ===⨯=.……………………………………(1分)(3)四边形ABDC 不可能为直角梯形.…………………………………(1分)①当CD ∥AB 时,如果四边形ABDC 是直角梯形, 只可能∠ABD =∠CDB = 90o. 在Rt △CBD 中,∵8BC =, ∴32cos 5CD BC BCD =⋅∠=, 24sin 5BD BC BCD BE =⋅∠==. ∴321651025CD AB ==,328153245CE BE -==; ∴CD CEAB BE≠. ∴CD 不平行于AB ,与CD ∥AB 矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分) ②当AC ∥BD 时,如果四边形ABDC 只可能∠ACD =∠CDB = 90o. ∵AC ∥BD ,∠ACB = 90o, ∴∠ACB =∠CBD = 90o . ∴∠ABD =∠ACB +∠BCD > 90o. 与∠ACD =∠CDB = 90o矛盾.∴四边形ABDC 不可能为直角梯形.…………………………(2分)普陀区25.(本题满分14分)已知P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.(1)当6m =时,求线段CD 的长;(2)设圆心1O 在直线AB 上方,试用n 的代数式表示m ;(3)△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.DEBACFDC25.解:(1)过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· (1分) ∵AB =6,∴3OC =. ······················ (1分)由勾股定理得 CH = ····················· (1分)∵OH ⊥DC ,∴2CD CH == ················ (1分) (2)在Rt △POH 中,∵1sin 3P =, PO m =,∴3mOH =. ········ (1分) 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ (1分)在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· (1分)可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· (2分)(3)△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· (1分)即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.(1分)②11O P OO =n =,解得23m n =,即23n 23812n n -=,解得n ·········· (1分) ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· (2分)综上所述,n .青浦区25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9-1,已知扇形MON,∠MON=90o,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA= x,∠COM的正切值为y.(1)如图9-2,当AB⊥OM时,求证:AM =AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.25.解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM =∠BAM=90°.··········(1分)∵∠ABM +∠M =∠DOM +∠M,∴∠ABM =∠DOM.·········(1分)∵∠OAC=∠BAM,OC =BM,∴△OAC≌△ABM,······················(1分)∴AC =AM.·························(1分)(2)过点D作DE//AB,交OM于点E.················(1分)∵OB=OM,OD⊥BM,∴BD=DM.················(1分)∵DE//AB,∴=MD MEDM AE,∴AE=EM,∵OM,∴AE=)12x.················(1分)∵DE//AB,∴2==OA OC DMOE OD OD,···················(1分)∴2=DM OAOD OE,∴=y(0<≤x·················(2分)(3)(i)当OA=OC时,∵111222===DM BM OC x,O MNDCBA图9-1ONDCBA图9-2NMO备用图在Rt △ODM中,==OD =DM y OD,1=x=x=x .(2分) (ii )当AO =AC 时,则∠AOC =∠ACO ,∵∠ACO >∠COB ,∠COB =∠AOC ,∴∠ACO >∠AOC ,∴此种情况不存在. ····················· (1分) (ⅲ)当CO =CA 时,则∠COA =∠CAO=α,∵∠CAO >∠M ,∠M =90α︒-,∴α>90α︒-,∴α>45︒,∴290α∠=>︒BOA ,∵90∠≤︒BOA ,∴此种情况不存在. ·· (1分)松江区25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E.(1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD∴BC DC BE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分 设CE =x(第25题图)CBA DE(备用图)CBADECBA DE则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分 ∴54x =即54CE =…………………………………1分 (2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分 ∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分 即2534CP =⋅ ∴365CP =……………………………1分 ②设CP =t ,则54PE t =- ∵∠ACB =90°,∴AP ∵AE ∥CD ∴AQ ECAP EP=……………………………1分5545454t t ==--∴AQ =1分若两圆外切,那么1AQ == 此时方程无实数解……………………………1分CBA DEPQ若两圆内切切,那么2595t AQ +== ∴21540160t t -+= 解之得2041015t ±=………………………1分又∵54t >∴2041015t +=………………………1分徐汇区25. 已知四边形ABCD 是边长为10的菱形,对角线AC 、BD 相交于点E ,过点C 作CF ∥DB 交AB 延长线于点F ,联结EF 交BC 于点H . (1)如图1,当EF BC ⊥时,求AE 的长;(2)如图2,以EF 为直径作⊙O ,⊙O 经过点C 交边CD 于点G (点C 、G 不重合),设AE 的长为x ,EH 的长为y ;① 求y 关于x 的函数关系式,并写出定义域;③ 联结EG ,当DEG ∆是以DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图9,在梯形ABCD中,AD//BC,AB=DC=5,AD=1,BC=9,点P为边BC上一动点,作PH⊥DC,垂足H在边DC上,以点P为圆心PH为半径画圆,交射线PB于点E.(1)当圆P过点A时,求圆P的半径;(2)分别联结EH和EA,当△ABE△CEH时,以点B为圆心,r为半径的圆B与圆P相交,试求圆B的半径r的取值范围;(3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
2018届中考数学上海市各区二模试卷专题汇编六【几何证明题】宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E .(1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分∴︒=∠+∠90MAD MAB ∵︒=∠90MAN ∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分∴ADN B ∠=∠……………………1分∴△ABM ≌△ADN ………………………1分∴AN AM =……………………………1分CBANDM E图6(2)∵四边形ABCD 是正方形∴AC 平分BCD ∠和BAD∠∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分∵NAD CAD ∠=∠2∴︒=∠5.22NAD ∵NAD MAB ∠=∠∴︒=∠5.22MAB ………1分∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE ∴ANE ACM ∠=∠…………………1分∴△ACM ∽△ANE …………1分∴AN ACAEAM =……1分∵AN AM =∴AE AC AM⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD//BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且AG GFBE AD =.CBANDM E图6ADFG(1)求证:AB//CD ;(2)若BD GD BC ⋅=2,BG=GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD //∴BG DGBE AD =(2分)∵AG GFBE AD =∴AG GFBG DG =(1分)∴CDAB //(2分)(2)∵BC AD //,CDAB //∴四边形ABCD 是平行四边形∴BC=AD(1分)∵BD GD BC ⋅=2∴BD GD AD ⋅=2即ADGDBD AD =又∵BDA ADG ∠=∠∴ADG ∆∽BDA∆(1分)∴ABD DAG ∠=∠∵CD AB //∴BDC ABD ∠=∠∵BCAD //∴EDAG ∠=∠∵BG=GE ∴E DBC ∠=∠∴DBCBDC ∠=∠(3分)∴BC=CD(1分)∵四边形ABCD 是平行四边形∴平行四边形ABCD 是菱形.(1分)崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,是的中线,点D是线段上一点(不与点重合).交于点,,联结.(1)求证:;(2)求证:.23.(本题满分12分,每小题6分)(1)证明:∵∴……………………………………………………1分∵∴……………………………………………………1分∴……………………………………………………1分∴………………………………………………………1分∵是△的中线(第23题图)ABKM CDE∴………………………………………………………1分∴………………………………………………………1分(2)证明:∵∴………………………………………………………2分又∵∴………………………………………………………2分又∵∴四边形是平行四边形…………………………………………1分∴………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.(1)求证:B是EC的中点;(2)分别延长CD、EA相交于点F ,若,求证:.ACDE图7B黄浦区23.(本题满分12分)如图,点E、F分别为菱形ABCD边AD、CD的中点.(1)求证:BE=BF;(2)当△BEF为等边三角形时,求证:∠D=2∠A.23.证:(1)∵四边形ABCD为菱形,∴AB=BC=AD=CD,∠A=∠C,——————————————————(2分)又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF.——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O.——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE ===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD.—————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线,M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形AEBD是平行四边形;(2)如果AC=3AF,求证四边形AEBD是矩形.E AFMB D图7C23.证明:(1)∵AE//BC ,∴∠AEM=∠DCM ,∠EAM=∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分)∵BD=CD ,∴AE=BD .……………………………………………………(1分)∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE//BC ,∴AF AEFB BC =.…………………………………………………(1分)∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分)∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分)又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB=90°.……………………(1分)∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF=∠ADC .(1)求证:DB AB BF EF =;(2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.C第23题图ABDEF23.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)∵平行四边形ABCD ,∴AD//BC ,AB//DC∴∠BAD+∠ADC=180°,……………………………………(1分)又∵∠BEF+∠DEF =180°,∴∠BAD+∠ADC=∠BEF+∠DEF ……(1分)∵∠DEF=∠ADC ∴∠BAD=∠BEF ,…………………………(1分)∵AB//DC ,∴∠EBF=∠ADB…………………………(1分)∴△ADB ∽△EBF∴DBABBF EF =………………………(2分)(2)∵△ADB ∽△EBF,∴BF BEBD AD =,………………………(1分)在平行四边形ABCD 中,BE=ED=BD21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22,………………………………………(1分)又∵DFAD BD ⋅=22∴DF BF =,△DBF 是等腰三角形…………………………(1分)∵DE BE =∴FE ⊥BD,即∠DEF =90°…………………………(1分)∴∠ADC =∠DEF =90°…………………………(1分)∴平行四边形ABCD 是矩形…………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FGCA B第23题图DEFA∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅;(2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC=2∠BAF=2∠EAC .∵∠BAC=2∠C ,∴∠BAF=∠C=∠EAC .…………………………(1分)又∵BD 平分∠ABC ,∴∠ABD=∠DBC .……………………………(1分)∵∠ABF=∠C ,∠ABD=∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分)∴AB BFBC BD =.………………………………………………………(1分)∴BF BC AB BD ⋅=⋅.………………………………………………(1分)(2)∵FG ∥AC ,∴∠C=∠FGB ,∴∠FGB=∠FAB .………………(1分)∵∠BAF=∠BGF ,∠ABD=∠GBD ,BF=BF ,∴ABF GBF ∆∆≌.∴AF=FG ,BA=BG .…………………………(1分)∵BA=BG ,∠ABD=∠GBD ,BD=BD ,∴ABD GBD ∆∆≌.∴∠BAD=∠BGD .……………………………(1分)∵∠BAD=2∠C ,∴∠BGD=2∠C ,∴∠GDC=∠C ,∴∠GDC=∠EAC ,∴AF ∥DG .……………………………………(1分)又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分)∴AF=FG .……………………………………………………………(1分)∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形中,∥,∥,与对角线交于点,∥,且.(1)求证:四边形是菱形;(2)联结,又知⊥,求证:.证明:(1)∵∥,∥,∴四边形是平行四边形.(2分)∵∥,∴.(1分)同理.(1分)得=∵,∴.(1分)∴四边形是菱形.(1分)(2)联结,与交于点.∵四边形是菱形,∴,⊥.(2分)A B CDE F G图9得.同理.∴.(1分)又∵是公共角,∴△∽△.(1分)∴.(1分)∴.(1分)青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅;(2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD//BC ,∴∠=∠DAE AEB ,(1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB ,(1分)∴AE//DC ,(1分)∴=FM AMMD MC .(1分)∵AD//BC ,∴=AM DMMC MB ,(1分)图7∴=FMDMMD MB ,(1分)即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a .(1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a ,(1分)∴3==DF BF a .(1分)∵AD//BC ,∴1==AFDFEF BF ,(1分)∴=AF EF ,(1分)∴四边形ABED 是平行四边形.(1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D=90°,BE 平分∠ABC ,交CD 于点E ,F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)证明:(第23题图)F A CD E B(1)∵BE 平分∠ABC,∴∠ABE=∠CBE …………………………………………………1分∵AE ⊥BE∴∠AEB=90°∵F 是AB 的中点∴12EF BF AB ==………………………………………………1分∴∠FEB =∠FBE …………………………………………………1分∴∠FEB =∠CBE …………………………………………………1分∴EF ∥BC …………………………………………………1分∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分∵EF BF=∴四边形BCEF 是菱形……………………………………1分(2)∵四边形BCEF 是菱形,∴BC=BF ∵12BF AB=∴AB=2BC ………………………………………………1分∵AB ∥CD∴∠DEA=∠EAB∵∠D=∠AEB∴△EDA ∽△AEB ………………………………………2分∴AD AEBE AB =…………………………………………1分∴BE ·AE=AD ·AB∴2BE AE AD BC ⋅=⋅…………………………………1分(第23题图)F A C D E B徐汇区23.在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,求证:4EF FC DE BD ⋅=⋅.杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD 中,点G 为对角线AC 的中点,过点G 的直线EF 分别交边AB 、CD 于点E 、F ,过点G 的直线MN 分别交边AD 、BC 于点M 、N ,且∠AGE=∠CGN。
杨浦区2017学年度第二学期初三质量调研 数学试卷 2018.4(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列各数是无理数的是( )(A)︒60cos (B)1.3 (C)半径为1cm 的圆周长 (D )38 2.下列运算正确的是( )(A )m n m 2=⋅ (B )632)(m m = (C )33)(mn mn = (D )326m m m =÷ 3.若y x 33->,则下列等式一定成立的是( )(A) 0>+y x (B )0>-y x (C )0<+y x (D )0<-y x 4.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图1所示,其中阅读时间是8-10小时的组频数和组频率分别是( ) (A)15和0.125 (B )15和0.25 (C)30和0.125 (D )30和0.255.下列图形是中心对称图形的是( )(A) (B) (C) (D)6.如图2,半径为1的圆1O 与半径为3的圆2O 内切,如果半径为2的圆与圆1O 和圆2O 都相切,那么这样的圆的个数是( ) (A )1 (B) 2 (C) 3 (D)4二、填空题:(本大题共12题,每题4分,满分48分)0.1500.1250.1000.0750.0500.025小时数(个)频率组距图112108642O 2O 17.计算=+-+)()(b a b b a a 8.当0,0,a b <>时,化简=b a 2 9. 函数211++-=x xy 中,自变量x 取值范围是 10. 如果反比例函数x k y =的图像经过点),2(1y A 与),3(2y B ,那么21y y的值等于 11. 三人中至少两人性别相同的概率是12. 25位同学10秒钟跳绳的成绩汇总如下表; 人数 1 2 3 4 5 10 次数15825101720那么跳绳的中位数是13.李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟。
上海市各区2018届九年级中考二模数学试卷精选汇编 综合计算宝山区、嘉定区21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图4,在梯形ABCD 中,AD ∥BC ,︒=∠90BAD ,AD AC =. (1)如果BAC ∠︒=∠-10BCA ,求D ∠的度数; (2)若10=AC ,31cot =∠D ,求梯形ABCD 的面积.21.解:(1)∵AD ∥BC∴CAD BCA ∠=∠ …………………1分 ∵BAC ∠︒=∠-10BCA∴BAC ∠︒=∠-10CAD …………………1分 ∵︒=∠90BAD∴BAC ∠︒=∠+90CAD∴︒=∠40CAD …………………1分 ∵AD AC =∴D ACD ∠=∠ …………………1分 ∵︒=∠+∠+∠180CAD D ACD∴︒=∠70D …………………1分(2) 过点C 作AD CH ⊥,垂足为点H ,在Rt △CHD 中,31cot =∠D ∴31cot ==∠CH HD D …………………………1分 设x HD =,则x CH 3=,∵AD AC =,10=AC ∴x AH -=10 在Rt △CHA 中,222AC CHAH =+ ∴22210)3()10(=+-x x∴2=x ,0=x (舍去)∴2=HD …………1分 ∴6=HC ,8=AH ,10=AD ………………1分图4DCB A图4DCBAH∵︒=∠=∠90CHD BAD ∴AB ∥CH∵AD ∥BC ∴四边形ABCH 是平行四边形 ∴8==AH BC ………1分 ∴梯形ABCD 的面积546)810(21)(21=⨯+=⨯+=CH BC AD S ………1分 长宁区21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB =AC ,点D 在BA 的延长线上,BC =24,135sin =∠ABC . (1)求AB 的长;(2)若AD =6.5,求DCB ∠的余切值.21.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB =AC ∴BC BE 21= ∵BC =24 ∴ BE =12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分)设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F ∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE =5,BE =12,AB =13, ∴18,215==BF DF (4分) ∴BF BC CF -= 即61824=-=CF (1分) 在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分) 崇明区ADB第21题图21.(本题满分10分,第(1)、(2)小题满分各5分)已知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点, 过点P 作PD OP ⊥交圆O 于点D . (1)如图1,当PD AB ∥时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长.21.(本题满分10分,每小题5分)(1)解:联结OD∵直径12AB = ∴6OB OD == ……………………………………1分∵PD OP ⊥ ∴90DPO =︒∠∵PD AB ∥ ∴180DPO POB +=︒∠∠ ∴90POB =︒∠ ……1分 又∵30ABC =︒∠,6OB =∴30OP OB tan =︒= ………………………………………………1分 ∵在Rt POD △中,222PO PD OD += ……………………………1分∴2226PD +=∴PD =……………………………………………………………1分 (2)过点O 作OH BC ⊥,垂足为H ∵OH BC ⊥∴90OHB OHP ==︒∠∠(第21题图1)ABOPCD (第21题图2)OABDPC∵30ABC =︒∠,6OB =∴132OH OB ==,30BH OB cos =︒= ……………………2分 ∵在⊙O 中,OH BC ⊥∴CH BH == ……………………………………………………1分 ∵BP 平分OPD ∠ ∴1452BPO DPO ==︒∠∠ ∴453PH OH cot =︒= ……………………………………………1分∴3PC CH PH =-= ………………………………………1分奉贤区21.(本题满分10分,每小题满分各5分)已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1) 求EAD ∠的余切值; (2) 求BFCF的值. 21、(1)56; (2)58; 黄浦区21.(本题满分10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =23, AD ∶DB =1∶2.图6ABD EF(1)求△ABC 的面积; (2)求CE ∶DE.21. 解:(1)由AB =AC =6,AH ⊥BC ,得BC =2BH .—————————————————————————(2分) 在△ABH 中,AB =6,cosB =23,∠AHB =90°, 得BH =2643⨯=,AH=2分) 则BC =8,所以△ABC 面积=182⨯=——————————————(1分) (2)过D 作BC 的平行线交AH 于点F ,———————————————(1分)由AD ∶DB =1∶2,得AD ∶AB =1∶3, 则31CE CH BH AB DE DF DF AD ====. ——————————————(4分)金山区21.(本题满分10分,每小题5分)如图5,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F .(1)求证:AF=BE ;(2)如果BE ∶EC=2∶1,求∠CDF 的余切值.21.解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°,ABCDFE图5∴∠DAF=∠AEB ,……………………………………………………………………(1分) ∵AE=BC ,DF ⊥AE ,∴AD=AE ,∠ AFD=∠EBA=90°,………………………(2分) ∴△ADF ≌△EAB ,∴AF =EB ,………………………………………………………(2分)(2)设BE =2k ,EC =k ,则AD =BC =AE =3k ,AF =BE =2k ,…………………………(1分)∵∠ADC =90°,∠AFD =90°,∴∠CDF +∠ADF =90°,∠DAF +∠ADF =90°, ∴∠CDF =∠DAF …………………………………………………………………(2分) 在Rt △ADF 中,∠AFD =90°,DF∴cot ∠CDF =cot ∠DAF=5AF DF ==.………………………………(2分) 静安区21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)已知:如图,边长为1的正方形ABCD 中,AC 、DB 交于点H .DE 平分∠ADB ,交AC 于点E .联结BE 并延长,交边AD 于点F . (1)求证:DC =EC ; (2)求△EAF 的面积.21.(本题满分10分, 第(1)小题5分,第(2)小题5分)解:(1)∵正方形ABCD ,∴DC=BC=BA=AD , ∠BAD =∠ADC =∠DCB =∠CBA =90° AH=DH=CH=BH , AC ⊥BD ,∴∠ADH =∠HDC =∠DCH =∠DAE = 45°. …………(2分)第21题图H又∵DE 平分∠AD B ∴∠ADE =∠EDH∵∠DAE +∠ADE =∠DEC , ∠EDH +∠HDC =∠EDC …………(1分) ∴∠EDC =∠DEC …………(1分) ∴DC =EC …………(1分) (2)∵正方形ABCD ,∴AD ∥BC , ∴△AFE ∽△CBE ∴2)(ECAE S S CEB AEF =∆∆ ………………………………(1分) ∵AB=BC=DC=EC =1,AC =2,∴AE =12- …………………………(1分)Rt △BHC 中, BH =22BC =22, ∴在△BEC 中,BH ⊥EC , 4222121=⨯⨯=∆BEC S ……………………(2分) ∴2)12(42-=∆AEF S , ∴4423)223(42-=-⨯=∆AEF S …………(1分) 闵行区21.(本题满分10分,其中第(1)小题4分,第(2)小题6分)已知一次函数24y x =-+的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内作直角三角形ABC ,且∠BAC = 90o,1tan 2ABC ∠=.(1)求点C 的坐标;(2)在第一象限内有一点M (1,m ),且点MC 位于直线AB 的同侧,使得ABC ABM S S ∆∆=2求点M 的坐标.21.解:(1)令0y =,则240x -+=,解得:2x =,∴点A 坐标是(2,0).令0x =,则4y =,∴点B 坐标是(0,4).………………………(1分) ∴AB =1分) ∵90BAC ∠=,1tan 2ABC ∠=,∴AC =. (第21题图)过C 点作CD ⊥x 轴于点D ,易得OBA DAC ∆∆∽.…………………(1分) ∴2AD =,1CD =,∴点C 坐标是(4,1).………………………(1分) (2)11522ABC S AB AC ∆=⋅=⨯=.………………………………(1分) ∵2ABM ABC S S ∆∆=,∴52ABM S ∆=.……………………………………(1分) ∵(1M ,)m ,∴点M 在直线1x =上;令直线1x =与线段AB 交于点E ,2ME m =-;……………………(1分) 分别过点A 、B 作直线1x =的垂线,垂足分别是点F 、G ,∴AF +BG = OA = 2;……………………………………………………(1分)∴111()222ABM BME AME S S S ME BG ME AF ME BG AF ∆∆=+=⋅+⋅=+1152222ME OA ME =⋅=⨯⨯=…………………(1分) ∴52ME =,522m -=,92m =,∴(1M ,92).……………………(1分)普陀区21.(本题满分10分)如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长; (2)求CDA ∠的余弦值. 21.解:(1)∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ······································································· (1分) 在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······························ (1分)设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ····························································· (2分) ∴3=DE . ············································································································· (1分) (2) 在Rt △ADE 中,由勾股定理,得23=AD . ················································ (1分)ABCDE 图7同理得5=BD . ······································································································ (1分) 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ····················· (1分) ∴53=CD . ············································································································ (1分)∴102cos ==∠AD CD CDA . ················································································ (1分)即CDA ∠青浦区21. (本题满分10分,第(1)、(2)小题,每小题5分)如图5,在Rt △ABC 中,∠C =90°,AC=3,BC =4,∠ABC 的平分线交边AC 于点D ,延长BD 至点E ,且BD=2DE ,联结AE .(1)求线段CD 的长; (2)求△ADE 的面积.21.解:(1)过点D 作DH ⊥AB ,垂足为点H . ································································· (1分)∵BD 平分∠ABC ,∠C =90°,∴DH = DC =x , ·································································································· (1分) 则AD =3-x .∵∠C =90°,AC=3,BC =4,∴AB =5. ····························································· (1分) ∵sin ∠==HD BCBAC AD AB, ∴435=-x x , ·································································································· (1分) ∴43=x . ·········································································································· (1分)(2)1141052233=⋅=⨯⨯=ABD S AB DH . ···························································· (1分)∵BD=2DE , ∴2==ABD ADES BDSDE, ····················································································· (3分) ∴1015323=⨯=ADES. ··················································································· (1分) 松江区ED C BA图521.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =, BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分 在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH=4在Rt AHC ∆中,AC =2分 ∵DE 垂直平分AC ∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分 (第21题图)DACE∴DE = ………………………………………………1分 徐汇区21. 如图,在Rt ABC ∆中,90C ∠=︒,3AC =,4BC =,AD 平分BAC ∠交BC 于点D .(1)求tan DAB ∠;(2)若⊙O 过A 、D 两点,且点O 在边AB 上,用尺规作图的方法确定点O 的位置并求出的⊙O 半径.(保留作图轨迹,不写作法)杨浦区21、(本题满分10分,第(1)小题满分3分,第(2)小题满分7分)已知,如图5,在梯形ABCD 中,DC//AB, AD=BC, BD 平分∠ABC ,∠A =600求:(1)求∠CDB 的度数(2)当AD =2时,求对角线BD 的长和梯形ABCD 的面积。
上海市各区2018届九年级中考二模数学试卷精选汇编几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠ ∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分 ∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE∴ANE ACM ∠=∠…………………1分 ∴△ACM ∽△ANE …………1分图6图6∴ANACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD//BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =. (1)求证:AB//CD ;(2)若BD GD BC ⋅=2,BG=GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG=GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)ACDEF GB第23题图崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK =………………………………………………………2分 又∵AB CMEK CK=∴DE AB = ………………………………………………………2分(第23题图)ABK MCDE又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.黄浦区23.(本题满分12分)如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE=BF ;(2)当△BEF 为等边三角形时,求证:∠D=2∠A.ACD E图7B23. 证:(1)∵四边形ABCD为菱形,∴AB=BC=AD=CD,∠A=∠C,——————————————————(2分)又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD.—————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD是△ABC的中线, M是AD的中点,过A点作AE∥BC,CM的延长线与AE相交于点E,与AB相交于点F.E A(1)求证:四边形AEBD 是平行四边形; (2)如果AC=3AF ,求证四边形AEBD 是矩形.23.证明:(1)∵AE//BC ,∴∠AEM=∠DCM ,∠EAM=∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE=BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分) (2)∵AE//BC ,∴AF AEFB BC=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分) ∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分) 又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB=90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF=∠ADC . (1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.C第23题图ABDEF23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD//BC ,AB//DC∴∠BAD+∠ADC=180°,……………………………………(1分) 又∵∠BEF+∠DEF =180°, ∴∠BAD+∠ADC=∠BEF+∠DEF ……(1分) ∵∠DEF=∠ADC ∴∠BAD=∠BEF , …………………………(1分) ∵AB//DC , ∴∠EBF=∠ADB …………………………(1分) ∴△ADB ∽△EBF ∴DBABBF EF = ………………………(2分) (2) ∵△ADB ∽△EBF,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE=ED=BD 21∴221BD BE BD BF AD =⋅=⋅ ∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD, 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC=2∠BAF=2∠EAC .∵∠BAC=2∠C ,∴∠BAF=∠C=∠EAC .…………………………(1分)CAB第23题图DE FABEGCF D(第23题图)又∵BD 平分∠ABC ,∴∠ABD=∠DBC .……………………………(1分) ∵∠ABF=∠C ,∠ABD=∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C=∠FGB ,∴∠FGB=∠FAB .………………(1分)∵∠BAF=∠BGF ,∠ABD=∠GBD ,BF=BF ,∴ABF GBF ∆∆≌.∴AF=FG ,BA=BG .…………………………(1分) ∵BA=BG ,∠ABD=∠GBD ,BD=BD ,∴ABD GBD ∆∆≌.∴∠BAD=∠BGD .……………………………(1分) ∵∠BAD=2∠C ,∴∠BGD=2∠C ,∴∠GDC=∠C ,∴∠GDC=∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF=FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.23.证明:AB C DE FG图9(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ····· (2分)∵FG ∥AD ,∴FG CFAD CA=. ··················· (1分) 同理 EF CFAB CA= . ························ (1分) 得FG AD =EFAB∵FG EF =,∴AD AB =. ···················· (1分) ∴四边形ABED 是菱形. ····················· (1分) (2)联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ········ (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=. ······················· (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ············ (1分) ∴EH DEEF AE=. ························· (1分) ∴212AE EF ED =. ······················ (1分) 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F . (1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD//BC ,∴∠=∠DAE AEB , ·············· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ········· (1分) ∴AE//DC , ························ (1分) ∴=FM AMMD MC. ····················· (1分) MFEDBA图7∵AD//BC ,∴=AM DMMC MB, ················ (1分) ∴=FM DMMD MB, ····················· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ············· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ······················· (1分) ∴3==DF BF a . ····················· (1分) ∵AD//BC ,∴1==AF DFEF BF, ················ (1分) ∴=AF EF , ······················· (1分) ∴四边形ABED 是平行四边形. ················ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D=90°,BE 平分∠ABC ,交CD 于点E , F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC,∴∠ABE=∠CBE…………………………………………………1分 ∵AE ⊥BE ∴∠AEB=90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 (第23题图)ACD EB∴∠FEB =∠FBE…………………………………………………1分∴∠FEB =∠CBE…………………………………………………1分∴EF ∥BC …………………………………………………1分∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分∵EF BF =∴四边形BCEF 是菱形……………………………………1分(2) ∵四边形BCEF 是菱形,∴BC=BF ∵12BF AB = ∴AB=2BC ………………………………………………1分∵ AB ∥CD∴ ∠DEA=∠EAB∵ ∠D=∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AE BE AB = …………………………………………1分 ∴ BE ·AE=AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,求证:4EF FC DE BD ⋅=⋅.(第23题图) FA C D E B杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。
上海市各区 2018 届九年级中考二模数学试卷精选汇编:压轴题专题宝山区、嘉定区25.(本题满分14 分,第( 1)小题 4 分,第( 2)小题 5 分,第( 3)小题 5 分)在圆 O 中, AO 、 BO是圆 O 的半径,点 C 在劣弧 AB 上,OA 10 , AC12, AC ∥OB ,联结 AB .(1)如图 8,求证:AB 平分OAC ;( 2)点M在弦AC的延长线上,联结BM ,如果△ AMB 是直角三角形,请你在如图9中画出点 M 的位置并求 CM 的长;(3)如图 10,点D在弦AC上,与点 A 不重合,联结O D 与弦 AB 交于点 E ,设点 D 与点C 的距离为 x ,△OEB的面积为y,求y与 x 的函数关系式,并写出自变量x 的取值范围.A A AO O D OEC C CB BB图 8图 9图 1025.(1)证明:∵AO 、 BO 是圆 O 的半径A∴ AO BO⋯⋯⋯⋯1分∴ OABB⋯⋯⋯⋯1分O∵AC∥OBCB图8∴BAC B ⋯⋯⋯⋯1分∴OAB BAC∴ AB 平分 OAC ⋯⋯⋯⋯1分(2)解:由题意可知BAM 不是直角,所以△ AMB 是直角三角形只有以下两种情况:AMB90 和ABM90① 当AMB 90 ,点 M 的位置如图9-1⋯⋯⋯⋯⋯ 1 分过点 O作OH AC ,垂足为点 H ∵ OH 经过圆心∴ AH HC 1AC 2∵ AC12∴ AH HC6在 Rt△AHO中,AH2HO 2OA2∵ OA10∴ OH8∵ AC∥ OB∴ AMB OBM180∵AMB 90 ∴ OBM 90∴四边形 OBMH 是矩形∴OB HM 10∴CM HM HC 4 ⋯⋯⋯⋯⋯2分②当ABM90 ,点M的位置如图 9-2由①可知 AB8 5 ,cos CAB25AB 52在 Rt△ABM中,cos CAB5AM5∴ AM20CM AM AC8 ⋯⋯⋯⋯⋯2分综上所述, CM 的长为 4 或 8 .说明:只要画出一种情况点M 的位置就给 1 分,两个点都画正确也给(3)过点O作OG AB ,垂足为点 G由( 1)、( 2)可知,sin OAG sin CAB由( 2)可得:sin CAB 55AHOCM B图9-1AOCMB图9-21分 .AD E OGCB图10∵ OA10∴OG2 5 ⋯⋯⋯⋯⋯ 1 分∵ AC ∥OB ∴BEOB⋯⋯⋯⋯⋯ 1 分AEAD又 AE 8 5 BE , AD12 x , OB 10∴BE10 ∴ BE805BE12 x 22⋯⋯⋯⋯⋯ 1 分8 5x ∴ y1OG1 80 52 5BE222 x2∴ y400 ⋯⋯⋯⋯⋯ 1 分22 x自变量 x 的取值范围为 0 x 12 ⋯⋯⋯⋯⋯ 1 分长宁区25.(本题满分 14 分,第( 1)小题 4 分,第( 2)小题 4 分,第( 3)小题 6 分)在圆 O 中, C 是弦 AB 上的一点,联结OC 并延长,交劣弧 AB 于点 D ,联结 AO 、 BO 、AD 、 BD. 已知圆 O 的半径长为 5 ,弦 AB 的长为 8.( 1)如图 1,当点 D 是弧 AB 的中点时,求 CD 的长;( 2)如图 2,设 AC=x ,SSACO y ,求 y 关于 x 的函数解析式并写出定义域;OBD( 3)若四边形 AOBD 是梯形,求 AD 的长.O O OA CCBABABDD图 1图 2备用图第 25 题图25.(本题满分 14 分,第( 1)小题 4 分,第( 2)小题 4 分,第( 3)小题 6 分)解:( 1)∵ OD 过圆心,点 D 是弧 AB 的中点, AB=8,∴OD⊥ AB,AC 1AB4(2 分)2在 Rt△ AOC中,ACO90 ,AO=5,∴ CO AO2AC23(1 分)OD5, CD OD OC2(1 分)(2)过点 O 作 OH⊥AB,垂足为点H,则由( 1)可得 AH=4,OH=3∵A C=x,∴CH | x 4|在 Rt△ HOC中,CHO90 ,AO=5,∴ COHO2HC 232 | x 4 |2x28x25 ,(1 分)SACO SACOSOBC AC OC x x2 8x25∴ ySOBC SOBD BC OD8x5SOBDx x28x25( 0 x8)( 3405x分)(3)①当 OB// AD 时,过点A作AE⊥OB交BO延长线于点E,过点 O 作 OF⊥ AD,垂足为点 F,则 OF=AE,SABO1AB OH1OB AE∴ AE AB OH24OF 22OB5在 Rt△ AOF中,AFO90 ,AO=5,∴ AF AO2OF 27∵ OF 过圆心, OF⊥ AD,∴AD 2AF14.(3 分)55②当 OA// BD 时,过点 B 作 BM⊥OA 交 AO 延长线于点 M,过点 D 作 DG⊥ AO,垂足为点 G,则由①的方法可得 DG24,在 Rt△ GOD 中,DGO 90 ,DO=5,BM75718∴ GO DO 2DG 2, AG AO GO 5,555在 Rt△ GAD中,DGA90 ,∴ AD AG2DG 26( 3分)综上得AD 14 或6 5崇明区25.(本题满分14 分,第 (1)小题4 分,第(2)小题 4 分,第 (3)小题6 分)如图,已知△ ABC 中,AB8 ,BC10 ,AC12,D是AC边上一点,且AB2AD AC,联结BD,点E、 F 分别是BC、AC 上两点(点 E 不与B、 C 重合),AEF C ,AE与BD 相交于点G.(1)求证:BD 平分ABC ;(2)设BE x ,CF y ,求y 与x 之间的函数关系式;(3)联结FG,当△ GEF是等腰三角形时,求BE的长度.A AD DFGBEC B C(第25 题图)(备用图)25.(满分 14 分,第( 1)小题 4 分,第( 2)小题 4 分,第( 3)小题 6 分)( 1)∵AB8, AC 12又∵ AB2AD AC∴ AD16∴ CD121620⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分333∵ AB2AD AC∴ AD ABAB AC又∵∠ BAC 是公共角∴△ ADB∽△ ABC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分∴∠ABD ∠C ,BDAD BC AB∴ BD 20∴ BD CD∴∠DBC ∠C⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分3∴∠ABD ∠DBC∴ BD 平分∠ABC⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分(2)过点A作AH∥BC交BD的延长线于点H∴ AD DH AH 164∵ AH∥BC3DC BD BC2053∵ BD CD 208∴ AD16∴ BH12 ⋯⋯1分, AH DH33∵ AH∥BC∴ AH HG∴812BG∴ BG12x ⋯1分BE BG x BG x 8∵∠BEF ∠C ∠EFC即∠BEA ∠AEF∠C ∠EFC∵∠AEF ∠C∴∠BEA ∠EFC又∵∠DBC∠C∴△BEG∽△ CFE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分BE BG x12x x8∴EC ∴10xCF y∴ y x22x 80⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分12(3)当△GEF是等腰三角形时,存在以下三种情况:1°GE GFGE BE2,即x24⋯⋯⋯ 2分易证CF3y,得到 BEEF32°EG EF易证 BE CF ,即 x y , BE5105⋯⋯⋯⋯ 2 分3°FG FEGE BE3x3389⋯⋯⋯ 2分易证CF,即BEEF2y2奉贤区25.(本题满分 14 分,第 (1)小题满分 5 分,第 (2) 小题满分 5分,第 (3)小题满分 4 分)已知:如图 9,在半径为 2 的扇形 AOB 中,∠ AOB= 90°,点 C 在半径 OB 上, AC 的垂直平分线交OA 于点 D,交弧 AB 于点 E,联结 BE、CD.(1)若 C 是半径 OB 中点,求∠ OCD 的正弦值;(2)若 E 是弧 AB 的中点,求证:BE 2BO BC;(3)联结 CE,当△ DCE 是以 CD 为腰的等腰三角形时,求CD 的长.A A AEDO C B O BO B备用图图 9备用图黄浦区25.(本题满分14 分)如图,四边形ABCD 中,∠ BCD =∠ D=90 °, E 是边 AB 的中点 .已知 AD =1,AB =2.(1)设 BC=x, CD=y,求 y 关于 x 的函数关系式,并写出定义域;(2)当∠ B=70 °时,求∠ AEC 的度数;( 3)当△ ACE 为直角三角形时,求边BC 的长 .25. 解:( 1)过 A 作 AH ⊥ BC 于 H ,————————————————————( 1 分)由∠ D=∠ BCD =90°,得四边形 ADCH 为矩形 .在△ BAH 中, AB=2,∠ BHA =90°, AH=y, HB = x 1,所以 22y2x2(1 分)1,——————————————————————则 y x22x30 x 3 .———————————————( 2 分)(2)取 CD 中点 T,联结 TE,————————————————————( 1 分)则TE 是梯形中位线,得 ET∥ AD ,ET⊥ CD.∴∠ AET=∠ B=70°. ———————————————————————(1分)又AD=AE=1,∴∠ AED =∠ ADE =∠ DET=35°. ——————————————————(1分)由 ET 垂直平分 CD ,得∠ CET=∠ DET =35°,————————————( 1 分)所以∠ AEC=70°+ 35°=105°. ——————————————————(1分)(3)当∠ AEC=90°时,易知△ CBE≌△ CAE ≌△ CAD ,得∠ BCE=30°,则在△ ABH 中,∠ B=60°,∠ AHB =90°, AB=2,得 BH=1,于是 BC=2. ——————————————————————(2 分)当∠ CAE=90°时,易知△ CDA∽△ BCA,又ACBC 2AB2x2 4 ,AD CA 1 x 2 4 1 172 分)则CBx 2 4xx(舍负)—————(AC2易知∠ ACE< 90°.所以边 BC 的长为 2或117. ——————————————————(1 分)2金山区25.(本题满分 14 分,第( 1)小题 4 分,第( 2)小题 5 分,第( 3)小题 5 分)如图 9,已知在梯形 ABCD 中, AD ∥ BC ,AB=DC=AD=5 , sin B3 ,P 是线段 BC 上5一点,以 P 为圆心, PA 为半径的⊙ P 与射线 AD 的另一个交点为 Q ,射线 PQ 与射线CD 相交于点 E ,设 BP=x .( 1)求证△ ABP ∽△ ECP ;( 2)如果点 Q 在线段 AD 上(与点 A 、 D 不重合),设△ APQ 的面积为 y ,求 y 关于 x 的函数关系式,并写出定义域;( 3)如果△ QED 与△ QAP 相似,求 BP 的长.EAQD ADBPC B C备用图图 925.解:( 1)在⊙ P 中, PA=PQ ,∴∠ PAQ =∠ PQA ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵AD ∥ BC ,∴∠ PAQ =∠ APB ,∠ PQA =∠ QPC ,∴∠ APB =∠ EPC ,⋯⋯( 1 分)∵梯形中, ∥ BC , = ,∴∠ B =∠ C ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)ABCD AD AB DC∴△ APB ∽△ ECP .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)( 2)作 AM ⊥ BC , PN ⊥ AD ,∵AD ∥ BC ,∴ AM ∥ PN ,∴四边形AMPN 是平行四边形,∴AM =PN , AN=MP .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)在 Rt △ AMB 中,∠ AMB=90°, AB=5, sinB= 3,5∴AM =3, BM=4,∴ PN=3, PM=AN=x- 4,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵PN ⊥AQ ,∴ AN=NQ ,∴ AQ= 2x- 8,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∴ y1 AQ PN12x 8 3 ,即 y 3x 12 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2 132定义域是 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)4 x2( 3)解法一:由△ QED 与△ QAP 相似,∠ AQP =∠ EQD ,①如果∠ PAQ =∠ DEQ ,∵△ APB ∽△ ECP ,∴∠ PAB =∠ DEQ ,又∵∠ PAQ =∠ APB ,∴∠ PAB =∠ APB ,∴ BP=BA=5.⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)②如果∠ PAQ =∠ EDQ ,∵∠ PAQ =∠ APB ,∠ EDQ =∠ C ,∠ B =∠ C ,∴∠ B =∠ APB ,∴ AB=AP ,∵ AM ⊥ BC ,∴ BM=MP=4,∴ BP=8.⋯⋯⋯( 2 分)综上所述 BP 的长为 5 或者 8.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)解法二:由△ QAP 与△ QED 相似,∠ AQP =∠ EQD ,在 Rt △ APN 中, AP PQ 32x 42x28x 25 ,∵QD ∥PC ,∴EQEP ,QDPC∵△ APB ∽△ ECP ,∴APEP ,∴ AP EQ ,PBPCPBQD①如果AQEQ ,∴ AQ AP ,即 x 2 2x 8x 2 8x 25 ,QPQDQPPB8x25x解得 x 5 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)②如果AQDQ ,∴ AQ PB ,即2x 8x,QPQEQPAPx 2 8x 25x 2 8x 25解得 x8 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)综上所述BP的长为 5 或者 8.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)静安区25.(本题满分14 分,第( 1)小题满分 4 分,第( 2)小题满分 6 分,第( 3)小题满分4分)如图,平行四边形 ABCD中,已知 AB=6, BC=9,cos ABC 1.对角线 AC、 BD 交于3点 O.动点 P 在边 AB 上,⊙ P 经过点 B,交线段 PA于点 E.设 BP= x.(1)求 AC的长;A D ( 2)设⊙ O 的半径为 y,当⊙ P 与⊙ O 外切时,E O求 y 关于 x 的函数解析式,并写出定义域;P·( 3)如果 AC 是⊙ O 的直径,⊙ O 经过点 E,B C第25题图求⊙ O 与⊙ P 的圆心距 OP的长.A DOB C第 25 题备用图25.(本题满分 14 分,第( 1)小题 4 分,第( 2)小题 6 分,第( 3)小题 4 分)解:( 1)作 AH⊥ BC于 H,且cos ABC 1, AB=6,A D13O那么 BH AB cos ABC6E2 ⋯⋯⋯⋯(2分)3·PBC=9, HC=9-2=7,B HC 第 25 题图 (1)AH 6 2224 2 ,⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)AC AH 2HC 23249 9﹒⋯⋯⋯(1分)(2)作 OI⊥ AB 于 I,联结 PO,AC=BC=9,AO=4.5A D ∴∠ OAB=∠ ABC,IOAI1E∴Rt△ AIO 中,cos IAO cos ABC·AO3P∴AI=1.5, IO= 2 2 AI 3 2⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)B H 第25题图(2)C9 x , ⋯⋯⋯⋯⋯⋯⋯⋯(1 分)∴PI=AB-BP-AI=6-x-1.5=2∴Rt △ PIO 中,OP 2PI 2 OI 2(3 2 )2 ( 9 x) 218 x 29x81 x 2 9x153 ⋯⋯( 1 分)244∵⊙ P 与⊙ O 外切,∴ OPx 29x153x y4∴ y = x 29x153 x 1 4 x 2 36x 153 x42⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ( 1 分)∵动点 P 在边 AB 上,⊙ P 经过点 B,交线段 PA 于点 E .∴定义域: 0<x ≤3⋯⋯⋯⋯( 1 分)(3)由题意得:∵点 E 在线段 AP 上,⊙ O 经过点 E ,∴⊙ O 与⊙P 相交∵AO 是⊙ O 半径,且 AO > OI ,∴交点 E 存在两种不同的位置,OE=OA=92① 当 E 与点 A 不重合时, AE 是⊙ O 的弦, OI 是弦心距,∵ AI=1.5,AE =3, ∴点 E 是 AB中点, BE1AB3,BPPE 3 ,PI 3,IO=3222OPPI 2 IO 2 32(3 2 ) 227 3 3⋯⋯⋯⋯⋯⋯⋯⋯( 2 分)1 9 ⋯⋯(2 分)② 当 E 与点 A 重合时,点 P 是 AB 中点,点 O 是 AC 中点 ,OP BC3 3或9.22∴ OP2闵行区25.(本题满分 14 分,其中第( 1)小题 4 分,第( 2)、(3)小题各 5 分)如图,已知在 Rt △ ABC 中,∠ ACB = 90o , AC =6, BC = 8,点 F 在线段 AB 上,以点 B 为圆心, BF 为半径的圆交 BC 于点 E ,射线 AE 交圆 B 于点 D (点 D 、 E 不重合).( 1)如果设 BF = x , EF = y ,求 y 与 x 之间的函数关系式,并写出它的定义域;( 2)如果 ED2EF ,求 ED 的长;( 3)联结 CD 、 BD ,请判断四边形 ABDC 是否为直角梯形?说明理由.CDCEA F BA B(第 25 题图) (备用图)25.解:(1)在Rt△ABC中,AC6, BC8 ,ACB90∴ AB10.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)过 E作 EH⊥AB,垂足是 H,易得:EH3x , BH4x , FH1x .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)5553212在 Rt△EHF中, EF 2EH 2FH 2x x ,55∴ y10x (0 x 8) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分 +1 分)5(2)取 ED 的中点 P,联结 BP 交 ED 于点 G∵ ED2EF ,P 是 ED 的中点,∴ EP EF PD .∴∠ FBE=∠ EBP=∠ PBD.∵EP EF , BP 过圆心,∴ BG⊥ED,ED =2EG =2DG.⋯⋯⋯⋯( 1 分)又∵∠ CEA=∠ DEB,∴∠ CAE=∠ EBP=∠ABC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)又∵ BE 是公共边,∴BEH≌ BEG .∴EH EG3x .GD5在 Rt△CEA中,∵ AC = 6,BC8 ,tan CAE tan ABC AC CE ,BC AC∴ CE AC tan CAE66 3 39.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)822∴ BE891697 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2222∴ ED 2 EG6x6721 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)5525(3)四边形ABDC不可能为直角梯形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)①当 CD∥ AB 时,如果四边形ABDC是直角梯形,只可能∠ ABD =∠ CDB = 90o.C D在 Rt△ CBD中,∵BC8 ,EAF B∴ CDBC cosBCD 32 ,5BDBC sinBCD24BE .53232CD 5 16 CE 81 ∴5AB1025, 32 ;BE45∴ CDCE .ABBE∴ CD 不平行于 AB ,与 CD ∥ AB 矛盾.∴四边形 ABDC 不可能为直角梯形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)②当 AC ∥BD 时,如果四边形 ABDC 是直角梯形,C只可能∠ ACD =∠CDB = 90o .∵ AC ∥ BD ,∠ ACB = 90o,E DAFB∴∠ ACB =∠ CBD = 90o .∴∠ ABD =∠ ACB +∠BCD > 90o .与∠ ACD =∠ CDB = 90o 矛盾.∴四边形 ABDC 不可能为直角梯形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2 分)普陀区25.(本题满分 14 分)已知 P 是 ⊙O 的直径 BA 延长线上的一个动点,P 的另一边交 ⊙O 于点 C 、 D ,两点位于 AB 的上方,AB = 6, OP = m , sin P = 1,如图 11 所示.另一个半径为6 的 ⊙O 1 经3过点 C 、 D ,圆心距 OO 1=n .( 1)当 m =6 时,求线段 CD 的长;( 2)设圆心 O 1 在直线 AB 上方,试用 n 的代数式表示 m ; (3)△ POO 1 在点 P 的运动过程中,是否能成为以 OO 1 为腰的等腰三角形,如果能,试求出此时 n 的值;如果不能,请说明理由.DCP A O BAOB图 11备用图25.解:(1)过点 O 作 OH ⊥ CD ,垂足为点 H ,联结 OC .在 Rt △ POH 中,∵ sin P =1, PO 6,∴ OH2 .·(1 分)3∵ AB =6,∴ OC =3 .·(1 分)由勾股定理得CH 5 .·(1 分)∵OH ⊥DC ,∴ CD 2CH 2 5 .·(1 分)(2)在 Rt △ POH 中,∵ sin P =1, PO = m ,∴ OH =m.·(1 分)33m 2在 Rt △ OCH 中,CH2=. ·(1 分)93m 2在 Rt △ O 1CH 中, CH 2=36 n. ·(1 分)3m 2m 2= 3n281.可得 36 n= ,解得 ·(2 分)3 9 m32n( 3)△ POO 1 成为等腰三角形可分以下几种情况:● 当圆心 O 1 、 O 在弦 CD 异侧时①OP =OO 1 ,即m =n ,由 = 3n 281 解得 n =9 .·(1 分)n2n即圆心距等于 ⊙O 、 ⊙的半径的和,就有⊙O 、 ⊙ O 1 外切不合题意舍去.( 1 分)O 1= ,由 ( nm 2m 2 ( m 2②)) = ,O 1P OO 133n解得 m = 2n ,即 2 n = 3n281, 解得 n =915 .·(1 分)332n5● 当圆心O 1 、 O 在弦 CD 同侧时 , 同理可得= 81 3n 2.m 2n∵ POO 1 是钝角,∴只能是 mn= 81 3n 2,解得 n = 9·(2 分),即 n2n5 .5综上所述, n 的值为95 或915 .55青浦区25.(本题满分14 分,第( 1)小题 4 分,第( 2)小题 6 分,第( 3)小题 4 分)如图 9-1,已知扇形 MON 的半径为 2 ,∠MON = 90 ,点B在弧MN上移动,联结BM,作 OD BM,垂足为点D, C 为线段 OD 上一点,且OC=BM,联结 BC并延长交半径OM 于点 A,设 OA= x,∠ COM 的正切值为y.( 1)如图 9-2,当 AB OM 时,求证: AM =AC;( 2)求 y 关于 x 的函数关系式,并写出定义域;( 3)当△ OAC为等腰三角形时,求x 的值 .N N NBBC D CDO A M O AM O M 图 9-1图 9-2备用图25.解:( 1)∵ OD⊥ BM, AB⊥OM ,∴∠ ODM =∠ BAM =90 .°·(1 分)∵ ∠ ABM +∠ M =∠ DOM +∠M ,∴∠ ABM =∠DOM.·(1 分)∵ ∠ OAC=∠BAM, OC=BM,∴△ OAC≌△ ABM,·(1 分)∴AC=AM.·(1 分)(2)过点 D 作 DE// AB,交 OM 于点 E.·(1 分)∵ OB=OM, OD⊥ BM,∴ BD=DM.·(1 分)∵DE// AB,∴ MD ME,∴ AE= EM,DM AE∵OM= 2 ,∴AE=12 x .·(1 分)2∵DE// AB,∴ OA OC2DM ,·(1 分)OE OD OD∴DMOA , OD2OE∴ yx.( 0 x2 )·(2 分)x 2( 3)( i ) 当 OA=OC 时,∵ DM1BM1OC1x ,2 22在 Rt △ODM 中, ODOM 2DM 22 1 x 2 . ∵ y DM ,4 OD1 xx142142∴2.解得 x ,或 x1 x2 x222(舍).( 2 分)24( i i )当 AO=AC 时,则∠ AOC=∠ ACO ,∵ ∠ ACO>∠ COB ,∠ COB =∠ AOC ,∴∠ ACO>∠ AOC ,∴此种情况不存在.·(1 分)(ⅲ)当 CO=CA 时,则∠ COA=∠ CAO= ,∵∠CAO>∠M ,∠ M=90,∴>90,∴>45 ,∴BOA 2 90 , ∵ BOA 90 ,∴此种情况不存在.·( 1 分)松江区25.(本题满分 14 分,第( 1)小题 4 分,第( 2)小题每个小题各5 分)如图,已知 Rt △ ABC 中,∠ ACB=90 °, BC=2,AC=3,以点 C 为圆心、 CB 为半径的圆交 AB 于点 D ,过点 A 作 AE ∥ CD ,交 BC 延长线于点 E.( 1)求 CE 的长;( 2) P 是 CE 延长线上一点,直线 AP 、CD 交于点 Q.① 如果△ ACQ ∽△ CPQ ,求 CP 的长;② 如果以点 A 为圆心, AQ 为半径的圆与⊙ C 相切 ,求 CP 的长 .A AD DBCEBCE25.(本题满分 14 分,第( 1)小题 4 分,第( 2)小题每个小题各 5 分)解:( 1)∵ AE∥ CD∴ BC DC A⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分BE AE∵BC=DC D∴BE=AE ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分设 CE=x BEC则AE=BE=x+2∵ ∠ ACB=90°,(第 25 题图)∴ AC2CE 2AE 2即 9x2(x 2) 2⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴ x545即 CE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分4(2)①∵△ ACQ∽△ CPQ,∠ QAC>∠ P∴∠ ACQ=∠ P⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分又∵ AE∥ CD∴∠ ACQ=∠ CAE∴∠ CAE=∠ P⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴△ ACE∽△ PCA,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴ AC 2CE CP ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分即325 CP 4∴ CP36⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分QADBC E P55②设 CP=t,则PE t4∵∠ ACB=90°,∴ AP9t 2∵AE∥ CD∴AQ EC⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分AP EPAQ55即4t 29t 5 4t 54∴AQ 5t 294t5⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分若两圆外切,那么5 t 29AQ14t5此时方程无实数解⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分若两圆内切切,那么5 t 29AQ54t5∴ 15t 240t160解之得 t2041015⋯⋯⋯⋯⋯⋯⋯⋯⋯1分5又∵ t420410∴ t15⋯⋯⋯⋯⋯⋯⋯⋯⋯1分徐汇区25.已知四边形 ABCD 是边长为10的菱形,对角线 AC 、BD 相交于点 E ,过点 C 作 CF ∥DB交 AB 延长线于点F,联结EF交BC于点H.(1)如图1,当EF BC 时,求AE 的长;(2)如图 2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE 的长为x, EH 的长为 y ;①求 y 关于x的函数关系式,并写出定义域;③联结 EG ,当DEG 是以 DG 为腰的等腰三角形时,求AE 的长.杨浦区25、(本题满分14 分,第( 1)小题 4 分,第( 2)小题 6 分,第( 3)小题 4 分)如图 9,在梯形 ABCD中, AD//BC,AB=DC=5,AD=1,BC=9,点 P 为边 BC上一动点,作PH⊥DC,垂足H 在边DC 上,以点P 为圆心PH 为半径画圆,交射线PB 于点 E.(1)当圆P 过点 A 时,求圆P 的半径;(2)分别联结EH 和EA,当△ABE△ CEH时,以点B 为圆心,r 为半径的圆 B 与圆P 相交,试求圆 B 的半径r 的取值范围;( 3)将劣弧沿直线EH翻折交BC于点F,试通过计算说明线段EH和EF的比值为定值,并求出此定值。
B CD O A 图5 2018年二模新题型汇编1、【徐汇二模2018】17. 从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在ABC ∆中,1DB =,2BC =,CD 是ABC ∆的完美分割线,且ACD ∆是以CD 为底边的等腰三角形,则CD 的长为 【参考答案】322、【普陀二模2018】17、如图5,矩形ABCD 中,如果以AB 为直径的⊙O 沿着BC 滚动一周,点B 恰好与点C 重合,那么AB BC 的值等于▲.(结果保留两位小数)【参考答案】3.143、【杨浦二模2018】如图4,正ABC V 的边长为2,点A 、BC 在圆内,将正ABC V 绕点A 逆时针旋转,当点C 第一次落在圆上时,旋转角的正切值为____________.【参考答案】34、【静安二模2018】17.在平面直角坐标系中,如果对任意一点(a ,b ),规定两种变换:),(),(b a b a f --=,),(),(a b b a g -=,那么[]=-)2,1(f g ▲ .【参考答案】(2,1)5、【青浦二模2018】16.如图3,如果两个相似多边形任意一组对应顶点P 、P '所在的直线都经过同一点O ,且有(0)OP k OP k '=⋅≠,那么我们把这样的两个多边形叫位似多边形,点O 叫做位似中心.已知ABC ∆与A B C '''∆是关于点O 的位似三角形,3OA OA '=,则ABC ∆与A B C '''∆的周长之比是▲.【参考答案】1︰36、【松江二模2018】17.平面直角坐标系xoy 中,若抛物线上的两点A 、B 满足OA =OB ,且,则称线段AB 为该抛物线的通径.那么抛物线的通径长为▲ . 【参考答案】27、【长宁二模2018】15.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于▲. 【参考答案】255或535++ 2y ax =1tan 2OAB ∠=212y x =。
上海市黄浦区2017-2018学年初三⼆模数学试题(word版含答案)黄浦区2018年九年级模拟考数学试卷 2018年4⽉(考试时间:100分钟总分:150分)⼀、选择题:(本⼤题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有⼀个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列实数中,介于23与32之间的是()(A(B(C )227;(D )π.2.下列⽅程中没有实数根的是()(A )210x x +-=;(B )210x x ++=;(C )210x -=;(D )20x x +=.3.⼀个反⽐例函数与⼀个⼀次函数在同⼀坐标平⾯内的图像如图⽰,如果其中的反⽐例函数解析式为ky x=,那么该⼀次函数可能的解析式是()(A )y kx k =+;(B )y kx k =-;(C )y kx k =-+;(D )y kx k =--.4.⼀个民营企业10名员⼯的⽉平均⼯资如下表,则能较好反映这些员⼯⽉平均⼯资⽔平的是()(⼯资单位:万元)(A )平均数;(B )中位数;(C )众数;(D )标准差.5.计算:AB BA +=()(A )AB ;(B )BA ;(C )0;(D )0.6.下列命题中,假命题是()(A )如果⼀条直线平分弦和弦所对的⼀条弧,那么这条直线经过圆⼼,并且垂直于这条弦;(B )如果⼀条直线平分弦所对的两条弧,那么这条直线经过圆⼼,并且垂直于这条弦;(C )如果⼀条直线经过圆⼼,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;(D )如果⼀条直线经过圆⼼,并且垂直弦,那么该直线平分这条弦和弦所对的弧.⼆、填空题:(本⼤题共12题,每题4分,满分48分)7= . 8.因式分解:212x x --= .9.⽅程1x +的解是.10.不等式组12031302x x ?->-≤??的解集是 .11.已知点P 位于第三象限内,且点P 到两坐标轴的距离分别为2和4,若反⽐例函数图像经过点P ,则该反⽐例函数的解析式为.12.如果⼀次函数的图像经过第⼀、⼆、四象限,那么其函数值y 随⾃变量x 的值的增⼤⽽.(填“增⼤”或“减⼩”)13.⼥⽣⼩琳所在班级共有40名学⽣,其中⼥⽣占60%.现学校组织部分⼥⽣去市三⼥中参观,需要从⼩琳所在班级的⼥⽣当中随机抽取⼀名⼥⽣参加,那么⼩琳被抽到的概率是. 14.已知平⾏四边形相邻两个内⾓相差40°,则该平⾏四边形中较⼩内⾓的度数是. 15.半径为1的圆的内接正三⾓形的边长为.16.如图,点D 、E 分别为△ABC 边CA 、CB 上的点,已知DE ∥AB ,且DE 经过△ABC 的重⼼,设CA a =,C B b=,则DE = .(⽤a 、b 表⽰) 17.如图,在四边形ABCD 中,902624ABC ADC AC BD ∠=∠=?==,,,M 、N 分别是AC 、BD的中点,则线段MN 的长为.(第16题)(第17题)(第18题) 18.如图,将矩形ABCD 沿对⾓线AC 折叠,使点B 翻折到点E 处,如果DE ∶AC =1∶3,那么AD ∶AB = .三、解答题:(本⼤题共7题,满分78分) 19.(本题满分10分)计算:())12322220183++--.20.(本题满分10分)解⽅程组:2222295x xy y x y ?-+=?+=.21.(本题满分10分)如图,AH是△ABC的⾼,D是边AB上⼀点,CD与AH交于点E.已知AB=AC=6,cos B=23,AD∶DB=1∶2.(1)求△ABC的⾯积;(2)求CE∶DE.22.(本题满分10分)今年1⽉25⽇,上海地区下了⼀场⼤雪.这天早上王⼤爷去买菜,他先去了超市,发现蔬菜普遍涨价了,青菜、花菜和⼤⽩菜这两天的价格如下表.王⼤爷觉得超市的菜不够新鲜,所以他⼜去了菜市场,他花了30元买了⼀些新鲜菠菜,他跟卖菜阿姨说:“你今天的菠菜⽐昨天涨了5元/⽄。
上海市各区2018届九年级中考二模数学试卷精选汇编几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形中,点是边上的一点(不与、重合),点在ABCD M BC B C N 边的延长线上,且满足,联结、,与边交于点.CD ︒=∠90MAN MN AC MN AD E (1)求证;;AN AM =(2)如果,求证:.NAD CAD ∠=∠2AE AC AM ⋅=223.证明:(1)∵四边形是正方形ABCD ∴,……1分AD AB =︒=∠=∠=∠=∠90BCD ADC B BAD ∴ ∵︒=∠+∠90MAD MAB ︒=∠90MAN ∴ ∴………1分︒=∠+∠90MAD NAD NAD MAB ∠=∠∵ ∴……1分︒=∠+∠180ADC ADN ︒=∠90ADN ∴……………………1分ADN B ∠=∠∴△≌△ ………………………1分ABM ADN ∴ ……………………………1分AN AM =(2)∵四边形是正方形 ∴平分和ABCD AC BCD ∠BAD ∠ ∴ ,……1︒=∠=∠4521BCD BCA ︒=∠=∠=∠4521BAD CADBAC BA图6分∵ ∴NAD CAD ∠=∠2︒=∠5.22NAD ∵ ∴………1分NAD MAB ∠=∠︒=∠5.22MAB ∴ ∴ ︒=∠5.22MAC ︒=∠=∠5.22NAE MAC ∵,AN AM =︒=∠90MAN ∴︒=∠45ANE ∴…………………1分ANE ACM ∠=∠∴△∽△…………1分ACM ANE ∴……1分ANACAE AM =∵AN AM =∴…………1分AE AC AM⋅=2长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点G 、F ,且.AGGF BEAD =(1)求证:AB //CD ;(2)若,BG =GE ,求证:四边形ABCD 是菱形.BD GD BC ⋅=223.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BGDG BE AD =(2分)BA图6AC DEFGB 第23题图∵AG GFBE AD =∴AGGF BG DG = (1分)∴ CD AB // (2分)(2)∵BC AD //,CDAB // ∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆(1分)∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分)∴BC=CD(1分)∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形.(1分)崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,是的中线,点D 是线段上一点(不与点重合)AM ABC △AM A .交于点,,联结.DE AB ∥BC K CE AM ∥AE (1)求证:;AB CM EK CK =(2)求证:.BD AE =(第23题图)ABKMCDE23.(本题满分12分,每小题6分)(1)证明:∵DE AB ∥∴ ……………………………………………………1分ABC EKC =∠∠∵CE AM ∥∴ ……………………………………………………1分AMB ECK =∠∠∴ ……………………………………………………1分ABM EKC △∽△∴………………………………………………………1分AB BMEK CK=∵ 是△的中线AM ABC ∴………………………………………………………1分BM CM = ∴………………………………………………………1分AB CMEK CK=(2)证明:∵CE AM ∥ ∴………………………………………………………2分DE CMEK CK =又∵AB CM EK CK=∴ ………………………………………………………2分DE AB =又∵DE AB∥∴四边形是平行四边形 …………………………………………1分ABDE ∴………………………………………………………1分BD AE =奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD ,点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A .ACD E图7B(1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若,EC DC AC ⋅=2求证:.FC AC AF AD ::=黄浦区23.(本题满分12分) 如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .23. 证:(1)∵四边形ABCD 为菱形,∴AB =BC =AD =CD ,∠A =∠C ,——————————————————(2分)又E 、F 是边的中点,∴AE =CF ,——————————————————————————(1分)∴△ABE ≌△CBF ———————————————————————(2分)∴BE =BF . ——————————————————————————(1分)(2)联结AC 、BD ,AC 交BE 、BD 于点G 、O . ——————————(1分)∵△BEF 是等边三角形, ∴EB =EF ,又∵E 、F 是两边中点,∴AO =AC =EF =BE .——————————————————————(1分)12又△ABD 中,BE 、AO 均为中线,则G 为△ABD 的重心,∴,1133OG AO BE GE ===∴AG =BG ,——————————————————————————(1分)又∠AGE =∠BGO ,∴△AGE ≌△BGO ,———— ——————————————————(1分)∴AE =BO ,则AD =BD ,∴△ABD 是等边三角形,—— —————————————————(1分)所以∠BAD =60°,则∠ADC =120°,即∠ADC =2∠BAD . ——— ——————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD 是△ABC 的中线, M 是AD 的中点, 过A 点作AE ∥BC ,CM 的延长线与AE 相交于点E ,与AB 相交于点F .(1)求证:四边形AEBD 是平行四边形;(2)如果AC =3AF ,求证四边形AEBD 是矩形.23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分)∵BD=CD ,∴AE =BD .……………………………………………………(1分)∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE //BC ,∴.…………………………………………………(1分)AF AEFB BC= ∵AE=BD=CD ,∴,∴AB=3AF .……………………………(1分)12AF AE FB BC ==∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分)又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分)∴四边形AEBD 是矩形.……………………………………………………(1分)E AFMBD 图7C静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC . (1)求证:;DBABBF EF =(2)如果,求证:平行四边形ABCD 是矩形.DF AD BD ⋅=2223.(本题满分12分,第(1)小题6分,第(2)小题6分)证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分)又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分)∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分)∵AB //DC , ∴∠EBF =∠ADB …………………………(1分)∴△ADB ∽△EBF ∴DB ABBF EF =………………………(2分)(2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分)在平行四边形ABCD 中,BE =ED =BD21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22,………………………………………(1分)C 第23题图A BDEFC A B第23题图DEF又∵DFAD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分)∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分)∴∠ADC =∠DEF =90° …………………………(1分)∴平行四边形ABCD 是矩形…………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:;BF BC AB BD ⋅=⋅(2)求证:四边形ADGF 是菱形.23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分)又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分)∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分)∴AB BFBC BD=.………………………………………………………(1分)∴BF BC AB BD ⋅=⋅.………………………………………………(1分)(2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,ABEGCF D(第23题图)∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分)∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分)∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分)又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分)∴AF =FG .……………………………………………………………(1分)∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形中,∥,∥,与对角线交于点,ABCD AD BC DE AB DE AC F ∥,且.FG AD FG EF =(1)求证:四边形是菱形;ABED (2)联结,又知⊥,求证:.AE AC ED 212AE EF ED = 23.证明:(1)∵ ∥,∥,∴四边形是平行四边形.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)AD BC DE AB ABED ABCDEFG 图9∵∥,∴.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)FG AD FG CF AD CA =同理 .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)EF CF AB CA=得=FG AD EF AB∵,∴.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)FG EF =AD AB =∴四边形是菱形.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)ABED (2)联结,与交于点.BD AE H ∵四边形是菱形,∴12EH AE =,⊥.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)ABED BD AE 得 .同理.90DHE ∠= 90AFE ∠= ∴.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)DHE AFE ∠∠=又∵是公共角,∴△∽△.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)AED ∠DHE AFE ∴.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)EH DE EF AE=∴.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)212AE EF ED = 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且,联结AE ,AE 与BD 交于点F .DAE DCB ∠=∠(1)求证:;2DM MF MB =⋅(2)联结DE ,如果,3BF FM =求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)∠=∠DAE AEB M F E DC B A 图7∵,∴,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)∠=∠DCB DAE ∠=∠DCB AEB ∴AE //DC ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)∴.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)=FM AM MD MC∵AD //BC ,∴,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)=AM DM MC MB ∴,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)=FM DM MD MB 即.2=⋅MD MF MB (2)设,则,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)=FM a =3BF a =4BM a 由,得,2=⋅MD MF MB 24=⋅MD a a ∴,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)2=MD a ∴.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)3==DF BF a ∵AD //BC ,∴,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)1==AF DF EF BF∴,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)=AF EF ∴四边形ABED 是平行四边形. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E ,F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.(第23题图)F A CD E B23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)证明:(1) ∵BE平分∠ABC,∴∠ABE=∠CBE…………………………………………………1分∵AE⊥BE∴∠AEB=90°∵F是AB的中点∴12EF BF AB==………………………………………………1分∴∠FEB =∠FBE…………………………………………………1分∴∠FEB =∠CBE…………………………………………………1分∴EF∥BC…………………………………………………1分∵AB∥CD∴四边形BCEF是平行四边形…………………………1分∵EF BF=∴四边形BCEF是菱形……………………………………1分(2)∵四边形BCEF是菱形,∴BC=BF∵12 BF AB=∴AB=2BC………………………………………………1分∵AB∥CD∴∠DEA=∠EAB∵∠D=∠AEB∴△EDA∽△AEB………………………………………2分(第23题图)FACD EB∴AD AE BE AB = …………………………………………1分∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形中,∥,,,点在对角线上,且ABCD AD BC AB CD =BD BC =E BD .DCE DBC ∠=∠(1)求证:;AD BE =(2)延长交于点,如果,CE AB F CF AB ⊥求证:.4EF FC DE BD ⋅=⋅杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。