上海中考数学试卷答案与解析
- 格式:docx
- 大小:1.60 MB
- 文档页数:35
2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。
2023年上海市中考数学试卷(含答案)一、选择题1. 在直角三角形ABC中,∠C=90°,边AC=6cm,边BC=8cm,则边AB的长为多少?A) 10cmB) 12cmC) 14cmD) 16cm答案: A2. 若a:b=3:4,且a=12,则b的值为多少?A) 8B) 10C) 16D) 24答案: C3. 已知a=4,b=-2,c=5,若方程ax^2 + bx + c=0有一个实数根,求此根的值。
A) -1B) 1C) -2D) 2答案: D二、填空题1. 16 ÷ 4 × 5 = __答案: 202. 黄牛加恩班从甲到乙的汽车速度分别为80km/h和100km/h,乙到甲的汽车速度是甲到乙的多少倍?答案: 1.253. 若9年前小明的年龄是小红年龄的2倍,而12年后小明的年龄将是小红年龄的3倍,那么现在小明的年龄是小红的__倍。
答案: 1.8三、解答题1. 某商店购进某种商品,每件进价为500元,商店出售时要加价50%。
求商店出售一件此商品能获利多少元?解答:进价为500元,加价50%意味着商店能卖出的价格为700元(500元 + 0.5*500元)。
利润为700元减去进价500元,即200元。
答案: 200元2. 学校义卖活动中,小明和小红分别负责售卖食品和饮料。
小明共售卖了30份食品,小红共售卖了20份饮料。
食品每份售价10元,饮料每份售价5元。
求小明和小红共售卖的食品和饮料总收入。
解答:小明卖食品的总收入为 30份 * 10元/份 = 300元。
小红卖饮料的总收入为 20份 * 5元/份 = 100元。
小明和小红共售卖的食品和饮料总收入为 300元 + 100元 =400元。
答案: 400元四、应用题某公司今年一季度的销售额是150万元,二季度的销售额是170万元,三季度的销售额是190万元。
若四季度的销售额比三季度增长了15%,求四季度的销售额。
解答:三季度的销售额是190万元。
2021年上海市中考数学试卷一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+34.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=.8.〔4分〕函数y=的定义域是.9.〔4分〕方程=2的解是.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为.11.〔4分〕不等式组的解集是.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.〔精确到1米,参考数据:≈1.73〕18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.20.〔10分〕解方程:﹣=1.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2021年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每题4分,共24分1.〔4分〕如果a与3互为倒数,那么a是〔〕A.﹣3 B.3 C.﹣ D.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,应选:D.【点评】此题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.〔4分〕以下单项式中,与a2b是同类项的是〔〕A.2a2b B.a2b2 C.ab2D.3ab【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.应选A.【点评】此题考查了同类项的知识,解答此题的关键是掌握同类项中相同字母的指数相同的概念.3.〔4分〕如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是〔〕A.y=〔x﹣1〕2+2 B.y=〔x+1〕2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.应选C.【点评】此题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.〔4分〕某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是〔〕次数2345人数22106A.3次C.4次【分析】加权平均数:假设n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,那么〔x1w1+x2w2+…+x n w n〕÷〔w1+w2+…+w n〕叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:〔2×2+3×2+4×10+5×6〕÷20=〔4+6+40+30〕÷20=80÷20=4〔次〕.答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】此题考查的是加权平均数的求法.此题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.〔4分〕在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为〔〕A.+B.﹣C.﹣+ D.﹣﹣【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法那么,求得答案.【解答】解:如下列图:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.应选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法那么的应用是解题关键.6.〔4分〕如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是〔〕A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,应选B.【点评】此题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,那么当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每题4分,共48分7.〔4分〕计算:a3÷a=a2.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】此题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.〔4分〕函数y=的定义域是x≠2.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.〔4分〕方程=2的解是x=5.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,那么x=5是原方程的解,故答案为:x=5.【点评】此题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.〔4分〕如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法那么是解此题的关键.11.〔4分〕不等式组的解集是x<1.【分析】首先解每个不等式,两个不等式的解集的公共局部就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,那么不等式组的解集是x<1.故答案是:x<1.【点评】此题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共局部,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.〔4分〕如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=〔﹣3〕2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】此题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.此题属于根底题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程〔不等式或不等式组〕是关键.13.〔4分〕反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=〔k≠0〕,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.〔4分〕有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】此题考查了概率公式:随机事件A的概率P〔A〕=事件A可能出现的结果数除以所有可能出现的结果数.15.〔4分〕在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=〔〕2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=〔〕2=,故答案为.【点评】此题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.〔4分〕今年5月份有关部门对方案去上海迪士尼乐园的局部市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】此题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据.17.〔4分〕如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.〔精确到1米,参考数据:≈1.73〕【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208〔m〕,故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.〔4分〕如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,那么CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1〔舍去〕,∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】此题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.〔10分〕计算:|﹣1|﹣﹣+.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】此题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法那么,难度不大.20.〔10分〕解方程:﹣=1.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】此题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.〔10分〕如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:〔1〕线段BE的长;〔2〕∠ECB的余切值.【分析】〔1〕由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;〔2〕过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:〔1〕∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;〔2〕过点E作EH⊥BC,垂足为点H,如下列图:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】此题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题〔2〕的关键.22.〔10分〕某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A〔千克〕与时间x〔时〕的函数图象,线段EF表示B种机器人的搬运量y B〔千克〕与时间x 〔时〕的函数图象.根据图象提供的信息,解答以下问题:〔1〕求y B关于x的函数解析式;〔2〕如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【分析】〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕,将点〔1,0〕、〔3,180〕代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;〔2〕设y A关于x的解析式为y A=k1x.将〔3,180〕代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:〔1〕设y B关于x的函数解析式为y B=kx+b〔k≠0〕.将点〔1,0〕、〔3,180〕代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90〔1≤x≤6〕.〔2〕设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300〔千克〕;x=6时,y B=90×6﹣90=450〔千克〕.450﹣300=150〔千克〕.答:如果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】此题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.〔12分〕:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.〔1〕求证:AD=CE;〔2〕如果点G在线段DC上〔不与点D重合〕,且AG=AD,求证:四边形AGCE 是平行四边形.【分析】〔1〕根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;〔2〕连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:〔1〕在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE〔SAS〕,∴AD=CE;〔2〕连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】此题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.〔12分〕如图,抛物线y=ax2+bx﹣5〔a≠0〕经过点A〔4,﹣5〕,与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.〔1〕求这条抛物线的表达式;〔2〕连结AB、BC、CD、DA,求四边形ABCD的面积;〔3〕如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【分析】〔1〕先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;〔2〕分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;〔3〕由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是的,从而利用tan∠BEO=tan ∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:〔1〕∵抛物线y=ax 2+bx ﹣5与y 轴交于点C ,∴C 〔0,﹣5〕,∴OC=5.∵OC=5OB ,∴OB=1,又点B 在x 轴的负半轴上,∴B 〔﹣1,0〕.∵抛物线经过点A 〔4,﹣5〕和点B 〔﹣1,0〕, ∴,解得,∴这条抛物线的表达式为y=x 2﹣4x ﹣5.〔2〕由y=x 2﹣4x ﹣5,得顶点D 的坐标为〔2,﹣9〕.连接AC ,∵点A 的坐标是〔4,﹣5〕,点C 的坐标是〔0,﹣5〕,又S △ABC =×4×5=10,S △ACD =×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18.〔3〕过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =×AB ×CH=10,AB==5, ∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3, ∴tan ∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为〔0,〕.【点评】此题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第〔3〕问,将角度相等转化为对应的正切函数值相等是解答关键.25.〔14分〕如下列图,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.〔1〕求线段CD的长;〔2〕如果△AEG是以EG为腰的等腰三角形,求线段AE的长;〔3〕如果点F在边CD上〔不与点C、D重合〕,设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【分析】〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,那么DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;〔2〕分类讨论:当EA=EG时,那么∠AGE=∠GAE,那么判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,通过证明Rt△AME ∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,那么∠AGE=∠AEG,可证明AE=AD=15,〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,那么利用相似比可表示出EG=,那么可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:〔1〕作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;〔2〕①EA=EG时,那么∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,那么AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;②GA=GE时,那么∠GAE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15.综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;〔3〕作DH⊥AB于H,如图2,那么AH=9,HE=|x﹣9|,在Rt△HDE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=〔﹣〕:,∴y=〔0<x<〕.【点评】此题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.。
2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数为()A.8B.﹣8C.D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC =13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB 的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).ⅰ.如果S△OBP=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.【分析】根据相反数的定义解答即可,只有符号不同的两个数是相反数.【解答】解:8的相反数﹣8.故选:B.【点评】本题考查了相反数的定义,若a.b互为相反数,则a+b=0,反之若a+b=0,则a、b互为相反数.2.【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===.当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC+S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,∴S△OPB=×3|m|=3,∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2,∴n=﹣3=3,∴P点的坐标为(2,3)或(﹣2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.【分析】(1)i.证明:如图,连接AC交BD于点O,证明△AOE≌△COE(SSS),由全等三角形的性质得出∠AOE=∠COE,证出AC⊥BD,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x的值,则可得出答案;(2)由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.。
上海市普陀区重点中学2024届中考联考数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.sin60°的值为()A.3B.32C.22D.122.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm3.浙江省陆域面积为101800平方千米。
数据101800用科学记数法表示为()A.1.018×104B.1.018×105C.10.18×105D.0.1018×1064.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形5.下列实数中,在2和3之间的是()A.πB.2π-C325D3286.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°7.下列立体图形中,主视图是三角形的是()A.B.C.D.8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)10.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.32二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______12.若式子x2-在实数范围内有意义,则x的取值范围是.13.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.14.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.15.(2017四川省攀枝花市)若关于x的分式方程7311mxx x+=--无解,则实数m=_______.16.如图,△ABC中,AB=AC,D是AB上的一点,且AD=23AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.三、解答题(共8题,共72分)17.(8分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.18.(8分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.19.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.20.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线1y x32=-+交AB,BC分别于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(8分)如图,曲线BC 是反比例函数y =k x(4≤x ≤6)的一部分,其中B (4,1﹣m ),C (6,﹣m ),抛物线y =﹣x 2+2bx 的顶点记作A .(1)求k 的值. (2)判断点A 是否可与点B 重合; (3)若抛物线与BC 有交点,求b 的取值范围.22.(10分)如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .求证:EF 是⊙O 的切线;若,且,求⊙O 的半径与线段的长.23.(12分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .24.解不等式组3(2)41213x x x x --≤⎧⎪+⎨-⎪⎩,并写出其所有的整数解.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】解:sin60°B . 2、B【解题分析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【题目详解】∵原正方形的周长为acm , ∴原正方形的边长为4a cm , ∵将它按图的方式向外等距扩1cm , ∴新正方形的边长为(4a +2)cm , 则新正方形的周长为4(4a +2)=a+8(cm ), 因此需要增加的长度为a+8﹣a=8cm ,故选B .【题目点拨】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.3、B【解题分析】5101800 1.01810=⨯.故选B.点睛:在把一个绝对值较大的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ).4、C【解题分析】根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【题目详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【题目点拨】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.5、C【解题分析】分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;B、1<π−2<2,故本选项不符合题意;C、<3,故本选项符合题意;D、<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.6、C【解题分析】首先求得AB与正东方向的夹角的度数,即可求解.【题目详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【题目点拨】本题考查了方向角,正确理解方向角的定义是关键.7、A【解题分析】考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图【题目详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意.故选A.【题目点拨】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看8、D【解题分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【题目详解】解:主视图是三角形的一定是一个锥体,只有D是锥体.故选D.【题目点拨】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.9、A【解题分析】直接利用平移的性质结合轴对称变换得出对应点位置.【题目详解】如图所示:顶点A2的坐标是(4,-3).故选A.【题目点拨】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.10、A【解题分析】分析:由S △ABC =9、S △A′EF =1且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DEABD S A D AD S ''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =1,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.≥.12、x2【解题分析】根据二次根式被开方数必须是非负数的条件,-≥⇒≥.-x20x2x2≥故答案为x213、8如图,连接OC,在在Rt△ACO中,由tan∠OAB=OCAC,求出AC即可解决问题.【题目详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC ,∴AC=4,∴AB=2AC=8,故答案为8【题目点拨】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.14、50°【解题分析】根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.【题目详解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案为50°.【题目点拨】本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.15、3或1.解:方程去分母得:1+3(x ﹣1)=mx ,整理得:(m ﹣3)x =2.①当整式方程无解时,m ﹣3=0,m =3; ②当整式方程的解为分式方程的增根时,x =1,∴m ﹣3=2,m =1. 综上所述:∴m 的值为3或1. 故答案为3或1. 16、2 【解题分析】解:如图,过D 点作DG ⊥AC ,垂足为G ,过A 点作AH ⊥BC ,垂足为H ,∵AB=AC ,点E 为BD 的中点,且AD=23AB , ∴设BE=DE=x ,则AD=AF=1x . ∵DG ⊥AC ,EF ⊥AC ,∴DG ∥EF ,∴AE DE =AF GF ,即5x x =4x GF ,解得4GF=x 5. ∵DF ∥BC ,∴△ADF ∽△ABC ,∴DF AD =BC AB ,即DF 4x=66x,解得DF=1. 又∵DF ∥BC ,∴∠DFG=∠C ,∴Rt △DFG ∽Rt △ACH ,∴DF GF =AC HC ,即4x 45=6x 3,解得25x =2. 在Rt △ABH 中,由勾股定理,得2222536336992AH AB BH x =-=-=⨯-=.∴ABC 11S BC AH 692722∆=⋅⋅=⨯⨯=. 又∵△ADF ∽△ABC ,∴22ADF ABC S DF 44S BC 69∆∆⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴ADF 4S 27=129∆=⨯ ∴ABC ADF DBCF S S S 271215∆∆=-=-=四边形. 故答案为:2.三、解答题(共8题,共72分)17、吉普车的速度为30千米/时.【解题分析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案.【题目详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:1515151.560 x x-=.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意.答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.18、(1)50;(2)115.2°;(3).【解题分析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B等级的学生共有:(人).∴所占的百分比为:∴B等级所对应扇形的圆心角度数为:.(3)列表如下:男女1 女2 女3男﹣﹣﹣(女,男)(女,男)(女,男)女1 (男,女)﹣﹣﹣(女,女)(女,女)女2 (男,女)(女,女)﹣﹣﹣(女,女)女3 (男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴P (选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键. 19、证明见解析. 【解题分析】由已知条件BE ∥DF ,可得出∠ABE=∠D ,再利用ASA 证明△ABE ≌△FDC 即可. 证明:∵BE ∥DF ,∴∠ABE=∠D , 在△ABE 和△FDC 中, ∠ABE=∠D ,AB=FD ,∠A=∠F ∴△ABE ≌△FDC (ASA ), ∴AE=FC .“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC 和△FDC 全等. 20、(1)4y x=;(2)点P 的坐标是(0,4)或(0,-4). 【解题分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标. 【题目详解】(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入ky x=得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等,∴1OP AM4 2⋅⋅=.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).21、(1)12;(2)点A不与点B重合;(3)1919 86b≤≤【解题分析】(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b=198,抛物线右半支经过点B;当抛物线经过点C,解得,b=196,抛物线右半支经过点C;从而求得b的取值范围为198≤b≤196.【题目详解】解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数kyx=的图象上,∴k=4(1﹣m)=6×(﹣m),∴解得m=﹣2,∴k=4×[1﹣(﹣2)]=12;(2)∵m=﹣2,∴B(4,3),∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,∴A(b,b2).若点A与点B重合,则有b=4,且b2=3,显然不成立,∴点A不与点B重合;(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,解得,b=198,显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有2=﹣62+2b×6,解得,b=196,这时仍然是抛物线右半支经过点C , ∴b 的取值范围为198≤b ≤196.【题目点拨】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题. 22、(1)证明参见解析;(2)半径长为154,AE =6. 【解题分析】(1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长. 【题目详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【题目点拨】1.圆的切线的判定;2.锐角三角函数的应用. 23、证明见解析【解题分析】试题分析:首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF . 试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )24、不等式组的解集为1≤x <2,该不等式组的整数解为1,2,1. 【解题分析】先求出不等式组的解集,即可求得该不等式组的整数解. 【题目详解】()3241213x x xx ⎧--≤⎪⎨+>-⎪⎩①②, 由①得,x≥1, 由②得,x <2.所以不等式组的解集为1≤x <2, 该不等式组的整数解为1,2,1. 【题目点拨】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
2022年上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.8B.C.﹣8D.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b23.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=.8.(4分)已知f(x)=3x,则f(1)=.9.(4分)解方程组:的结果为.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.20.(10分)解关于x的不等式组:.21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos ∠ABC的值.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取ⅰ.如果S△OBP值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.2022年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.(4分)8的相反数是()A.8B.C.﹣8D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:8的相反数为:﹣8.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.【点评】本题考查了平方差公式和完全平方公式的运用以及合并同类项法则,积的乘方的运算法则,理解公式结构是关键,需要熟练掌握并灵活运用.3.(4分)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,所以k<0,A.2×3=6>0,故本选项不符合题意;B.﹣2×3=﹣6<0,故本选项符合题意;C.3×0=0,故本选项不符合题意;D.﹣3×0=0,故本选项不符合题意;故选:B.【点评】本题主要考查反比例函数的性质:当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.4.(4分)我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【分析】根据方差的意义求解即可.【解答】解:因为计算了点单的总额和不计算外卖费的总额只相差外卖费,其余数据的波动幅度相同,所以两种情况计算出的数据一样的是方差,故选:D.【点评】本题主要考查方差,解题的关键是掌握方差的意义.5.(4分)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【分析】根据逆命题的概念、真假命题的概念判断即可.【解答】解:A、命题一定有逆命题,本选项说法正确,符合题意,B、不是所有的定理一定有逆定理,例如全等三角形的对应角相等,没有逆定理,故本选项说法错误,不符合题意;C、真命题的逆命题不一定是真命题,故本选项说法错误,不符合题意;D、假命题的逆命题不一定是假命题,例如假命题对应角相等的三角形全等,其逆命题是真命题,故本选项说法错误,不符合题意;故选:A.【点评】本题考查的是命题的真假判断、逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.(4分)有一个正n边形旋转90°后与自身重合,则n为()A.6B.9C.12D.15【分析】如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.直接利用旋转对称图形的性质,结合正多边形中心角相等进而得出答案.【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;B.正九边形旋转90°后不能与自身重合,不合题意;C.正十二边形旋转90°后能与自身重合,符合题意;D.正十五边形旋转90°后不能与自身重合,不合题意;故选:C.【点评】此题主要考查了旋转对称图形,正确把握正多边形的性质是解题的关键.二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:3a﹣2a=a.【分析】根据同类项与合并同类项法则计算.【解答】解:3a﹣2a=(3﹣2)a=a.【点评】本题考查合并同类项、代数式的化简.同类项相加减,只把系数相加减,字母及字母的指数不变.8.(4分)已知f(x)=3x,则f(1)=3.【分析】把x=1代入函数关系式即可求得.【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.【点评】本题考查了函数的关系式,解题的关键是对函数关系式进行正确的理解.9.(4分)解方程组:的结果为.【分析】由x2﹣y2=3可知(x+y)(x﹣y)=3,再根据x+y=1计算出x﹣y=3,然后与x+y=1联立计算即可.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=3,且x+y=1,∴x﹣y=3,∴可得方程组,解得:.故答案为:.【点评】本题考查了高次方程组的解法,根据题干寻找解题方向及熟练掌握常见公式如平方差公式等是解题的关键.10.(4分)已知x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是m<3.【分析】由根的判别式Δ>0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.【解答】解:∵关于x的方程x2﹣2x+m=0有两个不相等的实数根,∴Δ=(﹣2)2﹣4m>0,解得:m<3.故答案为:m<3.【点评】本题考查了一元二次方程根的判别式,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式是解题的关键.11.(4分)甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为.【分析】画树状图,共有6种等可能的结果,其中分到甲和乙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中分到甲和乙的结果有2种,∴分到甲和乙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.(4分)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为20%.【分析】设平均每月的增长率为x,根据5月份的营业额为25万元,7月份的营业额为36万元,表示出7月的营业额,即可列出方程解答.【解答】解:设平均每月的增长率为x,由题意得25(1+x)2=36,解得x1=0.2,x2=﹣2.2(不合题意,舍去)所以平均每月的增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.13.(4分)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1小时4人,1﹣2小时10人,2﹣3小时14人,3﹣4小时16人,4﹣5小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是88.【分析】用200乘样本中阅读时间不低于3小时的学生所占比例即可.【解答】解:200×=88(人),故该学校六年级学生阅读时间不低于3小时的人数是88人.故答案为:88.【点评】本题考查频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.14.(4分)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:y=﹣x+1(答案不唯一).【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图象过第一、二、四象限,y随自变量x的值增大而减小是解答此题的关键.15.(4分)如图所示,在▱ABCD中,AC,BD交于点O,=,=,则=﹣2+.【分析】根据平行四边形的性质分析即可.【解答】解:因为四边形ABCD为平行四边形,所以=,所以=﹣=﹣﹣=﹣2+.故答案为:﹣2+.【点评】本题考查了平面向量与平行四边形的性质,熟练掌握平行四边形的有关性质和平面向量的有关知识是解题的关键.16.(4分)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为400π.(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=AB=(AC+BC)=×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S=π×OB2=400π,⊙O故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.17.(4分)如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,=,则=或.【分析】利用平行线截线段成比例解答.【解答】解:∵D为AB中点,∴=.当DE∥BC时,△ADE∽△ABC,则===当DE与BC不平行时,DE=DE′,=.故答案是:或.【点评】本题主要考查了平行线分线段成比例,平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.18.(4分)定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为2﹣.【分析】根据题意画出相应的图形,利用圆周角定理、直角三角形的边角关系以及三角形的面积公式进行计算即可.【解答】解:如图,∵圆与三角形的三条边都有两个交点,截得的三条弦相等,∴圆心O就是三角形的内心,∴当⊙O过点C时,且在等腰直角三角形ABC的三边上截得的弦相等,即CG=CF=DE,此时⊙O最大,过点O分别作弦CG、CF、DE的垂线,垂足分别为P、N、M,连接OC、OA、OB,∵CG=CF=DE,∴OP=OM=ON,∵∠C=90°,AB=2,AC=BC,∴AC=BC=×2=,由S△AOC +S△BOC+S△AOB=S△ABC,∴AC•OP+BC•ON+AB•OM=S△ABC=AC•BC,设OM=x,则OP=ON=x,∴x+x+2x=×,解得x=﹣1,即OP=ON=﹣1,在Rt△CON中,OC=ON=2﹣,故答案为:2﹣.【点评】本题考查直角三角形的边角关系以及三角形面积的计算,掌握直角三角形的边角关系以及三角形面积的计算方法是正确解答的前提,画出符合题意的图形是正确解答的关键.三.解答题(本大题共7题,满分78分)19.(10分)计算:|﹣|﹣+﹣.【分析】先根据绝对值的性质,负整数指数幂的法则,分母有理化的法则,二次根式的性质进行化简,然后计算加减.【解答】解:|﹣|﹣+﹣===1﹣.【点评】本题考查了实数的运算,解题的关键掌握分数指数幂的运算法则,将分数指数幂转化为二次根式形式.20.(10分)解关于x的不等式组:.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,3x﹣x>﹣4,2x>﹣4,解得x>﹣2,由②得,4+x>3x+6,x﹣3x>6﹣4,﹣2x>2,解得x<﹣1,所以不等式组的解集为:﹣2<x<﹣1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.(10分)一个一次函数的截距为﹣1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos ∠ABC的值.【分析】(1)理解截距得概念,再利用待定系数法求解;(2)数形结合,求两个点之间得距离,再利用三角函数得定义求解.【解答】解:(1)设一次函数的解析式为:y=kx﹣1,∴2k﹣1=3,解得:k=2,一次函数的解析式为:y=2x﹣1.(2)∵点A,B在某个反比例函数上,点B横坐标为6,∴B(6,1),∴C(6,3),∴△ABC是直角三角形,且BC=2,AC=4,根据勾股定理得:AB=2,∴cos∠ABC===.【点评】本题考查了待定系数法的应用,结合三角函数的定义求解是解题的关键.22.(10分)我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB的长.(1)如图(1)所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,α的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义.如图(2)所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度.【分析】(1)根据题意可得BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,然后在Rt △AEC中,利用锐角三角函数的定义求出AE的长,进行计算即可解答;(2)根据题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,然后证明A字模型相似三角形△ABH∽△GCH,从而可得=,再证明A字模型相似三角形△ABF∽△EDF,从而可得=,进而可得=,最后求出BC的长,从而求出AB的长.【解答】解:(1)如图:由题意得:BE=CD=b米,EC=BD=a米,∠AEC=90°,∠ACE=α,在Rt△AEC中,AE=CE•tanα=a tanα(米),∴AB=AE+BE=(b+a tanα)米,∴灯杆AB的高度为(a tanα+b)米;(2)由题意得:GC=DE=2米,CD=1.8米,∠ABC=∠GCD=∠EDF=90°,∵∠AHB=∠GHC,∴△ABH∽△GCH,∴=,∴=,∵∠F=∠F,∴△ABF∽△EDF,∴=,∴=,∴=,∴BC=0.9米,∴=,∴AB=3.8米,∴灯杆AB的高度为3.8米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,数学常识,中心投影,列代数式,平移的性质,相似三角形的判定与性质,熟练掌握锐角三角函数的定义,以及相似三角形的判定与性质是解题的关键.23.(12分)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEC=∠AQF,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质,熟练掌握相似三角形的判定与性质、全等三角形的判定与性质是解题的关键.24.(12分)在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(﹣2,﹣1),B(0,﹣3).(1)求抛物线的解析式;(2)平移抛物线,平移后的顶点为P(m,n)(m>0).=3,设直线x=k,在这条直线的右侧原抛物线和新抛物线均呈上升趋势,求k的取ⅰ.如果S△OBP值范围;ⅱ.点P在原抛物线上,新抛物线交y轴于点Q,且∠BPQ=120°,求点P的坐标.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的解析式;(2)i.根据三角形面积求出平移后的抛物线的对称轴为直线x=2,开口向上,由二次函数的性质可得出答案;ii.P(m,﹣3),证出BP=PQ,由等腰三角形的性质求出∠BPC=60°,由直角三角形的性质可求出答案.【解答】解:(1)将A(﹣2,﹣1),B(0,﹣3)代入y=x2+bx+c,得:,解得:,∴抛物线的解析式为y=x2﹣3.(2)i.∵y=x2﹣3,∴抛物线的顶点坐标为(0,﹣3),即点B是原抛物线的顶点,∵平移后的抛物线顶点为P(m,n),∴抛物线平移了|m|个单位,=×3|m|=3,∴S△OPB∵m>0,∴m=2,即平移后的抛物线的对称轴为直线x=2,∵在x=k的右侧,两抛物线都上升,原抛物线的对称轴为y轴,开口向上,∴k≥2;ii.把P(m,n)代入y=x2﹣3,∴n=﹣3,∴P(m,﹣3),由题意得,新抛物线的解析式为y=+n=﹣3,∴Q(0,m2﹣3),∵B(0,﹣3),∴BQ=m2,+,PQ2=,∴BP=PQ,如图,过点P作PC⊥y轴于C,则PC=|m|,∵PB=PQ,PC⊥BQ,∴BC=BQ=m2,∠BPC=∠BPQ=×120°=60°,∴tan∠BPC=tan60°==,∴m=2或m=﹣2(舍),∴n=﹣3=3,∴P点的坐标为(2,3).【点评】本题是二次函数综合题,考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,平移的性质,等腰三角形的性质,直角三角形的性质,锐角三角函数的定义,熟练掌握待定系数法是解题的关键.25.(14分)如图,在▱ABCD中,P是线段BC中点,联结BD交AP于点E,联结CE.(1)如果AE=CE.ⅰ.求证:▱ABCD为菱形;ⅱ.若AB=5,CE=3,求线段BD的长;(2)分别以AE,BE为半径,点A,B为圆心作圆,两圆交于点E,F,点F恰好在射线CE上,如果CE=AE,求的值.【分析】(1)i.证明:如图,连接AC交BD于点O,证明△AOE≌△COE(SSS),由全等三角形的性质得出∠AOE=∠COE,证出AC⊥BD,由菱形的判定可得出结论;ii.由重心的性质得出BE=2OE,设OE=x,则BE=2x,由勾股定理得出9﹣x2=25﹣9x2,求出x 的值,则可得出答案;(2)方法一:由相交两圆的性质得出AB⊥EF,由(1)②知点E是△ABC的重心,由重心的性质及勾股定理得出答案.方法二:设EP=x,则AE=2x,CE=2x,证出∠DCE=90°,延长AP交DC的延长线于点Q,则CQ=CD,由勾股定理可得出答案.【解答】(1)i.证明:如图,连接AC交BD于点O,∵四边形ABCD是平行四边形,∴OA=OC,∵AE=CE,OE=OE,∴△AOE≌△COE(SSS),∴∠AOE=∠COE,∵∠AOE+∠COE=180°,∴∠COE=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴▱ABCD为菱形;ii.解:∵OA=OC,∴OB是△ABC的中线,∵P为BC的中点,∴AP是△ABC的中线,∴点E是△ABC的重心,∴BE=2OE,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理得,OA2=AE2﹣OE2=32﹣x2=9﹣x2,在Rt△AOB中,由勾股定理得,OA2=AB2﹣OB2=52﹣(3x)2=25﹣9x2,∴9﹣x2=25﹣9x2,解得x=(负值舍去),∴OB=3x=3,∴BD=2OB=6;(2)解:方法一:如图,∵⊙A与⊙B相交于E,F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又∵F在直线CE上,∴CG是△ABC的中线,∴AG=BG=AB,EG=CE,∵CE=AE,∴GE=AE,CG=CE+EG=AE,∴AG2=AE2﹣EG2=AE2﹣=,∴AG=AE,∴AB=2AG=AE,∴BC2=BG2+CG2=AE2+=5AE2,∴BC=AE,∴.方法二:设EP=x,则AE=2x,CE=2x,∵AE=AF,BE=CF,∴AB垂直平分EF,∠AGF=90°,∴∠DCE=90°,,延长AP交DC的延长线于点Q,则CQ=CD∴EQ=ED=4x,由勾股定理得CD =2x,∠DEC=∠CEQ=45°,由DE=4x可得BE=2x,∴BP ==x,∴AB:BC =2x :2x =.【点评】本题是圆的综合题,考查了平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,三角形重心的性质,菱形的判定,相交两圆的性质,熟练掌握平行四边形的判定与性质是解题的关键.第21页(共21页)。
上海市宝山区名校2024学年中考联考数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是 A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解2.下列说法正确的是( )A .一个游戏的中奖概率是则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D .若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定3.一元二次方程2240x x ++=的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根 4.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线不能相等D .正方形的对角线相等且互相垂直5.计算(2017﹣π)0﹣(﹣13)﹣1+3tan30°的结果是( ) A .5 B .﹣2C .2D .﹣1 6.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( )A .三条高的交点B .重心C .内心D .外心7.-4的绝对值是( )A .4B .14C .-4D .14- 8.如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx+n (m≠0)与抛物线交于A ,B 两点,下列结论:①2a+b=0;②abc >0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1,其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤9.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A .B .C .D .10.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.6二、填空题(共7小题,每小题3分,满分21分)11.已知抛物线y=x 2﹣x+3与y 轴相交于点M ,其顶点为N ,平移该抛物线,使点M 平移后的对应点M′与点N 重合,则平移后的抛物线的解析式为_____.12.函数1x y x =-的自变量x 的取值范围是_____.13.⊙M 的圆心在一次函数y=12x+2图象上,半径为1.当⊙M 与y 轴相切时,点M 的坐标为_____.14.抛物线y=ax 2+bx+c 的顶点为D (-1,2),与x 轴的一个交点A 在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b 2-4ac <1;②当x >-1时y 随x 增大而减小;③a+b+c <1;④若方程ax 2+bx+c-m=1没有实数根,则m >2; ⑤3a+c <1.其中,正确结论的序号是________________.15.对于函数6yx=,若x>2,则y______3(填“>”或“<”).16.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.三、解答题(共7小题,满分69分)18.(10分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°+12;(2)解方程:x(x﹣4)=2x﹣819.(5分)如图,已知直线AB经过点(0,4),与抛物线y=14x2交于A,B两点,其中点A的横坐标是2-.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?20.(8分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.21.(10分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.22.(10分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?23.(12分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.24.(14分)计算:2sin60°+|33(π﹣2)0﹣(12)﹣1参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .2、C【解题分析】众数,中位数,方差等概念分析即可.【题目详解】A 、中奖是偶然现象,买再多也不一定中奖,故是错误的;B 、全国中学生人口多,只需抽样调查就行了,故是错误的;C 、这组数据的众数和中位数都是8,故是正确的;D 、方差越小越稳定,甲组数据更稳定,故是错误.故选C.考核知识点:众数,中位数,方差.3、D【解题分析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.4、D【解题分析】根据菱形,平行四边形,正方形的性质定理判断即可.【题目详解】A.菱形的对角线不一定相等,A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误;C. 正方形的对角线相等,C错误;D.正方形的对角线相等且互相垂直,D 正确;故选:D.【题目点拨】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、A【解题分析】=1+3+1=5,故选A.试题分析:原式=1-(-36、D【解题分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.【题目详解】∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选D.本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.7、A【解题分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【题目详解】根据绝对值的概念可得-4的绝对值为4.【题目点拨】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.8、C【解题分析】试题解析:∵抛物线的顶点坐标A (1,3),∴抛物线的对称轴为直线x=-2b a=1, ∴2a+b=0,所以①正确;∵抛物线开口向下,∴a <0,∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以②错误;∵抛物线的顶点坐标A (1,3),∴x=1时,二次函数有最大值,∴方程ax 2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x 轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(-2,0),所以④错误;∵抛物线y 1=ax 2+bx+c 与直线y 2=mx+n (m≠0)交于A (1,3),B 点(4,0)∴当1<x <4时,y 2<y 1,所以⑤正确.故选C .考点:1.二次函数图象与系数的关系;2.抛物线与x 轴的交点.9、D【解题分析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可. 试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.故选D.考点:列表法与树状法.10、D【解题分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【题目详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【题目点拨】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.二、填空题(共7小题,每小题3分,满分21分)11、y=(x﹣1)2+5 2【解题分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.【题目详解】解:y=x2-x+3=(x-12)2+114,∴N点坐标为:(12,114),令x=0,则y=3,∴M点的坐标是(0,3).∵平移该抛物线,使点M平移后的对应点M′与点N重合,∴抛物线向下平移14个单位长度,再向右平移12个单位长度即可,∴平移后的解析式为:y=(x-1)2+52.故答案是:y=(x-1)2+52.【题目点拨】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.12、x≠1【解题分析】根据分母不等于2列式计算即可得解.【题目详解】由题意得,x-1≠2,解得x≠1.故答案为x≠1.【题目点拨】本题考查的知识点为:分式有意义,分母不为2.13、(1,52)或(﹣1,32)【解题分析】设当⊙M与y轴相切时圆心M的坐标为(x,12x+2),再根据⊙M的半径为1即可得出y的值.【题目详解】解:∵⊙M的圆心在一次函数y=12x+2的图象上运动,∴设当⊙M与y轴相切时圆心M的坐标为(x, 12x+2),∵⊙M的半径为1,∴x=1或x=−1,当x=1时,y=52, 当x=−1时,y=32. ∴P 点坐标为:(1, 52)或(−1, 32). 故答案为(1, 52)或(−1, 32). 【题目点拨】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.14、②③④⑤【解题分析】试题解析:∵二次函数与x 轴有两个交点,∴b 2-4ac >1,故①错误,观察图象可知:当x >-1时,y 随x 增大而减小,故②正确,∵抛物线与x 轴的另一个交点为在(1,1)和(1,1)之间,∴x=1时,y=a+b+c <1,故③正确,∵当m >2时,抛物线与直线y=m 没有交点,∴方程ax 2+bx+c-m=1没有实数根,故④正确,∵对称轴x=-1=-2b a , ∴b=2a ,∵a+b+c <1,∴3a+c <1,故⑤正确,故答案为②③④⑤.15、<【解题分析】根据反比例函数的性质即可解答.【题目详解】当x =2时,632y ==,∵k=6时,∴y随x的增大而减小∴x>2时,y<3故答案为:<【题目点拨】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.16、3 4【解题分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】∵在0.·3、9、2、227这四个实数种,有理数有0.·3、9、227这3个,∴抽到有理数的概率为34,故答案为34.【题目点拨】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.17、132.【解题分析】试题分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵点D为AB的中点,∴CD=AD=BD=AB=2.5,过D′作D′E⊥BC,∵将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A′处,点D 落在点D′处,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=, 故答案为.考点:旋转的性质.三、解答题(共7小题,满分69分)18、(1)3;(1)x 1=4,x 1=1.【解题分析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【题目详解】解:(1)原式=8×(12﹣18)﹣4×33=8×38﹣33=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0,(x ﹣4)(x ﹣1)=0,x ﹣4=0,x ﹣1=0,x 1=4,x 1=1.【题目点拨】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.19、(1)直线y=32x+4,点B 的坐标为(8,16);(2)点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN+3PM 的长度的最大值是1.【解题分析】(1)首先求得点A 的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若∠BAC=90°,则AB 2+AC 2=BC 2;若∠ACB=90°,则AB 2=AC 2+BC 2;若∠ABC=90°,则AB 2+BC 2=AC 2三种情况求得m 的值,从而确定点C 的坐标;(3)设M (a ,14a 2),得MN=14a 2+1,然后根据点P 与点M 纵坐标相同得到x=2166a -,从而得到MN+3PM=﹣14a 2+3a+9,确定二次函数的最值即可. 【题目详解】(1)∵点A 是直线与抛物线的交点,且横坐标为-2,21(2)14y =⨯-=,A 点的坐标为(-2,1), 设直线的函数关系式为y=kx+b ,将(0,4),(-2,1)代入得421b k b =⎧⎨-+=⎩ 解得324k b ⎧=⎪⎨⎪=⎩∴y =32x +4 ∵直线与抛物线相交,231424x x ∴+= 解得:x=-2或x=8,当x=8时,y=16,∴点B 的坐标为(8,16);(2)存在.∵由A (-2,1),B (8,16)可求得AB 2=22(82)(161)=325.设点C (m ,0),同理可得AC 2=(m +2)2+12=m 2+4m +5,BC 2=(m -8)2+162=m 2-16m +320,①若∠BAC =90°,则AB 2+AC 2=BC 2,即325+m 2+4m +5=m 2-16m +320,解得m =-12; ②若∠ACB =90°,则AB 2=AC 2+BC 2,即325=m 2+4m +5+m 2-16m +320,解得m =0或m =6;③若∠ABC =90°,则AB 2+BC 2=AC 2,即m 2+4m +5=m 2-16m +320+325,解得m =32,∴点C 的坐标为(-12,0),(0,0),(6,0),(32,0) (3)设M (a ,14a 2),则MN 2114a =+, 又∵点P 与点M 纵坐标相同, ∴32x +4=14a 2, ∴x =2166a - , ∴点P 的横坐标为2166a -, ∴MP =a -2166a -, ∴MN +3PM =14a 2+1+3(a -2166a -)=-14a 2+3a +9=-14 (a -6)2+1, ∵-2≤6≤8,∴当a =6时,取最大值1,∴当M 的横坐标为6时,MN +3PM 的长度的最大值是120、2.【解题分析】试题分析:由勾股定理的逆定理证明△ADC 是直角三角形,∠C=90°,再由勾股定理求出BC ,得出BD ,即可得出结果.解:在△ADC 中,AD=15,AC=12,DC=9,AC 2+DC 2=122+92=152=AD 2,即AC 2+DC 2=AD 2,∴△ADC 是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=2.21、(1);(2)5π;(3)PB的值为或.【解题分析】(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【题目详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【题目点拨】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.22、(1)200;(2)108°;(3)答案见解析;(4)600【解题分析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.试题解析:(1)80÷40%=200(人).∴此次共调查200人.(2)60200×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.【题目点拨】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型.23、(1)50;(2)16;(3)56(4)见解析【解题分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【题目详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24、1【解题分析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可.【题目详解】﹣1=1.原式=1×2【题目点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.。
上海市2023年中考数学真题及答案解析【注意:本文仅提供参考,实际考试请以教育部门发布的官方真题为准】一、选择题题目解析1. 小明从家到学校的路程共有5公里,他骑自行车一次骑行2/5的距离。
他一共用了多长时间?选项解析:题目中提到小明骑行2/5的距离,即2/5 * 5公里 = 2公里。
进而,我们可以计算出他骑行2公里所需要的时间。
答案:根据题目分析,小明骑行2公里所需要的时间为2公里/ 骑行速度 = 2公里 / 骑行速度,这里骑行速度未提及,所以无法计算具体时间。
答案为无法确定。
2. 某商品原价为300元,现在打八折出售,折后价格是多少?选项解析:题目中提到打八折,即原价 * 0.8,我们可以直接计算出折后价格。
答案:300元 * 0.8 = 240元。
答案为240元。
二、填空题题目解析1. 下图中国地图的颜色表示的是哪个省份?解析:根据题目中的提示,通过判断地图颜色可以得出对应的省份名称。
答案:由于无法提供具体地图,所以无法确定具体省份名称。
答案为无法确定。
2. 160 ÷ 8 = ____解析:题目中提到除法运算,我们可以直接计算出结果。
答案:160 ÷ 8 = 20。
答案为20。
三、解答题题目解析1. 如果a = 3, b = 4,则(a + b)² = ____解析:题目中给出了a和b的值,我们可以带入计算。
答案:(a + b)² = (3 + 4)² = 7² = 49。
答案为49。
2. 请用两种方法计算 2² + 3² + 4² + 5²的值。
解析:题目要求我们计算一个数列的和,我们可以分别列出每一项的平方然后相加,或者使用数列求和公式进行计算。
答案:方法一:2² + 3² + 4² + 5² = 4 + 9 + 16 + 25 = 54。
方法二:利用数列求和公式:n(n+1)(2n+1)/6,其中n为项数。
绝密★启用前2023年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列运算正确的是( ) A. a 5÷a 2=a 3B. a 3+a 3=a 6C. (a 3)2=a 5D. √ a 2=a2. 在分式方程2x−1x2+x 22x−1=5中,设2x−1x 2=y ,可得到关于y 的整式方程为( )A. y 2+5y +5=0B. y 2−5y +5=0C. y 2+5y +1=0D. y 2−5y +1=03. 下列函数中,函数值y 随x 的增大而减小的是( ) A. y =6xB. y =−6xC. y =6xD. y =−6x4. 如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,如图是各时间段的小车与公车的车流量,则下列说法正确的是( )A. 小车的车流量与公车的车流量稳定B. 小车的车流量的平均数较大C. 小车与公车车流量在同一时间段达到最小值D. 小车与公车车流量的变化趋势相同5. 在四边形ABCD 中,AD//BC ,AB =CD.下列说法能使四边形ABCD 为矩形的是( )A. AB//CDB. AD =BCC. ∠A =∠BD. ∠A =∠D6. 已知在梯形ABCD 中,联结AC ,BD ,且AC ⊥BD ,设AB =a ,CD =b.下列两个说法:①AC =√ 22(a +b);②AD =√ 22√ a 2+b 2,则下列说法正确的是( )A. ①正确②错误B. ①错误②正确C. ①②均正确D. ①②均错误二、填空题(本大题共12小题,共48.0分)7. 分解因式:n 2−9= ______ . 8. 化简:21−x −2x1−x 的结果为______ .9. 已知关于x 的方程√ x −14=2,则x = ______ . 10. 函数f(x)=1x−23的定义域为______ .11. 已知关于x 的一元二次方程ax 2+6x +1=0没有实数根,那么a 的取值范围是______ .12. 在不透明的盒子中装有一个黑球,两个白成,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为______ .13. 如果一个正多边形的中心角是20°,那么这个正多边形的边数为______ . 14. 一个二次函数y =ax 2+bx +c 的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是______ .15. 如图,在△ABC 中,点D ,E 在边AB ,AC 上,2AD =BD ,DE//BC ,联结DE ,设向量AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,那么用a ⃗ ,b ⃗ 表示DE ⃗⃗⃗⃗⃗⃗ = ______ .16. 垃圾分类(Refusesorting),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为______ .17. 如图,在△ABC 中,∠C =35°,将△ABC 绕着点A 旋转α(0°<α<180°),旋转后的点B 落在BC 上,点B 的对应点为D ,联结AD ,AD 是∠BAC 的角平分线,则α= ______ .18. 在△ABC 中,AB =7,BC =3,∠C =90°,点D 在边AC 上,点E 在CA 延长线上,且CD =DE ,如果⊙B 过点A ,⊙E 过点D ,若⊙B 与⊙E 有公共点,那么⊙E 半径r 的取值范围是______ .三、解答题(本大题共7小题,共78.0分。
上海市中考数学试卷一、选择题(本大题共6题,每题4分,满分24分。
下列各题的四个选项中,有且只有一个选项是正确的)1.(4.00分)下列计算﹣的结果是()A.4 B.3 C.2 D.2.(4.00分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根3.(4.00分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的4.(4.00分)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和295.(4.00分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(4.00分)如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB 的取值范围是()A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7二、填空题(本大题共12题,每题4分,满分48分)7.(4.00分)﹣8的立方根是.8.(4.00分)计算:(a+1)2﹣a2=.9.(4.00分)方程组的解是.10.(4.00分)某商品原价为a元,如果按原价的八折销售,那么售价是元.(用含字母a的代数式表示).11.(4.00分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.12.(4.00分)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么20﹣30元这个小组的组频率是.13.(4.00分)从,π,这三个数中选一个数,选出的这个数是无理数的概率为.14.(4.00分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)15.(4.00分)如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设=,=那么向量用向量、表示为.16.(4.00分)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.17.(4.00分)如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.18.(4.00分)对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是.三、解答题(本大题共7题,满分78分)19.(10.00分)解不等式组:,并把解集在数轴上表示出来.20.(10.00分)先化简,再求值:(﹣)÷,其中a=.21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(10.00分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?23.(12.00分)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF ⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.24.(12.00分)在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c 经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.25.(14.00分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分。
上海中考数学试卷答案与解析Modified by JACK on the afternoon of December 26, 20202015年上海市中考数学试卷参考答案与试题解析一、选择题1.(4分)(2015?上海)下列实数中,是有理数的为()A.B.C.πD.0考点:实数.分析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.解答:解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.点评:此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.(4分)(2015?上海)当a>0时,下列关于幂的运算正确的是()A.a0=1B.a﹣1=﹣a C.(﹣a)2=﹣a2D.a =考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析:分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)2=a2,故此选项错误;D、a =(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.3.(4分)(2015?上海)下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=C.y=D.y=考点:正比例函数的定义.分析:根据正比例函数的定义来判断即可得出答案.解答:解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.点评:本题考查了正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.4.(4分)(2015?上海)如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4B.5C.6D.7考点:多边形内角与外角.分析:根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.解答:解:这个多边形的边数是360÷72=5,故选:B.点评:本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.5.(4分)(2015?上海)下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率考点:统计量的选择.分析:根据平均数、众数、中位数反映一组数据的集中趋势,而方差、标准差反映一组数据的离散程度或波动大小进行选择.解答:解:能反映一组数据波动程度的是方差或标准差,故选C.点评:本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.6.(4分)(2015?上海)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.A D=BD B.O D=CD C.∠CAD=∠CBD D.∠OCA=∠OCB考点:菱形的判定;垂径定理.分析:利用对角线互相垂直且互相平分的四边形是菱形,进而求出即可.解答:解:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,当DO=CD,则AD=BD,DO=CD,AB⊥CO,故四边形OACB为菱形.故选:B.点评:此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.二、填空题7.(4分)(2015?上海)计算:|﹣2|+2= 4 .考点:有理数的加法;绝对值.分析:先计算|﹣2|,再加上2即可.解答:解:原式=2+2=4.故答案为4.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.8.(4分)(2015?上海)方程=2的解是x=2 .考点:无理方程.分析:首先根据乘方法消去方程中的根号,然后根据一元一次方程的求解方法,求出x的值是多少,最后验根,求出方程=2的解是多少即可.解答:解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2.点评:此题主要考查了无理方程的求解,要熟练掌握,解答此题的关键是要明确:(1)解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.(2)注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.9.(4分)(2015?上海)如果分式有意义,那么x的取值范围是x≠﹣3 .考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零.10.(4分)(2015?上海)如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是m<﹣4 .考根的判别式.点:分析:根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.解答:解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.(4分)(2015?上海)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是77 ℉.考点:函数值.分析:把x的值代入函数关系式计算求出y值即可.解答:解:当x=25°时,y=×25+32=77,故答案为:77.点评:本题考查的是求函数值,理解函数值的概念并正确代入准确计算是解题的关键.12.(4分)(2015?上海)如果将抛物线y=x2+2x﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是y=x2+2x+3 .考点:二次函数图象与几何变换.分析:设平移后的抛物线解析式为y=x2+2x﹣1+b,把点A的坐标代入进行求值即可得到b的值.解答:解:设平移后的抛物线解析式为y=x2+2x﹣1+b,把A(0,3)代入,得3=﹣1+b,解得b=4,则该函数解析式为y=x2+2x+3.故答案是:y=x2+2x+3.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.13.(4分)(2015?上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是.考点:概率公式.分由某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,直接利用概率公式求解即可求得答析:案.解答:解:∵学生会将从这50位同学中随机抽取7位,∴小杰被抽到参加首次活动的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015?上海)已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁)1112131415人数55161512那么“科技创新社团”成员年龄的中位数是14 岁.考点:中位数.分析:一共有53个数据,根据中位数的定义,把它们按从小到大的顺序排列,第27名成员的年龄就是这个小组成员年龄的中位数.解答:解:从小到大排列此数据,第27名成员的年龄是14岁,所以这个小组成员年龄的中位数是14.故答案为14.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)(2015?上海)如图,已知在△ABC中,D、E分别是边AB、边AC的中点,=,=,那么向量用向量,表示为﹣.考点:*平面向量.分析:由=,=,利用三角形法则求解即可求得,又由在△ABC中,D、E分别是边AB、边AC的中点,可得DE是△ABC的中位线,然后利用三角形中位线的性质求解即可求得答案.解答:解:∵=,=,∴=﹣=﹣,∵在△ABC中,D、E分别是边AB、边AC的中点,∴==(﹣)=﹣.故答案为:﹣.点评:此题考查了平面向量的知识以及三角形中位线的性质.注意掌握三角形法则的应用.16.(4分)(2015?上海)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=度.考点:正方形的性质;全等三角形的判定与性质.分析:根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.解答:解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=°.故答案为:.点评:本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.17.(4分)(2015?上海)在矩形ABCD中,AB=5,BC=12,点A在⊙B上,如果⊙D与⊙B相交,且点B在⊙D内,那么⊙D的半径长可以等于14(答案不唯一).(只需写出一个符合要求的数)考圆与圆的位置关系;点与圆的位置关系.点:专题:开放型.分析:首先求得矩形的对角线的长,然后根据点A在⊙B上得到⊙B的半径为5,再根据⊙D与⊙B相交,得到⊙D的半径R满足8<R<18,在此范围内找到一个值即可.解答:解:∵矩形ABCD中,AB=5,BC=12,∴AC=BD=13,∵点A在⊙B上,∴⊙B的半径为5,∵如果⊙D与⊙B相交,∴⊙D的半径R满足8<R<18,∵点B在⊙D内,∴R>13,∴13<R<18,∴14符合要求,故答案为:14(答案不唯一).点评:本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定⊙B的半径,然后确定⊙D的半径的取值范围,难度不大.18.(4分)(2015?上海)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE 的长等于4﹣4 .考点:解直角三角形;等腰三角形的性质.专题:计算题.分析:作CH⊥AE于H,根据等腰三角形的性质和三角形内角和定理可计算出∠ACB=(180°﹣∠BAC)=75°,再根据旋转的性质得AD=AB=8,∠CAD=∠BAC=30°,则利用三角形外角性质可计算出∠E=45°,接着在Rt△ACH中利用含30度的直角三角形三边的关系得CH=AC=4,AH=CH=4,所以DH=AD﹣AH=8﹣4,然后在Rt△CEH中利用∠E=45°得到EH=CH=4,于是可得DE=EH﹣DH=4﹣4.解:作CH⊥AE于H,如图,解答:∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和旋转的性质.三、解答题19.(10分)(2015?上海)先化简,再求值:÷﹣,其中x=﹣1.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.解答:解:原式=﹣=﹣=,当x=﹣1时,原式==﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(10分)(2015?上海)解不等式组:,并把解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣3,解不等式②得:x≤2,∴不等式组的解集为﹣3<x≤2,在数轴上表示不等式组的解集为:.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.(10分)(2015?上海)已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:(1)这个反比例函数的解析式;(2)直线AB的表达式.考点:反比例函数与一次函数的交点问题.分(1)根据正比例函数y=x的图象经过点A,点A的纵坐标为4,求出点A的析:坐标,根据反比例函数y=的图象经过点A,求出m的值;(2)根据点A的坐标和等腰三角形的性质求出点B的坐标,运用待定系数法求出直线AB的表达式.解解:∵正比例函数y=x的图象经过点A,点A的纵坐标为4,答:∴点A的坐标为(3,4),∵反比例函数y=的图象经过点A,∴m=12,∴反比例函数的解析式为:y=;(2)如图,连接AC、AB,作AD⊥BC于D,∵AC=AB,AD⊥BC,∴BC=2CD=6,∴点B的坐标为:(6,2),设直线AB的表达式为:y=kx+b,由题意得,,解得,,∴直线AB的表达式为:y=﹣x+6.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和一次函数与反比例函数的解得的求法,注意数形结合的思想在解题中的应用.22.(10分)(2015?上海)如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长(精确到1米)(参考数据:≈)考点:解直角三角形的应用;勾股定理的应用.分析:(1)连接PA.在直角△PAH中利用勾股定理来求PH的长度;(2)由题意知,隔音板的长度是PQ的长度.通过解Rt△ADH、Rt△CDQ分别求得DH、DQ的长度,然后结合图形得到:PQ=PH+DQ﹣DH,把相关线段的长度代入求值即可.解答:解:(1)如图,连接PA.由题意知,AP=39m.在直角△APH中,PH===36(米);(2)由题意知,隔音板的长度是PQ的长度.在Rt△ADH 中,DH=AH?cot30°=15(米).在Rt△CDQ中,DQ===78(米).则PQ=PH+HQ=PH+DQ﹣DH=36+78﹣15≈114﹣15×=≈89(米).答:高架道路旁安装的隔音板至少需要89米.点本题考查了解直角三角形的应用、勾股定理的应用.根据题目已知特点选用评:适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.23.(12分)(2015?上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BDCE=CDDE.考点:相似三角形的判定与性质;等腰三角形的性质;平行四边形的性质.专题:证明题.分析:(1)由平行四边形的性质得到BO=BD,由等量代换推出OE=BD,根据平行四边形的判定即可得到结论;(2)根据等角的余角相等,得到∠CEO=∠CDE,推出△BDE∽△CDE,即可得到结论.证明:(1)∵四边形ABCD是平行四边形,解答:∴BO=BD,∵OE=OB,∴OE=BD,∴∠BED=90°,∴DE⊥BE;(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△CDE,∴,∴BDCE=CDDE.点评:本题考查了相似三角形的判定和性质,直角三角形的判定和性质,平行四边形的性质,熟记定理是解题的关键.24.(12分)(2015?上海)已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴(XRS)相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P 的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠PAD的正弦值.考点:二次函数综合题.分(1)根据已知条件先求出OB的长,再根据勾股定理得出OA=2,求出点A的析:坐标,再把点A的坐标代入y=ax2﹣4,求出a的值,从而求出解析式;(2)根据点P的横坐标得出点P的坐标,过点P作PE⊥x轴于点E,得出OE=m,PE=m2﹣4,从而求出AE=2+m ,再根据=,求出OC;(3)根据tan∠ODC=,得出=,求出OD和OC,再根据△ODB∽△EDP,得出=,求出OC,求出∠PAD=45°,从而求出∠P AD的正弦值.解:(1)∵抛物线y=ax2﹣4与y轴相交于点B,解答:∴点B的坐标是(0,﹣4),∴OB=4,∵AB=2,∴OA==2,∴点A的坐标为(﹣2,0),把(﹣2,0)代入y=ax2﹣4得:0=4a﹣4,解得:a=1,则抛物线的解析式是:y=x2﹣4;(2)∵点P的横坐标为m,∴点P的坐标为(m,m2﹣4),过点P作PE⊥x轴于点E,∴OE=m,PE=m2﹣4,∴AE=2+m,∵=,∴=,∴CO=2m﹣4;(3)∵tan∠ODC=,∴=,∴OD=OC=×(2m﹣4)=,∵△ODB∽△EDP,∴=,∴=,∴m 1=﹣1(舍去),m 2=3,∴OC=2×3﹣4=2,∵OA=2,∴OA=OC,∴∠PAD=45°, ∴sin∠PAD=sin45°=.点评: 此题考查了二次函数的综合,用到的知识点是相似三角形的判定与性质、勾股定理、特殊角的三角函数值,关键是根据题意作出辅助线,构造相似三角形.25.(14分)(2015?上海)已知,如图,AB 是半圆O 的直径,弦CD∥AB,动点P ,Q 分别在线段OC ,CD 上,且DQ=OP ,AP 的延长线与射线OQ 相交于点E ,与弦CD 相交于点F (点F 与点C ,D 不重合),AB=20,cos∠AOC=,设OP=x ,△CPF 的面积为y .(1)求证:AP=OQ ;(2)求y关于x的函数关系式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.圆的综合题.考点:(1)连接OD,证得△AOP≌△ODQ后即可证得AP=OQ;分析:(2)作PH⊥OA,根据cos∠AOC=得到OH=PO=x,从而得到=AO?PH=3x,利用△PFC∽△PAO得当对应边的比相等即可得到函数解析S△AOP式;(3)分当∠POE=90°时、当∠OPE=90°时、当∠OEP=90°时三种情况讨论即可得到正确的结论.解:(1)连接OD,解答:在△AOP和△ODQ中,,∴AP=OQ;(2)作PH⊥OA,∵cos∠AOC=,∴OH=PO=x,=AO?PH=3x,∴S△AOP又∵△PFC∽△PAO,∴==()2,整理得:y=(<x<10);(3)当∠POE=90°时,CQ==,PO=DQ=CD﹣CQ=(舍);当∠OPE=90°时,PO=AO?cos∠COA=8;当∠OEP=90°时,∠AOQ=∠DQO=∠APO,即∠OEP=∠COA,此种情况不存在,∴线段OP的长为8.点评:本题考查了圆的综合知识、相似三角形的判定及性质等知识,综合性较强,难度较大,特别是第三题的分类讨论更是本题的难点.。