备战2020年高考数学一轮复习第9单元空间中的位置关系与体积表面积单元训练B卷文含
- 格式:pdf
- 大小:558.75 KB
- 文档页数:13
9.7 空间向量在空间几何体的运用(一)一.设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为1n ,2n ,则有如下结论:二.点面距已知AB 为平面α的一条斜线段(A 在平面α内),n 为平面α的法向量,则B 到平面α的距离为|||cos ,|||||||||AB d AB AB AB AB ⋅===<>n n n ||||AB ⋅n n .注:空间中其他距离问题一般都可以转化为点面距问题.考向一 利用空间向量证明平行【例1】在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD . 【答案】见解析【解析】法一 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA →-12()A 1B →+BA →=12DB →-12A 1B →. 即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 【拓展】1.(变条件)本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,μ1,z 1),则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1), 又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1. 2.(变条件)若本例换为:在如图324所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .图324[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .考向二 垂直、【例2】如图1,在四棱锥S ABCD -中,底面ABCD 是正方形,AS ⊥底面ABCD ,且A S A B =,E 是SC 的中点.求证:(1)直线AD ⊥平面SAB ; (2)平面BDE ⊥平面ABCD .图1 图2【答案】见解析【解析】如图2,以A 为原点, AB ,AD ,AS 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz ,设2AS AB ==,则(0,0,0)A ,(0,2,0)D ,(2,2,0)C ,(2,0,0)B ,(0,0,2)S ,(1,1,1)E 易得(0,0,2)AS =,(2,0,0)AB =设平面SAB 的法向量为(,,)x y z =n ,则AS AB ⎧⎪⎨⎪⎩⊥⊥n n ,即2020AS z AB x ⎧⋅==⎪⎨⋅==⎪⎩n n取1y =,可得平面SAB 的一个法向量为(0,1,0)=n又(0,2,0)AD =,所以2AD =n ,所以AD ∥n ,所以直线AD ⊥平面SAB 方法1:如图2,连接AC 交BD 于点O ,连接OE ,则点O 的坐标为(1,1,0) 易得(0,0,1)OE =,(0,0,2)AS =,显然2AS OE =,故AS OE ∥,所以AS OE ∥ 又AS ⊥底面ABCD ,所以OE ⊥底面ABCD 又OE ⊂平面BDE ,所以平面BDE ⊥平面ABCD 方法2:易得(1,1,1)BE =-,(2,2,0)BD =-设平面BDE 的法向量为(,,)x y z =m ,则BE BD ⎧⎪⎨⎪⎩⊥⊥m m ,即0220BE x y z BD x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩m m取1x =,得1y =,0z =,所以平面1A BD 的一个法向量为(1,1,0)=mAS ⊥底面ABCD ,可得(0,0,2)AS =是平面ABCD 的一个法向量因为(0,0,2)(1,1,0)0AS ⋅=⋅=m ,所以AS ⊥m ,所以平面BDE ⊥平面ABCD【举一反三】1.如图所示,正三棱柱ABC A 1B 1C 1的所有棱长都为2,D 为CC 1的中点,求证:AB 1⊥平面A 1BD .【答案】见解析【解析】法一:如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0.AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 法二:建系同方法一.设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥BA 1→n ⊥BD→,即⎩⎪⎨⎪⎧n ·BA 1→=-x +2y +3z =0,n ·BD →=-2x +y =0,令x =1得平面A 1BD 的一个法向量为n =(1,2,-3), 又AB 1→=(1,2,-3),所以n =AB 1→,即AB 1→∥n . 所以AB 1⊥平面A 1BD .考向三 利用空间向量解决平行与垂直关系中的探索性问题【例3】如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,BC ⊥AC ,BC =AC =AA 1=2,D 为AC 的中点.(1)求证:AB 1∥平面BDC 1;(2)设AB 1的中点为G ,问:在矩形BCC 1B 1内是否存在点H ,使得GH ⊥平面BDC 1.若存在,求出点H 的位置,若不存在,说明理由. 【答案】见解析【解析】(1)证明:连接B 1C ,设B 1C ∩BC 1=M ,连接MD ,在△AB 1C 中,M 为B 1C 中点,D 为AC 中点, ∴DM ∥AB 1,又∵AB 1不在平面BDC 1内,DM 在平面BDC 1内, ∴AB 1∥平面BDC 1.(2)以C 1为坐标原点,C 1A 1→为x 轴,C 1C →为y 轴,C 1B 1→为z 轴建立空间直角坐标系. 依题意,得C 1(0,0,0),D (1,2,0),B (0,2,2),G (1,1,1),假设存在H (0,m ,n ), GH →=(-1,m -1,n -1),C 1D →=(1,2,0),DB →=(-1,0,2),由GH ⊥平面BC 1D ,得GH →⊥C 1D →⇒(-1,m -1,n -1)·(1,2,0)=0⇒m =32.同理,由GH →⊥DB →得n =12,即在矩形BCC 1B 1内存在点H ,使得GH ⊥平面BDC 1.此时点H 到B 1C 1的距离为32,到C 1C 的距离为12.【举一反三】1.如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,BD 中点,PA =PD =AD =2.(1)求证:EF ∥平面PBC ;(2)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.【答案】见解析【解析】(1)证明:如图所示,连接AC .因为底面ABCD 是正方形,AC 与BD 互相平分.F 是BD 中点,所以F 是AC 中点.在△PAC 中,E 是PA 中点,F 是AC 中点,所以EF ∥PC . 又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC . (2)取AD 中点O ,连接PO .在△PAD 中,PA =PD ,所以PO ⊥AD .因为平面PAD ⊥底面ABCD ,且平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 因为OF ⊂平面ABCD ,所以PO ⊥OF . 又因为F 是AC 中点,所以OF ⊥AD .以O 为原点,OA ,OF ,OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.因为PA =PD =AD =2,所以OP =3,则C (-1,2,0),D (-1,0,0),P (0,0,3),E ⎝ ⎛⎭⎪⎫12,0,32,F (0,1,0).于是DE →=⎝ ⎛⎭⎪⎫32,0,32,DF →=(1,1,0).设平面EFD 的法向量n =(x 0,y 0,z 0).因为⎩⎪⎨⎪⎧n ·DF →=0,n ·DE →=0,所以⎩⎪⎨⎪⎧x 0+y 0=0,32x 0+32z 0=0,即⎩⎨⎧y 0=-x 0,z 0=-3x 0.令x 0=1,则n =(1,-1,-3).假设在棱PC 上存在一点G ,使GF ⊥平面EDF . 设G (x 1,y 1,z 1),则FG →=(x 1,y 1-1,z 1). 因为EDF 的一个法向量n =(1,-1,-3). 因为GF ⊥平面EDF ,所以FG →=λn .于是⎩⎨⎧x 1=λ,y 1-1=-λ,z 1=-3λ,即⎩⎨⎧x 1=λ,y 1=1-λ,z 1=-3λ.又因为点G 在棱PC 上,所以GC →与PC →共线.因为PC →=(-1,2,-3),CG →=(x 1+1,y 1-2,z 1), 所以x 1+1-1=y 1-22=z 1-3, 即1+λ-1=-λ-12=-3λ-3,无解.故在棱PC 上不存在一点G ,使GF ⊥平面EDF . 考向四 点面距【例4】如图,已知正方体1111ABCD A B C D -的棱长为3a ,求平面11AB D 与平面1BDC 之间的距离..【解析】由正方体的性质,易得平面11AB D ∥平面1BDC , 则两平面间的距离可转化为点B 到平面11AB D 的距离.如图,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,【举一反三】1.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑P ABC -中,PA ⊥平面ABC ,2PA AB BC ===,M 为PC 的中点,则点P 到平面MAB 的距离为_____.【解析】以B 为坐标原点,BA,BC 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图,则()()()()0,0,0,2,0,0,2,0,2,0,2,0B A P C ,由M 为PC 的中点可得()1,1,1M ;()()1,1,1,2,0,0BM BA ==, ()2,0,2BP =.设(),,x y z =n 为平面ABM 的一个法向量,则00n BA n BM ⎧⋅=⎨⋅=⎩,即200x x y z =⎧⎨++=⎩,令1z =-,可得()0,1,1=-n ,点P 到平面MAB 的距离为BP d ⋅==n n.1.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点A 关于平面BDC 1对称点为M ,则M 到平面A 1B 1C 1D 1的距离为( )A .32B .54C .43D .53【答案】D【解析】以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,D (0,0,0),B (1,1,0),C 1(0,1,1),A (1,0,0),A 1(1,0,1),DB =(1,1,0),1DC =(0,1,1), 设平面BDC 1的法向量n =(x ,y ,z ),则100n DB x y n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x=1,得n =(1,-1,1),∴平面BDC 1的方程为x-y+z=0,过点A (1,0,0)且垂直于平面BDC 1的直线方程为: (x-1)=-y=z ,令(x-1)=-y=z=t ,得x=t+1,y=-t ,z=t ,代入平面方程x-y+z=0,得t+1+t+t=0,解得t=13- ,∴过点A (1,0,0)且垂直于平面BDC 1的直线方程与平面BDC 1的交点为211333⎛⎫ ⎪⎝⎭,,-∴点A 关于平面BDC 1对称点M 122333⎛⎫ ⎪⎝⎭,,-, 1225333A M ⎛⎫=- ⎪⎝⎭,,-,平面A 1B 1C 1D 1的法向量m =(0,0,1),∴M 到平面A 1B 1C 1D 1的距离为d=15=3m A M m⋅故选:D . 2.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB.2C.3λ D【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0)1sin()cos 22C C π+===(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则1·20·20n ED x z n EF y ⎧=-+=⎨==⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=5EM n n==N 为EM 中点,所以N ,选D .3.如图:正三棱柱111ABC A B C -的底面边长为3,D 是CB 延长线上一点,且BD BC =,二面角1B AD B --的大小为60︒;(1)求点1C 到平面1B AD 的距离;(2)若P 是线段AD 上的一点 ,且12DP A A =,在线段1DC 上是否存在一点Q ,使直线//PQ 平面1ABC ?若存在,请指出这一点的位置;若不存在,请说明理由.【答案】(1)4; (2)存在,当113C Q QD =时,1//PQ AC 知//PQ 平面1ABC . 【解析】(1)设E 为AD 的中点,则BE AD ⊥,在正三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面ABC ,所以1BB AD ⊥,而1BB EB B =,因此AD ⊥平面1BB E ,而1B E ⊂平面1BB E ,所以有1B E AD ⊥1BEB ∴∠为二面角1B AD B --的平面角,如下图所示:160BEB ∴∠=︒120ABD ∠=︒,32BE =,11tan BB BEB BE ∴∠==侧棱11AA BB ==;111111C ADB A C DB A BB C V V V ---==11273328⎛=⨯= ⎝⎭又AD =11AB B D ==知1112ADB S AD B E ∆=⋅=∴点1C 到平面1ADB 的距离2738d =⨯=(2)由(1)可知AD =1AA =,12DP AA =,13AP PD ∴=,当113C Q QD =时,有1//PQ AC 成立,而 1AC ⊂平面1ABC ,所以 //PQ 平面1ABC ,故存在,当113C Q QD =时,符合题意。
第9讲空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2013年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.解:设长方体的长、宽、高、对角线长分别为xcm、ycm、zcm、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB⊥AD,∠A 1AB=∠A 1AD=3π。
2021年全国高考数学一轮复习知识巩固AB 卷(理科) 专题09 空间中的位置关系与体积、表面积(B 卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) A .平行B .相交C .垂直D .异面2.圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为( ) A .40πB .52πC .50πD .212π33.如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .4.如图,正方体中,,,,分别为,,,的中点,则直线,所成角的大小为( )A .π6B .π4C .π3D .π25.已知两个平面相互垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内已知直线必垂直于另一个平面内的无数条直线③一个平面内任意一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确命题个数是( ) A .1B .2C .3D .46.下图是某几何体的三视图,其中网格纸上小正方形的边长为1,则该几何体的体积为( )A .12B .15C .403D .5037.古希腊数学家阿基米德构造了一个“圆柱容器”的几何体:在圆柱容器里放一个球,使该球四周碰壁,且与上,下底面相切,则在该几何体中,圆柱的体积与球的体积之比为( ) A .23B .43C .23或32D .328.矩形中,,,沿将矩形折起,使面面,则四面体的外接球的体积为( )A .125π6B .125π9C .125π12D .125π39.在正方体1111ABCD A B C D -中,E 为棱CD 上一点,且2CE DE =,F 为棱1AA 的中点,且平面BEF 与1DD 交于点G ,则1B G 与平面ABCD 所成角的正切值为( ) A .2 B .2 C .52D .5210.如图,一个正四棱锥和一个正三棱锥,所有棱长都相等,为棱的中点,将、、分别对应重合为,得到组合体.关于该组合体有如下三个结论:①;②;③,其中错误的个数是( )A .B .C .D .11.以棱长为1的正方体各面的中心为顶点,构成一个正八面体,再以这个正八面体各面的中心为顶点构成一个小正方体,那么该小正方体的棱长为( ) A .22B .33C .13D .1412.在三棱锥P ABC -中,PA ⊥平面ABC ,2,30APC S ABC =∠=︒△,则三棱锥P ABC -的外接球体积的最小值为( ) A .4πB .4π3C .64πD .32π3第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.某长方体的长、宽、高分别为2cm ,2cm ,4cm ,则该长方体的体积与其外接球的体积之比为________.14.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.”用现在的数学语言表述是:“如图所示,一圆柱形埋在墙壁中,1AB =尺,D 为AB 的中点,AB CD ⊥,1CD =寸,则圆柱底面的直径长是_________寸”.(注:l 尺=10寸)15.已知两条不重合的直线m ,n ,两个不重合的平面α,β,有下列四个命题: ①若m n ∥,α⊂m ,则n α∥;②若n α⊥,m β⊥,且m n ∥,则αβ∥;③若α⊂m ,n α⊂,β∥m ,n β∥,则αβ∥; ④若αβ⊥,m αβ=,且n β⊂,n m ⊥,则n α⊥.其中所有正确命题的序号为______. 16.已知三棱锥的四个顶点均在体积为的球面上,其中平面,底面为正三角形,则三棱锥体积的最大值为________.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在三棱柱111ABC A B C -中,AB AC =,侧面11B C CB ⊥底面ABC ,E ,F 分别为棱BC 和11A C 的中点.(1)求证:EF ∥平面11ABB A ; (2)求证:平面AEF ⊥平面11BCC B .18.(12分)如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,E 为线段AD 的中点,且2AE ED BC ===.4PA PD PB ===.PB AC ⊥. (1)证明:平面PBE ⊥平面PAC ;(2)若BC AD ∥,求三棱锥P ACD -的体积.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(1)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.20.(12分)在边长为3的正方形ABCD 中,点E ,F 分别在边AB ,BC 上(如左图),且=BE BF ,将AED △,DCF △分别沿DE ,DF 折起,使A ,C 两点重合于点A '(如右图).(1)求证:A D EF '⊥; (2)当13BF BC =时,求点A 到平面DEF 的距离.21.(12分)如图,长方体1111ABCD A B C D -中,4AB BC ==,122BB =,点E ,F ,M 分别为11C D ,11A D ,11B C 的中点,过点M 的平面α与平面DEF 平行,且与长方体的面相交,交线围成一个几何图形.(1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由); (2)在图2中,求证:1D B ⊥平面DEF .22.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到AOD '△的位置,使得平面'AOD ⊥平面ABCO ,M 为线段BD '的中点(如图2).(1)求证:OD BC '⊥; (2)求证:CM ∥平面AOD '; (3)当四棱锥D ABCO '-3a 的值.专题09 空间中的位置关系与体积、表面积 答 案+解 析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C【解析】因为对于任意的直线m 与平面α,在平面α内必有直线l ,使m 与l 垂直,故选C . 2.【答案】B【解析】作出圆台的轴截面如图所示:上底面半径2MD =,下底面半径6NC =,过D 做DE 垂直NC ,则624EC =-=, 由5CD =,故3DE =,即圆台的高为3, 所以圆台的体积为()222213π2π6π2π652π3V =⋅⋅⋅+⋅+⋅⋅⋅=.故选B . 3.【答案】A【解析】正方体1111ABCD A B C D -中,过点1,,A E C 的平面截去该正方体的上半部分后, 剩余部分的直观图如图:则该几何体的正视图为图中粗线部分,故选A . 4.【答案】C 【解析】连接,根据,,,分别为,,,的中点,可得到是三角形的中位线,故得到11MN A C ∥,同理可得到1BC EF ∥,进而直线,所成角的大小,可转化为的夹角,三角形,三边均为正方体的面对角线,是等边三角形,故得到的夹角为π3.故答案为C . 5.【答案】B【解析】由题意,对于①,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故①错误; 对于②,设平面α∩平面β=m ,n ⊂α,l ⊂β,∵平面α⊥平面β,∴当l ⊥m 时,必有l ⊥α,而n ⊂α,∴l ⊥n ,而在平面β内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即②正确;对于③,当两个平面垂直时,一个平面内的任一条直线不垂直于另一个平面,故③错误; 对于④,当两个平面垂直时,过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面,这是面面垂直的性质定理,故④正确, 故选B . 6.【答案】D【解析】由三视图可以判定出这是一个底面为四边形的四棱锥,其高为5.底面四边形可以分割成二个三角形,面积1144221022S =⨯⨯+⨯⨯=, 体积15033V Sh ==,故本题选D . 7.【答案】D【解析】由已知可知,该几何体的轴截面如图所示,即圆柱的底面半径与球的半径相等,高等于球的直径,所以23π23=42π3V r r V r ⨯=圆柱球. 故选D . 8.【答案】A 【解析】设与的交点为点,在矩形中,可得,当沿翻折后,上述等量关系不会发生改变,因为四面体的外接球的球心到各顶点的距离相等,所以点即为球心,在中,,故52R OA OB OC OD =====, 所以球的体积为34125ππ36V R ==,故选A . 9.【答案】C【解析】因为平面ABCD ∥平面1111D C B A ,所以1B G 与平面ABCD 所成角, 即为1B G 与平面1111D C B A 所成角,可知1B G 与平面所成角为11D B G ∠. 设6AB =,则3AF =,2DE =, 平面BEF 面11CDD C GE =且BF ∥面11CDD C ,可知BF GE ∥,则AF DG AB DE =,即3621DGDG =⇒=,15D G =, 在11B D G Rt △中,1111152tan 1262D G D B G B D ∠===, 故1B G 与平面ABCD 所成角的正切值为5212,本题正确选项C .10.【答案】A【解析】由于正四棱锥和一个正三棱锥,所有的棱长都相等,可看作有两个相同的正四棱柱拼凑而成,如图所示:点对应正四棱锥的上底面中心,点对应另一正四棱锥的上底面中心,由图形可知拼成一个三棱柱,设为的中点,由此可知,又因为平面,所以,因为,,所以.故选A.11.【答案】C【解析】正方体C1各面中心为顶点的凸多面体C2为正八面体,它的中截面(垂直平分相对顶点连线的界面)是正方形,该正方形对角线长等于正方体的棱长,所以它的棱长122 222a===,以C2各个面的中心为顶点的正方体为图形C3是正方体,正方体C3面对角线长等于C2棱长的23,(正三角形中心到对边的距离等于高的23),因此对角线为2223=,所以321332a==,故选C.12.【答案】D 【解析】如图所示,设AC x =,由APC △的面积为2,得4PA x=, 因为30ABC ∠=︒,ABC △外接圆的半径r x =,因为PA ⊥平面ABC ,且4PA x =, 所以O 到平面ABC 的距离为122d PA x=⋅=,设球O 的半径为R ,则22224222R r d x x=+=+≥⨯=,当且仅当2x =立,所以三棱锥P ABC -的外接球的体积的最小值为3432ππ233⨯=,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.63π【解析】因为长方体的长、宽、高分别为2cm ,2cm ,4cm , 所以其体积为3224=16cm V =⨯⨯长方体,其外接球直径为222222426R ++=,故6R =,所以其外接球体积为334=π86πcm 3V R =球, 因此,该长方体的体积与其外接球的体积之比为63π86π=.故答案为6:3π. 14.【答案】26【解析】∵AB CD ⊥,AD BD =,10AB =寸,∴5AD =寸, 在AOD Rt △中,∵222OA OD AD =+,∴()22215OA OA =-+, ∴13OA =寸,∴圆柱底面的直径长是226AO =寸.故答案为26. 15.【答案】②④【解析】逐一考查所给的命题:①若m n ∥,α⊂m ,有可能n α⊂,不一定有n α∥,题中的命题错误;②若n α⊥,m β⊥,且m n ∥,由线面垂直的性质定理可得αβ∥,题中的命题正确; ③若α⊂m ,n α⊂,β∥m ,n β∥,若m n ∥,有可能α与β相交,题中的命题错误; ④若αβ⊥,m αβ=,且n β⊂,n m ⊥,由线面垂直的性质定理可得n α⊥,题中的命题正确,综上可得:正确命题的序号为②④. 16.【答案】9【解析】由球的体积公式可得34π36π33R R =⇒=, 不妨设底面正三角形的边长为,则2122sin6032ABC S a a a =⋅⋅⋅︒=△, 设棱锥的高为h ,由三棱锥的性质可得22223932h R a ⎫⎛⎫=+=⎪ ⎪⎭⎝⎭,解得2216363h a =-,据此可得22219P ABC ABC V S h -=△ 3222421168188168181336126481936499964364a a a a b c a a ⎛⎫++⎛⎫⎛⎫=⋅⋅-=⋅⋅⋅-≤⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故,当且仅当228161299a a =-,292a =时等号成立. 综上可得,三棱锥体积的最大值为9.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)见证明;(2)见证明.【解析】(1)取11A B 的中点G ,连接BG ,FG ,在111A B C △中,因为F ,G 分别为11A C ,11A B 的中点, 所以11FG B C ∥,且1112FG B C =, 在三棱柱111ABC A B C -中,11BC B C ∥,又E 为棱BC 的中点,所以FG BE ∥且FG BE =, 从而四边形BEFG 为平行四边形,于是EF BG ∥,又因为BG ⊂面11ABB A ,EF ⊄面11ABB A ,所以EF ∥平面11ABB A . (2)证明:在ABC △中,因为AB AC =,E 为BC 的中点,所以AE BC ⊥, 又因为侧面11B C CB ⊥底面ABC ,侧面11BCC B 底面ABC BC =,且AE ⊂面ABC ,所以AE ⊥平面11BCC B ,又AE ⊂面AEF ,所以平面AEF ⊥平面11BCC B . 18.【答案】(1)见证明;(2)4.【解析】(1)证明:∵PA PD =,E 是AD 的中点,∴PE AD ⊥, 又∵平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,∴PE ⊥平面ABCD ,又AC ⊂平面ABCD ,∴PE AC ⊥, 又PB AC ⊥,PEPB P =,∴AC ⊥平面PBE ,又AC ⊂平面PAC ,∴平面PBE ⊥平面PAC . (2)解:由(1)知AC ⊥平面PBE ,故AC BE ⊥,∵12BC AD BC AD DE ==∥,, ∴四边形BCDE 是平行四边形,∴CD BE CD BE =,∥,∴AC CD ⊥, ∵4PA PD PB ===,2AE DE BC ===,∴222 3PE PA AE =-=,∴222PB BE PE -==,即2CD =,∴223 2 AC AD CD =-=.∴111223234332P ACD ACD V S PE -=⋅=⨯⨯⨯⨯=△. 19.【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)证明:连接BD ,易知ACBD H =,BH DH =,又由BG PG =,故GH PD ∥,又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD . (2)证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥,又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CDDN D =,所以PA ⊥平面PCD .(3)解:连接AN ,由(2)中DN ⊥平面PAC , 可知DAN ∠为直线AD 与平面PAC 所成的角.因为PCD △为等边三角形,2CD =且N 为PC 的中点,所以3DN =又DN AN ⊥,在AND Rt △中,3sin DN DAN AD ∠==, 所以直线AD 与平面PAC 所成角的正弦值为3. 20.【答案】(1)见解析;(2)375. 【解析】(1)由ABCD 是正方形及折叠方式,得A E A D '⊥',A F A D '⊥',A EA F A ''=',A D ∴'⊥平面A EF ',A D EF ∴'⊥.(2)113BE BF BC ===,2,2,3A E A F EF A D '''∴====,7EF A S '∴=△,13DE DF ∴==,52DEF S ∴=△,设点A 到平面DEF 的距离为d ,A DEF D A EF V V '--'=,1133DEF A EF d S A D S ''∴⨯⨯=⨯⨯△△,解得375d =.∴点A 到平面DEF 的距离为375.21.【答案】(1)见解析;(2)见解析.【解析】(1)设N 为11A B 的中点,连结MN ,AN 、AC 、CM ,如下图所示:则四边形MNAC 为所求几何图形,11MN A C AC ∥∥,∴四边形MNAC 为梯形,且1222MN AC ==, 过M 作MP AC ⊥于点P ,8423MC=+=,22AC MNPC-==,2210MP MC QC∴=-=,∴梯形MNAC的面积()1224210652S=⨯+⨯=.(2)连接11D B,交EF于Q,连接DQ,则Q为EF的中点,且为11D B的四等分点,114224D Q∴=⨯=由1BB⊥平面1111DCBA可知1BB EF⊥,又11B D EF⊥,1111BB B D B=,EF∴⊥平面11BB D D,1EF D B∴⊥,由11112D Q D DD D DB==,得11tan tanQDD D BD∠=∠,即11QDD D BD∠=∠,1190QDB D BD QDB QDD∴∠+∠=∠+∠=︒,1DQ D B∴⊥,又DQ EF Q=,1D B∴⊥平面DEF.22.【答案】(1)见解析;(2)见解析;(3)2a=.【解析】(1)证明:因为在菱形ABCD中,π3ADC∠=,O为线段CD的中点,所以OD AO'⊥.因为平面AOD'⊥平面ABCO,平面AOD'平面ABCO AO=,OD'⊂平面AOD',所以'OD⊥平面ABCO.因为D平面ABCO,所以OD BC'⊥.(2)证明:如图,取P为线段'AD的中点,连接OP,PM,因为在ABD '△中,P ,M 分别是线段AD ',BD '的中点, 所以PM AB ∥,12PM AB =.因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,AB DC ∥, 所以122a OC CD ==,所以OC AB ∥,12OC AB =. 所以PM OC ∥,PM OC =,所以四边形OCMP 为平行四边形,所以CM OP ∥, 因为CM ⊄平面AOD ',OP ⊂平面AOD ',所以CM ∥平面AOD '. (3)由(1)知'OD ⊥平面ABCO ,所以OD 是四棱锥D ABCO '-的高,又233322a S a ⎛+ ⎝⎭==,2a OD '=, 因为31333a V S OD '=⨯⨯==,所以2a =.。
专题39两条直线的位置关系9题型分类1.两条直线的位置关系直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,l 3:A 1x +B 1y +C 1=0,l 4:A 2x +B 2y +C 2=0(其中l 1与l 3是同一条直线,l 2与l 4是同一条直线)的位置关系如下表:位置关系l 1,l 2满足的条件l 3,l 4满足的条件平行k 1=k 2且b 1≠b 2A 1B 2-A 2B 1=0且A 1C 2-A 2C 1≠0垂直k 1·k 2=-1A 1A 2+B 1B 2=0相交k 1≠k 2A 1B 2-A 2B 1≠02.三种距离公式(1)两点间的距离公式①条件:点P 1(x 1,y 1),P 2(x 2,y 2).②结论:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.③特例:点P (x ,y )到原点O (0,0)的距离|OP |=x 2+y 2.(2)点到直线的距离点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d=|C1-C2| A2+B2.常用结论1.直线系方程(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.2.五种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).(一)判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.(二)利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.y (三)对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.求直线l 关于直线0l 对称的直线'l 若直线0//l l ,则//'l l ,且对称轴0l 与直线l 及'l 之间的距离相等.此时0,,'l l l 分别为00,0,++=++=Ax By C Ax By C 22'0(0)++=+≠Ax By C A B ,由002222|||'|--=++C C C C A B A B ,求得'C ,从而得'l .若直线l 与0l 不平行,则0= l l Q .在直线l 上取异于Q 的一点11(,)P x y ,然后求得11(,)P x y 关于直线0l 对称的点22'(,)P x y ,再由,'Q P 两点确定直线'l (其中0'= l l l Q ).题型6:点线对称6-1.(2024高二上·全国·课后作业)若直线定点()2,0A.35B.6-3.(2024高二上·四川遂宁-A.(1,4)--C.(3,4)题型7:线点对称7-1.(2024高二·全国·单元测试)直线7-2.(2024高三上·辽宁营口时,点M到直线2l的距离为7-3.(2024高二上·江苏苏州的直线方程为.7-4.(2024高二上·全国·课后作业)直线题型8:线线对称8-1.(2024高三·全国·专题练习)已知直线直线为2l,则直线2l的方程为8-2.(2024高二上·湖北黄石的距离是25,则直线1l关于直线(四)一、单选题1.(2024高二上·浙江·期中)已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于()A B .2C 1D 12.(2024高二上·黑龙江哈尔滨·期末)已知两条直线1:3460l x y -+=,2:3440l x y --=,则这两条直线之间的距离为()A .2B .3C .5D .103.(2024高二·全国·课后作业)求直线x +2y -1=0关于直线x +2y +1=0对称的直线方程()A .x +2y -3=0B .x +2y +3=0C .x +2y -2=0D .x +2y +2=04.(2024高二·全国·课后作业)直线0ax by c ++=关于直线0x y -=对称的直线为()A .0ax by c -+=B .0bx ay c -+=C .0bx ay c ++=D .0bx ay c +-=5.(2024·浙江温州·三模)已知直线12:0,:10l x y l ax by +=++=,若12l l ⊥,则a b +=()A .1-B .0C .1D .26.(2024·安徽蚌埠·三模)已知直线1l :210ax y ++=,2l :()30a x y a --+=,则条件“1a =”是“12l l ⊥”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不必要也不充分条件7.(2024高二上·全国·课后作业)直线220x y ++=与420ax y +-=互相垂直,则这两条直线的交点坐标为()A .()1,4-B .()0,2-C .()1,0-D .0,12⎛⎫⎪⎝⎭8.(2024高二下·四川广元·期中)若直线2mx ny +=过点()2,2A ,其中m ,n 是正实数,则12m n+的最小值是()A .3B .3+C .92D .59.(2024高二上·全国·课后作业)若直线230x y --=与420x y a -+=,则a 的值为()A .4B6C .4或16-D .8或16-10.(2024高二上·全国·课后作业)抛物线214y x =的焦点关于直线10x y --=的对称点的坐标是()A .(2,1)-B .(1,1)-C .11,44⎛⎫- ⎪⎝⎭D .11,1616⎛⎫- ⎪⎝⎭11.(2024·四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .12.(2024·全国)点(0,﹣1)到直线()1y k x =+距离的最大值为()A .1B CD .213.(2024·北京东城·二模)已知三条直线1:220l x y -+=,2:20l x -=,3:0+=l x ky 将平面分为六个部分,则满足条件的k 的值共有()A .1个B .2个C .3个D .无数个14.(2024高二上·辽宁沈阳·阶段练习)两直线方程为1:3260l x y --=,22:0x y l --=,则1l 关于2l 对称的直线方程为()A .3240x y --=B .2360x y +-=C .2340x y --=D .3260x y --=15.(2024高一下·海南·期末)设,,a b c 分别是ABC V 中,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ⋅++=与sin sin 0bx B y C -⋅+=的位置关系是()A .平行B .重合C .垂直D .相交但不垂直16.(2024高三下·江西·开学考试)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120°时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等且均为120°.根据以上性质,.则(,)F x y =的最小值为()A .4B .2+C .3+D .4+17.(2024·贵州毕节·模拟预测)直线()()1:11l x a y a a R ++=-∈,直线21:2l y x =-,下列说法正确的是()A .R a ∃∈,使得12l l ∥B .R a ∃∈,使得12l l ⊥C .R a ∀∈,1l 与2l 都相交D .R a ∃∈,使得原点到1l 的距离为318.(2024·全国)如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么()A .1,63a b ==B .1,63a b ==-C .3,2a b ==-D .3,6a b ==19.(2024高一·全国·课后作业)已知ΔA 的顶点()2,1B ,()6,3C -,其垂心为()3,2H -,则其顶点A 的坐标为A .()19,62--B .()19,62-C .()19,62-D .()19,6220.(2024高三·全国·课后作业)若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为()A .B .C .D .21.(2024高二上·湖北·阶段练习)在等腰直角三角形ABC 中,3AB AC ==,点P 是边AB 上异于A B 、的一点,光线从点P 出发,经BC CA 、反射后又回到点P ,如图,若光线QR 经过ABC V 的重心,则AP =()A .32B .34C .1D .222.(2024高一上·湖南长沙·开学考试)如下图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点(2,0)C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为()A .53,22E ⎛⎫- ⎪⎝⎭,(0,2)F B .(2,2)E -,(0,2)F C .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D .(2,2)E -,20,3F ⎛⎫⎪⎝⎭23.(2024高二上·广东深圳·期中)过定点A 的动直线0x ky +=和过定点B 的动直线210kx y k --+=交于点M ,则MA MB +的最大值是()A .B .3C D24.(2024高二下·陕西西安·期末)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是()AB C .5D .1025.(河北省张家口市2023-2024学年高二上学期期末数学试题)已知0x y +=,则)AB .CD .26.(2024·贵州·模拟预测)已知,x y +∈R ,满足22x y +=,则x 的最小值为()A .45B .85C .1D .1327.(2024·上海静安·二模)设直线1:220l x y --=与2l 关于直线:240l x y --=对称,则直线2l 的方程是()A .112220x y +-=B .11220x y ++=C .5110x y +-=D .10220x y +-=28.(2024高三·北京·+的最小值所属区间为()A .[10,11]B .(11,12]C .(12,13]D .前三个答案都不对29.(2024·北京)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .4二、多选题30.(2024高二下·江苏南京·期末)已知动点,A B 分别在直线1:3460l x y -+=与2:34100l x y -+=上移动,则线段AB 的中点P 到坐标原点O )A B .75C D 31.(24-25高二上·全国·单元测试)已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +-=,下列结论正确的是()A .若12//l l ,则6a =B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交32.(24-25高二上·全国·课后作业)已知直线l 10y -+=,则下列结论正确的是()A .直线l 的一个法向量为)B .若直线m :10x +=,则l m ⊥C .点)到直线l 的距离是2D .过()2与直线l 40y --=33.(2024高二下·江西南昌·阶段练习)已知曲线e 2xy =和直线:240l x y --=,则()A .曲线上与直线l 平行的切线的切点为e 1,2⎛⎫⎪⎝⎭B .曲线上与直线l 平行的切线的切点为10,2⎛⎫⎪⎝⎭C .曲线上的点到直线lD .曲线上的点到直线l 的最短距离为(3e 5+34.(福建省莆田第三中学,励志学校2023-2024学年高二上学期期中联考数学试卷)以下四个命题叙述正确的是()A .直线210x y -+=在x 轴上的截距是1B .直线0x ky +=和2380x y ++=的交点为P ,且P 在直线10x y --=上,则k 的值是12-C .设点(,)M x y 是直线20x y +-=上的动点,O 为原点,则OM 的最小值是2D .直线()12:310:2110L ax y L x a y ++=+++=,,若12//L L ,则3a =-或2三、填空题35.(2024高二·全国·课后作业)已知(),6A a ,()2,B b -,点()2,3P 是线段AB 的中点,则a b +=.36.(2024高二·江苏·假期作业)已知点(),4M x -与点()2,3N 间的距离为x =.37.(2024高三上·河北廊坊·阶段练习)与直线:2310l x y -+=关于点()4,5对称的直线的方程为.38.(2024高一·全国·课后作业)已知直线l 与直线1:1l y =及直线2:70l x y +-=分别交于点P ,Q .若PQ 的中点为点()1,1M -,则直线l 的斜率为.39.(2024高二上·辽宁大连·阶段练习)设点A 在x 轴上,点B 在y 轴上,AB 的中点是1(2)P -,,则AB 等于40.(2024高三上·黑龙江哈尔滨·期中)点()0,1-到直线()2y k x =+的距离的最大值是.41.(2024高二上·江苏南通·期中)已知点A 在x 轴上,点B 在y 轴上,线段AB 的中点M 的坐标为()2,1-,则线段AB 的长度为.42.(2024高二·全国·课堂例题)已知点()2,1A ,()3,4B ,()2,1C --,则ABC V 的面积为.43.(2024·云南保山·一模)已知坐标原点为O ,过点()P 2,6作直线()2mx 4m n y 2n 0(m,-++=n 不同时为零)的垂线,垂足为M ,则OM 的取值范围是.44.(2024高二上·全国·课后作业)已知点(),2P a 、()2,3A --、()1,1B ,且PA PB =,则a =.45.(2024高二上·安徽六安·期中)已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为.46.(2024高三上·上海青浦·阶段练习)在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1:l y x =和2:2l y x =-+,则22a b +的最大值为.47.(2024·四川)在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,﹣1)的距离之和最小的点的坐标是.48.(2024高三·陕西·阶段练习)若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得的线段的长为m 的倾斜角可以是①15°,②30°,③45°,④60°,⑤75°.其中正确答案的序号是(写出所有正确答案的序号).49.(2024高三·全国·专题练习)在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是.50.(2024高三·全国·专题练习)点()0,0,()3,4到直线l 的距离分别为1和4,写出一个满足条件的直线l 的方程:.51.(2024高一·全国·课后作业)经过直线3x+2y+6=0和2x+5y-7=0的交点,且在两坐标轴上的截距相等的直线方程为.52.(2024高二上·全国·课后作业)经过点(1,0)P 和两直线1:220l x y +-=;2:3220l x y -+=交点的直线方程为.53.(2024·黑龙江哈尔滨·模拟预测)已知实数1212,,,x x y y ,满足22114x y +=,22229x y +=,12120x x y y +=,则112299x y x y +-++-的最小值是.四、解答题54.(2024高二上·广东东莞·期中)在平面直角坐标系xOy 中,已知ABC V 的三个顶点(,),(2,1),(2,3)A m n B C -.(1)求BC 边所在直线的方程;(2)若ABC V 的面积等于7,且点A 的坐标满足2360-+=m n ,求点A 的坐标.55.(24-25高二上·全国·课后作业)已知直线l 经过点()2,1P -,且平行于向量()1,1.(1)求直线l 的方程;(2)若直线m 与l 平行且点P 到直线mm 的方程.56.(2024高二上·天津河西·阶段练习)已知直线()():12360m a x a y a -++-+=,:230n x y -+=.(1)若坐标原点O 到直线m ,求a 的值;(2)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程.57.(2024高二·全国·课后作业)已知点()()1,3,5,2A B -,点P 在x 轴上使AP BP -最大,求点P 的坐标.。
7.2 空间几何的体积与表面积(提升版)思维导图考点一柱锥台表面积【例1-1】(2022·青海)以边长为4的正方形的一边所在直线为旋转轴,将该正方形旋转一周,所得圆柱的侧面积为()A.32πB.16πC.32D.16【答案】A【解析】以边长为4的正方形的一边所在直线为旋转轴,旋转一周得到的旋转体为圆柱,其底面半径4r=,高4h=,故其侧面积224432S r hπππ=⋅=⨯⨯=.故选:A【例1-2】(2022·天津·南开中学模拟预测)已知圆锥PO的母线长与底面直径都等于2,一个圆柱内接于这个圆锥,即圆柱的上底面是圆锥的一个截面,下底面在圆锥的底面内,则圆柱侧面积的最大值为()A.3π2B.3πC.()633π-D.3【答案】A【解析】如图,1AB=,2BE=,3AE=,则30AEB∠=,设DC r=,01r<<,则2EC r=,3DE r=,则33AD AE DE r=-=-,考点呈现例题剖析∴圆柱侧面积为:)()221132π2π3323π23π22S r AD r r r r ⎡⎤⎛⎫=⋅=⋅=-+≤-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当12r =时取等号.故选:A . 【一隅三反】1.(2023·全国·高三专题练习)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥,若某直角圆锥内接于一球(圆锥的顶点和底面上各点均在该球面上),求此圆锥侧面积和球表面积之比( ) A .24B 22C 2D .24π【答案】A【解析】设直角圆锥底面半径为r 2r , ()222rr r -=,所以底面圆的圆心即为外接球的球心,所以外接球半径为r , 所以22224S rl r S r πππ==圆锥侧球故选:A. 2.(2022·福建三明·模拟预测)如图所示的建筑物是号称“神州第一圆楼”的福建土楼——二宜楼,其外形是圆柱形,圆楼直径为73.4m ,忽略二宜楼顶部的屋檐,若二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23,则二宜楼外层圆柱墙面的高度可能为( )A .16mB .17mC .18mD .19m【答案】A【解析】底面直径为40m ,高为77m ()2210772090m +=,所以该圆锥的侧面积为220901800cm ππ⋅⋅=,设二宜楼外层圆柱墙面的高度为h ,则由36.72h π⨯1200π=,解得16.3h ≈因为二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23, 所以二宜楼外层圆柱墙面的高度可能为16m , 故选:A3.(2022·江苏·阜宁县东沟中学模拟预测)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知.底面圆的直径16cm AB =,圆柱体部分的高8cm BC =,圆锥体部分的高6cm CD =,则这个陀螺的表面积是( )A .2192m c πB .2252m c πC .2272m c πD .2336m c π【答案】C【解析】由题意可得圆锥体的母线长为226810l =+=, 所以圆锥体的侧面积为10880ππ⨯=,圆柱体的侧面积为168128ππ⨯=,圆柱的底面面积为2864ππ⨯=, 所以此陀螺的表面积为8012864272ππππ++=(2cm ),故选:C考点二 柱锥台的体积【例2-1】(2022·全国·高三专题练习)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为2的正三角形,SC 为球O 的直径,且4SC =,则此棱锥的体积为( )A 42B 43C 82D .42【答案】A【解析】解:因为ABC 是边长为2的正三角形,所以ABC 外接圆的半径12232sin 60r =⋅=︒所以点O 到平面ABC 的距离2226d R r -SC 为球O 的直径,点S 到平面ABC 的距离为462d =此棱锥的体积为2111464222sin 60332ABCV S d =⨯=⨯⨯,故选:A .【例2-2】(2022·天津·高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图, 因为3,120CH BH CHB ==∠=,所以3332CM BM HM ==, 因为重叠后的底面为正方形,所以33AB BC ==, 在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥, 由AB BC B ⋂=可得HM ⊥平面ADCB , 设重叠后的EG 与FH 交点为,I则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D. 【例2-3】(2022·湖北·高三阶段练习)已知四面体D ABC -中,1AC BC AD BD ====,则D ABC -体积的最大值为( ) A 42B 32C 23D 3【答案】C【解析】设M 为CD 的中点,连接AM,BM , 设四面体A -BCD 的高为h ,则h AM ≤,由于1AC BC AD BD ====,故ACD BCD ≌ , 则ACD BCD ∠=∠,设π,(0,)2BCD ACD αα∈∠=∠=,则sin sin ,22cos 2cos AM BM BC CD CM BC αααα======, 所以1136D ABC A DBC BCDV V Sh CD BM AM --==⋅≤⋅⋅222222231112cos sin sin cos sin 2cos sin sin ()333232αααααααα++==⋅⋅23, 当且仅当平面ACD 与平面BCD 垂直且sin 2αα=即arctan 2α=时取等号,故选:C 【一隅三反】1.(2022·江苏)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5B .22C 10D 510【答案】C【解析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l +=,所以1221,33r l r l ==,所以甲圆锥的高221459h l l =-=,乙圆锥的高2221229h l l =-=,所以221122221453931011223r h l V V r h l l ππ==⨯甲乙故选:C. 2.(2022·广西桂林)一个三棱锥S -ABC 的侧棱上各有一个小洞D ,E ,F ,且SD :DA =SE :EB =CF :FS =3:1,则这个容器最多可盛放原来容器的( ) A .89B .49C .5564D .23【答案】C【解析】由题意,这个容器最多可盛放原来容器的比例为DEF ABC S ABC S DEFS ABC S ABC V V V V V ------=,设C 到平面SAB 的距离为h ,则13S ABC C ABS SAB V V Sh --==.又91991646464S DEF F SDE SABSAB C ABS V V S h S h V ---==⨯=⨯=,故915564164DEF ABC S ABC S DEFS ABC S ABCV V V V V -------=== 故选:C3.(2023·全国·高三专题练习)足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,如图所示.已知某“鞠”的表面上有四个点,,,P A B C,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为( )A .256π B .9πC .92πD .98π【答案】C【解析】取AB 中点为D ,过D 作//OD PA ,且11==22OD PA ,因为PA ⊥平面ABC,所以OD ⊥平面ABC .由于AC BC ⊥,故DA DB DC ==,进而可知OA OB OC OP ===,所以O 是球心,OA 为球的半径.由112==4323P ABC V AC CB PA AC CB -=⨯⋅⋅⇒⋅,又2222=8AB AC BC AC BC =+≥⋅,当且仅当2AC BC ==,等号成立,故此时22AB =所以球半径()2222113+2222R OA OD AB ⎛⎫⎛⎫==+≥ ⎪ ⎪⎝⎭⎝⎭,故min 3=2R ,体积最小值为334439πππ3322R ⎛⎫== ⎪⎝⎭故选:C4.(2023·全国·高三专题练习)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C【解析】∴ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当326l ≤≤0V '>,当2633l ≤0V '<, 所以当26l =时,正四棱锥的体积V 取最大值,最大值为643, 又3l =时,274V =,33l =814V =,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.考点三 球的体积与表面积【例3】(2022·甘肃省武威第一中学)如图,半径为4的球O 中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的表面积之差为( )A .64πB .48πC .32πD .16π【答案】D 【解析】如图.设圆柱底面半径为r ,球的半径与圆柱底面夹角为OMN α∠=,则cos 4cos MN r R αα==⋅=,sin 4sin ON R αα=⋅=,∴圆柱的高8sin h α=,∴圆柱的侧面积为232sin2S r h ππα=⋅⋅=⋅,当且仅当4πα=时,sin21α=,圆柱的侧面积最大,为32π, 球的表面积与圆柱的表面积之差为22422(22)64321616R rh πππππππ--⨯=--=.故选:D . 【一隅三反】1.(2022·全国·赣州市第三中学)已知某正三棱锥S ABC -的内切球与外接球的球心恰好重合,如果其内切球的半径为1,其外接球的体积为36π,那么这个三棱锥的表面积为( ) A .24 B .243C .48D .483【答案】B【解析】由题意可知,点S 在底面ABC 内的射影点D 为等边ABC 的中心,取线段BC 的中点E ,连接AE ,则2AD DE =,易知三棱锥S ABC -的外接球球心O 在线段SD 上,设正三棱锥S ABC -的外接球半径为R ,则34363R ππ=,解得3R =,设正三棱锥S ABC -的内切球的半径为r ,则1r =,故314SD R r =+=+=,SD ⊥平面ABC ,AD ⊂平面ABC ,SD AD ∴⊥,易知3OA R ==,则222222AD OA OD R r --=所以,122DE AD ==32AE =26sin 3AEAB π== 由勾股定理可得2226SA SD AD =+=所以,正三棱锥S ABC -是边长为6 因此,正三棱锥S ABC -的表面积为(23426=243故选:B.2.(2022·天津·耀华中学二模)一个圆锥的侧面展开图是一个半圆,则该圆锥的内切球的表面积和圆锥的侧面积的比为( ) A .2:3 B .3:2 C .1:2 D .3:4【答案】A【解析】设圆锥的底面半径为r ,母线长为l ,圆锥的高为h ,内切球的半径为R ,其轴截面如图所示,设O 为内切球球心,因为圆锥的侧面展开图是一个半圆, 所以2l r ππ=,得2l r =,即2PA PB r ==, 所以222243PD PB BD r r r =--, 所以3PO PD OD r R =-=-, 因为POE △∴PBD △,所以PO OEPB BD=, 3r R Rr -=,得3R =, 所以圆锥的内切球的表面积和圆锥的侧面积的比为 22214:4:22:33R rl r r ππππ=⋅=,故选:A3.(2022·山东青岛·二模)《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,EF ∥平面ABCD ,2EF =,其余棱长都为1,则这个几何体的外接球的体积为( )A 2B .4π3C 82D .4π【答案】B【解析】连接AC ,BD 交于点M ,取EF 的中点O ,则OM ⊥平面ABCD ,,取BC 的中点G ,连接FG ,作GH EF ⊥,垂足为H ,如图所示由题意可知,13,2HF FG ==222HG FG HF =- 所以2OM HG ==2AM =所以221OA OM AM +=,又1OE =, 所以1OA OB OC OD OE OF ======,即这个几何体的外接球的球心为O ,半径为1, 所以这个几何体的外接球的体积为33444ππ1π333V R ==⨯⨯=.故选:B.考点四 空间几何的截面【例4-1】(2022·全国·高三专题练习)已知圆锥的母线长为2,侧面积为23π,则过顶点的截面面积的最大值等于( ) A 3B 2C .3 D .2【答案】D【解析】由圆锥的母线长为2,侧面积为3π,假设底面圆周长为l ,因此12232l π⨯⨯=,故底面圆周长为23π3由于轴截面为腰长为2,底边长为底面圆直径32π3.故当截面为顶角是π2的等腰三角形时面积最大,此时1π22sin 222S =⋅⋅⋅=.故选:D【例4-2】.(2022·湖南·长沙一中模拟预测)(多选)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为22543⎡+⎣,【答案】BCD【解析】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积 为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得125225OG ==设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S=⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确;由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ',则2222222,2,2,16PP PE P E PF P F P E P F '''''==+++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,222216PE PF t t +++-所以()222222216241680PE PF t tt t +=++-=+-++()224281442485,48t ⎡⎤=+--++⎣⎦,所以225,43PE PF ⎡+∈+⎣,故D 正确.故选:BCD.【一隅三反】1.(2022·江西鹰潭·二模)《算数术》竹简于上世纪八十年代出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也,叉以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.现有一圆锥底面周长为563,侧面面积为1123,其体积的近似公式为23112V L h ≈,用此π的近似取值(用分数表示)计算过该圆锥顶点的截面面积的最大值为( ) A .15 B .37C .8821D .8【答案】D【解析】若圆锥母线长为l ,底面半径为r ,则156112233l ⨯=,故4l,又5623r π=,故283r π=, 而22133112V r h L h π=≈,则2228356()()31123ππ⨯≈⨯,可得289π=, 所以3r =,若截面顶角θ,当截面为轴截面时2221cos 108r l θ=-=-<,此时2πθπ<<,又截面面积为21sin 8sin 2l θθ=,故当2πθ=时截面面积的最大值为8.故选:D2.(2022·河南·方城第一高级中学)某中学开展劳动实习,学生对圆台体木块进行平面切割,已知圆台的上底面半径为1,下底面半径为2,要求切割面经过圆台的两条母线且使得切割面的面积最大.3则切割面的面积为______3______. 【答案】 2 33【解析】解法一:如图,将圆台1O O 补成圆锥PO ,设圆台1O O 的上、下底面半径分别为r ,R ,高和母线长分别为h ,l ,则()222l h R r =+-.因为等腰梯形ABCD 为过两条母线的截面,设PC x =.APB θ∠=,则r x R x l=+,得rl x R r=-,则()()2221sin sin 22PAB PCD ABCD R r S S S x l x l R r θθ+⎡⎤=-=+-=⎣⎦-△△梯形.∴若33h ,则23l =,0120θ︒<≤︒,当90θ=︒时,切割面的面积最大,最大面积2S =;∴若3h =2l =,060θ︒<︒≤,当60θ=︒时,切割面的面积最大,最大面积33S =解法二:如图,设圆台上底面圆心为1O ,下底面圆心为O ,过两条母线的截面为四边形11ABB A ,可得四边形11ABB A 为等腰梯形.设111AO B AOB θ∠=∠=,圆台的高1O O h =,取11A B ,AB 的中点分别为1C ,D ,连接11O C ,1C D ,OD ,则四边形11O C DO 为直角梯形,过1C 作11C C O O ∥交OD 于点C.因为111O B =,2OB =,所以11cos2O C θ=,111122sin2A B B C θ==,2cos2OD θ=,24sin 2AB BD θ==,所以11cos 2CD OD O C θ=-=,所以221cos 2DC h θ=+则()11221111cos 222ABB A S S AB A B DC h θθ==+⋅=+梯形令sin 2t θ=,因为(]0,θπ∈,所以(]0,1t ∈,则2231S t h =-+(]0,1t ∈.∴当3h 时,2222244333232t t S t t ⎛⎫+- ⎪⎛⎫=-≤= ⎪ ⎪⎝⎭ ⎪⎝⎭,当且仅当2243t t =-,即6t =max 2S =.∴当3h =()22423434S t t t t =--+令2t x =,则(]0,1x ∈,()24224424t t x x x -+=-+=--+,当1x =时,取最大值3.此时max 33S =故答案为:2;333.(2022·青海·海东市第一中学)已知圆锥的底面直径为2323则该圆锥的体积为________. 5π【解析】由题意知:圆锥的底面半径3r =设圆锥的母线长为l ,则2213sin 2323l π⋅==22l =∴圆锥的高22835h l r =--=∴圆锥的体积2153V r h ππ=⋅=.5π.。
2021年高考数学一轮复习《空间中的位置关系与体积、表面积》测试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( ) A .平行B .相交C .垂直D .异面2.圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为( ) A .40πB .52πC .50πD .212π33.如图,正方体1111ABCD A B C D -中,E 为棱1BB 的中点,用过点A 、E 、1C 的平面截去 该正方体的下半部分,则剩余几何体的正视图(也称主视图)是( )A .B .C .D .4.如图,正方体中,,,,分别为,,,的中点,则直线,所成角的大小为( )A .π6B .π4C .π3D .π25.已知两个平面相互垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线 ②一个平面内已知直线必垂直于另一个平面内的无数条直线 ③一个平面内任意一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面 其中正确命题个数是( ) A .1B .2C .3D .46.下图是某几何体的三视图,其中网格纸上小正方形的边长为1,则该几何体的体积为( )A .12B .15C .403D .5037.古希腊数学家阿基米德构造了一个“圆柱容器”的几何体:在圆柱容器里放一个球,使该球四周 碰壁,且与上,下底面相切,则在该几何体中,圆柱的体积与球的体积之比为( ) A .23B .43C .23或32D .328.矩形中,,,沿将矩形折起,使面面,则四面体的外接球的体积为( )A .125π6B .125π9C .125π12D .125π39.在正方体1111ABCD A B C D -中,E 为棱CD 上一点,且2CE DE =,F 为棱1AA 的中点, 且平面BEF 与1DD 交于点G ,则1B G 与平面ABCD 所成角的正切值为( )。
空间中的位置关系一、单项选择题1.在空间中,下列命题是真命题的是( )A .经过三个点有且只有一个平面B .平行于同一平面的两直线相互平行C .如果两个角的两条边分别对应平行,那么这两个角相等D .如果两个相交平面垂直于同一个平面,那么它们的交线也垂直于这个平面2.已知α,β是两个不同的平面,l ,m ,n 是三条不同的直线,下列条件中,可以得到l ⊥α的是( )A .l ⊥m ,l ⊥n ,m ⊂α,n ⊂αB .l ⊥m ,m ∥αC .α⊥β,l ∥βD .l ∥m ,m ⊥α3.已知直线m ,n 及平面α,β,下列命题中正确的是( )A .若m ⊥α,n ∥β,且m ∥n ,则α∥βB .若m ∥α,n ∥β,且m ∥n ,则α∥βC .若m ⊥α,n ∥β,且m ⊥n ,则α⊥βD .若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β4.设α、β是空间两个不同平面,a 、b 、c 是空间三条不同直线,下列命题为真命题的是( )A .若α∥β,b ∥α,则b ∥βB .若直线a 与b 相交,a ∥α, b ∥β,则α与β相交C .若α⊥β,a ∥α,则a ⊥βD .若α⊥β,α∩β=a ,b ⊂α,b ⊥a ,c ⊥β,则b ∥c5.在正方体ABCD A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2 B .π3 C .π4 D .π66.如图,E 是正方体ABCD A 1B 1C 1D 1的棱C 1D 1上的一点(不与端点重合),BD 1∥平面B 1CE ,则( )A .BD 1∥CEB .AC 1⊥BD 1C .D 1E =2EC 1D .D 1E =EC 17.在三棱锥A BCD 中,AB =2,∠ABC =∠ACD =60°,E 、F 分别为BC 、AD 的中点,且EF ⊥BC ,EF ⊥AD ,BC ⊥AD ,则异面直线BF 与DE 所成角的余弦值为( )A .13B .23C .23D .348.如图,圆台OO1的上底面半径为O1A1=1,下底面半径为OA=2,母线长AA1=2,过OA的中点B作OA的垂线交圆O于点C,则异面直线OO1与A1C所成角的大小为() A.30° B.45° C.60° D.90°二、多项选择题9.设a,b是两条不重合的直线,α,β,γ是三个不同的平面.下列四个命题中,正确的是()A.若γ⊥α,α∥β,则γ⊥β B.若β⊥α,γ⊥α,则β∥γC.若a⊥α,a⊥β,则α∥β D.若a⊥α,a⊥b,则b∥α10.已知α,β是两个平面,m,n是两个条件,则下列结论正确的是()A.如果m⊥n,m⊥α,n∥β,那么α⊥βB.如果m⊥α,n∥α,那么m⊥nC.如果m∥α,n∥β且α∥β,那么m∥nD.如果α∥β,m⊂α,那么m∥β11.已知α,β是两个不同的平面,m,n是两条不同的直线,且m,n⊄α,m,n⊄β,给出下列四个论断:①α∥β;②m∥n;③m∥α;④n∥β.以其中三个论断为条件,剩余论断为结论组成四个命题.其中正确的命题是()12.如图,平面四边形ABCD中,E,F分别是AD,BD的中点,AB=AD=CD=2,BD=2 2 ,∠BDC=90°,将△ABD沿对角线BD折起至△A′BD,使平面A′BD⊥平面BCD,则四面体A′BCD中,下列结论正确的是()A.EF∥平面A′BCB.异面直线CD与A′B所成的角为90°C.异面直线EF与A′C所成的角为60°D.直线A′C与平面BCD所成角为30°三、填空题13.已知一个圆锥的侧面积是底面面积的2倍,则该圆锥的母线与其底面所成的角的大小为________.14.已知P是△ABC所在平面外一点,P到AB,AC,BC的距离相等,且P在△ABC 所在平面的射影O在△ABC内,则O一定是△ABC的________心.(选填“内”、“外”、“垂”、“重”)15.已知三个互不重合的平面α,β,γ,α∩β=m,n⊂γ,且直线m、n不重合,由下列三个条件:①m∥γ,n⊂β;②m∥γ,n∥β;③m⊂γ,n∥β.能推得m∥n的条件是________.16.如图,直三棱柱ABC A′B′C′的所有棱长均为2,P是侧面BB′C′C内一点,且PA =2,则点P的轨迹的长度为________;当PC′最短时,直线A′C′与PA所成角的余弦值为________.。
第1节空间几何体的结构及其表面积、体积考试要求 1.利用实物、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构;2.知道球、棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题;3.能用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图.知识梳理1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行且相似相交于一点,但不一定相延长线交于一点侧棱平行且相等等侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形互相平行且相等,相交于一点延长线交于一点母线垂直于底面轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开矩形扇形扇环图 2.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l4.空间几何体的表面积与体积公式名称几何体表面积体积柱 体(棱柱和圆柱) S 表面积=S 侧+2S 底V =S 底h锥 体(棱锥和圆锥) S 表面积=S 侧+S 底V =13S 底h台 体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3[微点提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.正方体的棱长为a ,球的半径为R ,则与其有关的切、接球常用结论如下 : (1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ; (3)若球与正方体的各棱相切,则2R =2a .3.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.4.正四面体的外接球与内切球的半径之比为3∶1.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()(4)锥体的体积等于底面面积与高之积.( )解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示的图形满足条件但不是棱锥.(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线段还平行于x轴,平行于y轴的线段还平行于y轴,所以∠A也可能为135°.(4)锥体的体积等于底面面积与高之积的三分之一,故不正确.答案(1)×(2)×(3)×(4)×2.(必修2P10B1改编)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱解析由几何体的结构特征,剩下的几何体为五棱柱.答案 C3.(必修2P27练习1改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A.1 cm B.2 cm C.3 cmD.32cm 解析 由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2=4,所以r =2(cm). 答案 B4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12πB.323π C.8π D.4π解析 设正方体的棱长为a ,则a 3=8,解得a =2.设球的半径为R ,则2R =3a ,即R = 3.所以球的表面积S =4πR 2=12π. 答案 A5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.πB.3π4C.π2D.π4解析 如图画出圆柱的轴截面ABCD ,O 为球心.球半径R =OA =1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32,故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4. 答案 B6.(2019·菏泽一中月考)用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为________.解析 设原矩形的长为a ,宽为b ,则其直观图是长为a ,高为b 2sin 45°=24b 的平行四边形,所以S 直观S 矩形=24ab ab =24. 答案24考点一 空间几何体的结构特征 【例1】 (1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A.0B.1C.2D.3(2)给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③存在每个面都是直角三角形的四面体; ④棱台的侧棱延长后交于一点. 其中正确命题的序号是________.解析 (1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD -A 1B 1C 1D 1中的三棱锥C 1-ABC ,四个面都是直角三角形;④正确,由棱台的概念可知.答案(1)A (2)②③④规律方法 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练1】下列命题正确的是( )A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析如图所示,可排除A,B选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,否则为椭圆或椭圆的一部分.答案 C考点二空间几何体的直观图【例2】已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2 B.38a2 C.68a2 D.616a2解析如图①②所示的实际图形和直观图.由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a .所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. 答案 D规律方法 1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y 轴的线段长度减半,平行于x 轴和z 轴的线段长度不变)来掌握.2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S 直观图=24S 原图形.【训练2】 如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2 B.1+22C.2+22D.1+ 2解析 恢复后的原图形为一直角梯形, 所以S =12(1+2+1)×2=2+ 2.故选A.答案 A考点三 空间几何体的表面积【例3】 (1)若正四棱锥的底面边长和高都为2,则其全面积为________.(2)圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的表面积为________(结果中保留π).(3)如图直平行六面体的底面为菱形,若过不相邻两条侧棱的截面的面积分别为Q 1,Q 2,则它的侧面积为______.解析 (1)因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图.由题意知底面正方形的边长为2,正四棱锥的高为2, 则正四棱锥的斜高PE =22+12= 5.所以该四棱锥的侧面积S =4×12×2×5=45,∴S 全=2×2+45=4+4 5.(2)如图所示,设圆台的上底周长为C ,因为扇环的圆心角是180°,所以C =π·SA .又C =2π×10=20π,所以SA =20. 同理SB =40. 所以AB =SB -SA =20.S 表=S 侧+S 上底+S 下底=π(r 1+r 2)·AB +πr 21+πr 22 =π(10+20)×20+π×102+π×202=1 100π(cm 2).故圆台的表面积为1 100π cm 2.(3)设直平行六面体的底面边长为a ,侧棱长为l ,则S 侧=4al ,因为过A 1A ,C 1C 与过B 1B ,D 1D 的截面都为矩形,从而⎩⎪⎨⎪⎧Q 1=AC ·l ,Q 2=BD ·l ,则AC =Q 1l ,BD =Q 2l. 又AC ⊥BD ,∴⎝ ⎛⎭⎪⎫AC 22+⎝ ⎛⎭⎪⎫BD 22=a 2.∴⎝ ⎛⎭⎪⎫Q 12l 2+⎝ ⎛⎭⎪⎫Q 22l 2=a 2.∴4a 2l 2=Q 21+Q 22,2al =Q 21+Q 22, ∴S 侧=4al =2Q 21+Q 22.答案 (1)4+4 5 (2)1 100π cm 2(3)2Q 21+Q 22规律方法 1.求解有关多面体侧面积的问题,关键是找到其特征几何图形,如棱柱中的矩形、棱台中的直角梯形、棱锥中的直角三角形,它们是联系高与斜高、边长等几何元素间的桥梁,从而架起求侧面积公式中的未知量与条件中已知几何元素间的联系.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.【训练3】 (1)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A.6π(4π+3) B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2)(2)(必修2P36A10改编)一直角三角形的三边长分别为6 cm ,8 cm ,10 cm ,绕斜边旋转一周所得几何体的表面积为________.解析 (1)分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,所以S 底=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2=8π(3π+1);②以长为4π的边为高时,6π为圆柱底面周长,则2πr =6π,r =3.所以S 底=9π,S 表=2S 底+S 侧=18π+24π2=6π(4π+3). (2)旋转一周所得几何体为以245 cm 为半径的两个同底面的圆锥,其表面积为S =π×245×6+π×245×8=3365π(cm 2).答案 (1)C (2)3365π cm 2考点四 空间几何体的体积【例4】 (1)(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V 柱为( ) A.1∶2 B.2∶3 C.3∶4D.1∶3(2)(2018·天津卷)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.解析 (1)设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =23. (2)连接AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,CD 1的中点,所以EH ∥AC ,EH =12AC .因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =12AC .所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形.又点M 到平面EHGF 的距离为12,所以四棱锥M -EFGH 的体积为13×⎝ ⎛⎭⎪⎫222×12=112.答案 (1)B (2)112规律方法 1.(直接法)规则几何体:对于规则几何体,直接利用公式计算即可.2.(割补法)不规则几何体:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.3.(等积法)三棱锥:利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.(1)求体积时,可选择“容易计算”的方式来计算;(2)利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.【训练4】 (必修2P28A3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.解析 设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积为V 1=13×12×12a ×12b ×12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47.答案 1∶47考点五 多面体与球的切、接问题 典例迁移【例5】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4πB.9π2C.6πD.32π3解析 由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .则12×6×8=12×(6+8+10)·r ,所以r =2. 2r =4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π.答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.【迁移探究2】 若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积. 解 如图,设球心为O ,半径为r ,则在Rt△AOF 中,(4-r )2+(2)2=r 2,解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.规律方法 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【训练5】 (2019·北京海淀区调研)三棱锥P -ABC 中,平面PAC ⊥平面ABC ,AB ⊥AC ,PA =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( ) A.23πB.234π C.64πD.643π 解析 如图,设O ′为正△PAC 的中心,D 为Rt△ABC 斜边的中点,H 为AC 中点.由平面PAC ⊥平面ABC .则O ′H ⊥平面ABC .作O ′O ∥HD ,OD ∥O ′H ,则交点O 为三棱锥外接球的球心,连接OP ,又O ′P =23PH =23×32×2=233,OO ′=DH =12AB =2.∴R 2=OP 2=O ′P 2+O ′O 2=43+4=163.故几何体外接球的表面积S =4πR 2=643π.答案 D[思维升华]1.几何体的截面及作用(1)常见的几种截面:①过棱柱、棱锥、棱台的两条相对侧棱的截面;②平行于底面的截面;③旋转体中的轴截面;④球的截面.(2)作用:利用截面研究几何体,贯彻了空间问题平面化的思想,截面可以把几何体的性质、画法及证明、计算融为一体.2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.3.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.[易错防范]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.直观想象与逻辑推理——简单几何体的外接球与内切球问题1.直观想象主要表现为利用几何图形描述问题,借助几何直观理解问题,运用空间想象认识事物,解决与球有关的问题对该素养有较高的要求.2.简单几何体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径长或确定球心O的位置问题,其中球心的确定是关键.一、知识要点1.外接球的问题(1)必备知识:①简单多面体外接球的球心的结论.结论1:正方体或长方体的外接球的球心是其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.②构造正方体或长方体确定球心.③利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.(2)方法技巧:几何体补成正方体或长方体.2.内切球问题(1)必备知识:①内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.②正多面体的内切球和外接球的球心重合.③正棱锥的内切球和外接球球心都在高线上,但不一定重合.(2)方法技巧:体积分割是求内切球半径的通用做法.二、突破策略1.利用长方体的体对角线探索外接球半径【例1】已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π解析设正四棱柱的底面边长为a,高为h,球半径为R,则正四棱柱的体积为V=a2h=16,a=2,4R2=a2+a2+h2=4+4+16=24,所以球的表面积为S=24π.答案 C评析若几何体存在三条两两垂直的线段或者三条线有两个垂直,可构造墙角模型(如下图),直接用公式(2R)2=a2+b2+c2求出R.2.利用长方体的面对角线探索外接球半径【例2】三棱锥中S-ABC,SA=BC=13,SB=AC=5,SC=AB=10.则三棱锥的外接球的表面积为______.解析如图,在长方体中,设AE=a,BE=b,CE=c.则SC =AB =a 2+b 2=10,SA =BC=b 2+c 2=13, SB =AC =a 2+c 2= 5.从而a 2+b 2+c 2=14=(2R )2,可得S =4πR 2=14π.故所求三棱锥的外接球的表面积为14π. 答案 14π评析 三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方体中构造三棱锥,从而巧妙探索外接球半径. 3.利用底面三角形与侧面三角形的外心探索球心【例3】 平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将其沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD .若四面体A ′BCD 的顶点在同一球面上,则该球的体积为( ) A.32π B.3πC.23π D.2π解析 如图,设BD ,BC 的中点分别为E ,F .因点F 为底面直角△BCD 的外心,知三棱锥A ′-BCD 的外接球球心必在过点F 且与平面BCD 垂直的直线l 1上.又点E 为底面直角△A ′BD 的外心,知外接球球心必在过点E 且与平面A ′BD 垂直的直线l 2上.因而球心为l 1与l 2的交点.又FE ∥CD ,CD ⊥BD 知FE ⊥平面A ′BD .从而可知球心为点F .又A ′B =A ′D =1,CD =1知BD =2,球半径R =FD =BC 2=32.故V =43π⎝ ⎛⎭⎪⎫333=32π.答案 C评析 三棱锥侧面与底面垂直时,可紧扣球心与底面三角形外心连线垂直于底面这一性质,利用底面与侧面的外心,巧探外接球球心,妙求半径. 4.利用直棱柱上下底面外接圆圆心的连线确定球心【例4】 一个正六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.解析 设正六棱柱底面边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则a =12,底面积为S=6·34·⎝⎛⎭⎪⎫122=338,V柱=Sh=338h=98,∴h=3,R2=⎝⎛⎭⎪⎫322+⎝⎛⎭⎪⎫122=1,R=1,球的体积为V=4π3.答案4π3评析直棱柱的外接球、圆柱的外接球模型如下图其外接球球心就是上下底面外接圆圆心连线的中点.5.锥体的内切球问题(1)题设:如图①,三棱锥P-ABC是正三棱锥,求其内切球的半径.图①第一步:先画出内切球的截面图,E,H分别是两个三角形的外心;第二步:求DH=13CD,PO=PH-r,PD是侧面△ABP的高;第三步:由△POE∽△PDH,建立等式:OEDH=POPD,解出r.(2)题设:如图②,四棱锥P-ABC是正四棱锥,求其内切球的半径.图②第一步:先画出内切球的截面图,P,O,H三点共线;第二步:求FH=12BC,PO=PH-r,PF是侧面△PCD的高;第三步:由△POG ∽△PFH ,建立等式:OG HF =POPF,解出r . (3)题设:三棱锥P -ABC 是任意三棱锥,求其的内切球半径.方法:等体积法,三棱锥P -ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P-ABC=13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ; 第三步:解出r =3V P -ABCS O -ABC +S O -PAB +S O -PAC +S O -PBC6.柱体的内切球问题【例5】 体积为4π3的球与正三棱柱的所有面均相切,则该棱柱的体积为________.解析 设球的半径为R ,由4π3R 3=4π3,得R =1,所以正三棱柱的高h =2. 设底面边长为a ,则13×32a =1,所以a =2 3.所以V =34×(23)2×2=6 3. 答案 6 3基础巩固题组 (建议用时:40分钟)一、选择题1.下列说法中,正确的是( ) A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等解析 棱柱的侧面都是平行四边形,选项A 错误;其他侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C. 答案 C2.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C.16π D.24π解析 设球的半径为R ,则S =4πR 2=16π,解得R =2,则球的体积V =43πR 3=323π.答案 B3.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是( )A.南B.北C.西D.下解析 将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.答案 B4.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 设米堆的底面半径为r 尺,则π2r =8,所以r =16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).答案 B5.如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A.3B.32C.1D.32解析 如题图,在正△ABC 中,D 为BC 中点,则有AD =32AB =3,又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,∴VA -B 1DC 1=13S △B 1DC 1·AD =13×12×2×3×3=1.答案 C 二、填空题6.一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 面积为________.解析 因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2. 答案 2 27.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r=7. 答案78.(2019·济南调研)祖暅(公元前5~6世纪),祖冲之之子,是我国齐梁时代的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b ,高皆为a 的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,可以证明S 圆=S 环总成立.据此,短轴长为4 cm ,长轴为6 cm 的椭球体的体积是________ cm 3.解析 因为总有S 圆=S 环,所以椭半球体的体积等于V 柱-V 锥=πb 2a -13πb 2a =23πb 2a ,椭球体的体积为V =43πb 2a .因为2b =4,2a =6,所以b =2,a =3,所以,该椭球体的体积是43×22×3π=16π(cm 3).答案 16π 三、解答题9.如图所示,正四棱台的高是17 cm ,两底面边长分别为4 cm 和16 cm ,求棱台的侧棱长和斜高.解 设棱台两底面的中心分别为O ′和O ,B ′C ′,BC 的中点分别为E ′,E ,连接O ′B ′,O ′E ′,O ′O ,OE ,OB ,EE ′,则四边形O ′E ′EO ,OBB ′O ′均为直角梯形.在正方形ABCD 中,BC =16 cm ,则OB =8 2 cm ,OE =8 cm ,在正方形A ′B ′C ′D ′中,B ′C ′=4 cm ,则O ′B ′=2 2 cm ,O ′E ′=2 cm ,在直角梯形O ′OBB ′中,BB ′=OO ′2+(OB -O ′B ′)2=19(cm);在直角梯形O ′OEE ′中,EE ′=OO ′2+(OE -O ′E ′)2=513(cm).所以这个棱台的侧棱长为19 cm ,斜高为513 cm.10.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解 由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).故仓库的容积是312 m 3.能力提升题组(建议用时:20分钟)11.(2019·石家庄模拟)用长度分别为2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为( )A.258 cm 2B.414 cm 2C.416 cm 2D.418 cm 2 解析 设长方体从同一顶点出发的三条棱的长分别为a ,b ,c ,则长方体的表面积S =2(ab+bc +ac )≤12[(a +b )2+(b +c )2+(a +c )2], 当且仅当a =b =c 时上式“=”成立.由题意可知,a ,b ,c ,不可能相等,故当a ,b ,c 的大小最接近时,长方体的表面积最大,此时从同一顶点出发的三条棱的长为8,8,9,用长度为2,6的木棒连接,长度为3,5的木棒连接各为一条棱,长度为9的木棒为第三条棱,组成长方体,此时能够得到的长方体的最大表面积为2×(8×8+8×9+8×9)=416(cm 2).答案 C12.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.22 解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.答案 A13.如图所示,在透明塑料制成的长方体ABCD -A 1B 1C 1D 1容器中灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱状;②水面EFGH 的面积不变;③A 1D 1始终与水面EFGH 平行.其中正确命题的序号是________.。