2014年《随堂优化训练》新人教版九年级上第二十三章旋转章末整合提升配套课件
- 格式:ppt
- 大小:619.50 KB
- 文档页数:1
第二十三章旋转测试题23.1 图形的旋转1.下列事件中,属于旋转运动的是( )A.小明向北走了4米B.小朋友们在荡秋千时做的运动C.电梯从1楼到12楼D.一物体从高空坠下2.将图2318按顺时针方向旋转90°后得到的是( )图23183.如图2319,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.格点M B.格点NC.格点P D.格点Q图2319 图23110 4.如图23110,△ABO绕着点O旋转至△A1B1O,此时:(1)点B的对应点是______.(2)旋转中心是________,旋转角是____________.(3)∠A的对应角是________,线段OB的对应线段是__________.5.如图23111,将△ABC绕点A逆时针旋转30°得到△AEF,连接EB,则∠AEB=____________.图23111 图231126.如图23112,以点O为旋转中心,将∠1按顺时针方向旋转100°得到∠2,若∠1=40°,则∠2的余角为____________度.7.如图23113,在画有方格图的平面直角坐标系中,△ABC的三个顶点均在格点上.(1)△ABC是__________三角形,它的面积等于________;(2)将△ACB绕点B按顺时针方向旋转90°,在方格图中用直尺画出旋转后对应的△A′C′B,则点A′的坐标是(__,__),点C′的坐标是(__,__).图231138.已知:如图23114,点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.图231149.如图23115,四边形EFGH是由四边形ABCD经过旋转得到的.如果用有序数对(2,1)表示方格纸上点A的位置,用(1,2)表示点B的位置,那么四边形ABCD旋转得到四边形EFGH 时的旋转中心用有序数对表示是____________.图2311510.如图23116,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使点L,M 在AK的同旁,连接BK和DM,试用旋转性质说明线段BK与DM的大小关系.图2311623.2 中心对称第1课时中心对称与中心对称图形1.下列命题正确的个数是( )①关于中心对称的两个三角形是全等三角形;②两个全等三角形必定关于某一点成中心对称;③两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;④关于中心对称的两个三角形,对称点的连线都经过对称中心.A.1个 B.2个 C.3个 D.4个2.如图2328,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B 的对称点是( )图2328A.点E B.点F C.点G D.点H3.下面的图形中,是轴对称图形但不是中心对称图形的是( )4.如图2329的四组图形中,左边图形与右边图形成中心对称的有________组.图23295.在图23210中,作出△ABC关于点E成中心对称的图形.图232106.一块如图23211所示的钢板,如何用一条直线将其分成面积相等的两部分?图232117.已知:如图23212,已知△ABC,点O为BC的中点.(1)画出△ABC绕边BC的中点O旋转180°得到的△DCB;(2)求证:四边形ABDC是平行四边形.图232128.如图23213,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°,将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出中心对称图形________个.图232139.如图23214,在每个边长均为1的小正方形的方格纸中,△ABC的顶点和点O均与小正方形的顶点重合.(1)在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;(2)在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.图2321410.如图23215,在4×3的网格上,由个数相同的白色方块与黑色方块组成的一幅图案,请依照此图案分别设计出符合要求的图案(注:①不得与原图案相同;②黑白方块的个数相同).图23215(1)是轴对称图形,又是中心对称图形;(2)是轴对称图形,但不是中心对称图形;(3)是中心对称图形,但不是轴对称图形.第2课时关于原点对称的点的坐标1. 在平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( )A.(-3,2) B.(3,-2)C.(-2,3) D.(2,3)2.如图23217,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将矩形OABC绕点O旋转180°,旋转后的图形为矩形OA1B1C1,那么点B1的坐标为( )图23217A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)3.如图23218,已知平行四边形ABCD的两条对角线AC与BD交于平面直角坐标系的原点,点D的坐标为(3,2),则点B的坐标为( )A.(-2,-3) B.(-3,2)C.(3,-2) D.(-3,-2)图23218图232194.如图23219,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M和点N的坐标分别为( ) A.M(1,-3),N(-1,-3)B.M(-1,-3),N(-1,3)C .M (-1,-3),N (1,-3)D .M (-1,3),N (1,-3)5.在数轴上,点A ,B 对应的数分别为2,x -5x +1,且A ,B 两点关于原点对称,则x 的值为____________.6.如图23220,△ABC 三个顶点的坐标分别为A (-2,3),B (-3,1),C (-1,2).图23220(1)将△ABC 向右平移4个单位,画出平移后的△A 1B 1C 1; (2)画出△ABC 关于x 轴对称的△A 2B 2C 2;(3)将△ABC 绕原点O 旋转180°,画出旋转后的△A 3B 3C 3;(4)在△ABC ,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3中,________与________成轴对称,对称轴是______;______与______成中心对称,对称中心是____________________.7.在平面直角坐标系中,若点P (x -2,x )关于原点的对称点在第四象限,则x 的取值X 围是________.8.若△ABC 的三边为a ,b ,c ,且点A (|c -2|,1)与点B (b -4,-1)关于原点对称,|a -4|=0,则△ABC 是______三角形.9.如图23221,下列网格中,每个小方格的边长都是1. (1)分别作出四边形ABCD 关于x 轴、y 轴、原点的对称图形; (2)求出四边形ABCD 的面积.图2322110.如图23222,在直角坐标系中,已知点P(-2,-1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?图2322223.3课题学习图案设计1.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图2336的是( )图23362.要在一块长方形的空地上修建一个既是轴对称图形又是中心对称图形的花坛,下列图案中不符合设计要求的是( )3.经过平移和旋转变换可以将甲图案变成乙图案的是( )4.在俄罗斯方块的游戏中,已拼好的图案如图2337,现又出现一小方格体正向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失( )图2337A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移C.顺时针旋转90°,向下平移D.逆时针旋转90°,向下平移5.如图2338,桌面上有两个完全相同的直角三角形,在它们所能拼成的部分图形中,运用旋转、平移可以拼成的图形是( )图23386.如图2339,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过______次旋转而得到,每一次旋转________度.图23397.图23310是由4个正三角形构成的,它可以看作由其中一个正三角形经过怎样的变化得到的?图233108.已知图形B是一个正方形,图形A由三个图形B构成,如图23311,请用图形A 与B合拼成一个轴对称图形,并把它画在图23312所示网格中.图23311图233129.如图23313,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图23314甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图23314乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图23314丙中作出的四边形既是轴对称图形又是中心对称图形.图23313图2331410.在平面上,7个边长均为1的等边三角形,分别用①至⑦表示(如图23315).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形.(1)取出的是哪个三角形?写出平移的方向和平移的距离;(2)将取出的三角形任意放置在拼成的正六边形所在平面上,问:正六边形没有被三角形盖住的面积能否等于52?请说明理由.图23315第二十三章 旋 转 23.1 图形的旋转 【课后巩固提升】 1. 4.(1)点B 1(2)点O∠AOA1或∠BOB1(3)∠A1OB15.7.(1)等腰直角三角形 5(2)按题意要求画出图形,由图D9可以看出,A′(3,3),C′(0,2).图D98.解:(1)△ABP旋转的旋转中心是点B,按顺时针方向旋转90°.(2)由旋转的性质,得PB=BE,∠PBE是旋转角,为90°.∴PE=PB2+BE2=2 2.9.(5,2) 解析:首先确定坐标轴,根据旋转的性质,对应点连线的垂直平分线都经过旋转中心.故连接DH,AE,作它们的垂直平分线,垂直平分线的交点即为旋转中心.10.解:∵四边形ABCD,四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM=90°,且为旋转角.∴△ADM是以点A为旋转中心,∠BAD为旋转角,由△ABK按逆时针旋转而成的.∴BK=DM.23.2 中心对称第1课时中心对称与中心对称图形【课后巩固提升】1.4.3 解析:(1)(2)(3)符合条件.5.解:如图D13.图D136.解:如图D14,将图形分成两个矩形,画一条同时经过两个矩形中心的直线即可.有三种思路:图D147.(1)解:如图D15.图D15(2)证明:因为△DCB是由△ABC绕点O旋转180°所得,所以点A和D,B和C关于点O中心对称.所以OB=OC,OA=OD.所以四边形ABDC是平行四边形.8.39.解:(1)、(2)如图D16.图D1610.解:(1)如图D17.(2)如图D18.(3)如图D19.图D17 图D18 图D19第2课时 关于原点对称的点的坐标 【课后巩固提升】 1.4.C 解析:点A 与点N 关于x 轴对称,点A 与点M 关于原点对称. 5.16.解:(1)~(3)作图略;(4)△A 2B 2C 2△A 3B 3C 3y 轴 △A 1B 1C 1△A 3B 3C 3 (2,0)7.0<x <2 解析:点P (x -2,x )关于原点的对称点的坐标为(2-x ,-x ),由题意,得⎩⎪⎨⎪⎧2-x >0,-x <0.解得0<x <2.8.等腰9.解:(1)如图D21所示.图D21(2)四边形ABCD 的面积=2S △ABD =2×12×2×1=2.10.解:(1)点P 关于原点的对称点P ′的坐标为(2,1). (2)OP ′= 5. ①动点T 在原点左侧.当TO =P ′O =5时,△P ′TO 是等腰三角形, ∴点T (-5,0). ②动点T 在原点右侧.①当TO =TP ′时,△P ′TO 是等腰三角形,得T ⎝ ⎛⎭⎪⎫54,0; ②当TO =P ′O 时,△P ′TO 是等腰三角形,得点T (5,0); ③当TP ′=P ′O 时,△P ′TO 是等腰三角形,得点T (4,0). 综上所述,符合条件的t 的值为-5,54,5,4.23.3 课题学习 图案设计 【课后巩固提升】1.C 2.D 3.D 4.A 5.C 6.4 727.解:可以看作由正三角形ADE 以DE 为轴作轴对称,再把正三角形ADE 沿AB ,AC 方向分别平移而得到的.8.解:如图D25.图D259.解:如图D26(答案不唯一).图D2610.解:(1)当取出的是⑦时,将④⑤⑥向上平移1,如图D27(1);当取出的是⑤时,将⑥⑦向上平移2,如图D27(2).图D27(2)能.每个等边三角形的面积为34,则五个等边三角形的面积和为5 34,而正六边形的面积为3 32,而5 34<52<3 32,所以正六边形没有被三角形盖住的面积能等于52.。
第二十三章旋转自主检测(满分:120分时间:100分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(3,-2)关于原点对称点的坐标是( )A.(3,2) B.(-3,-2)C.(-3,2) D.(-3,-2)2.如图231,由“基本图案”正方形ABCO绕O点顺时针旋转90°后的图形是( )图231A BC D3.如图232,△ABC绕点A旋转后得到△ADE,那么图形是如何旋转的( )A.顺时针转45° B.逆时针转45°C.顺时针转90° D.逆时针转90°图232图233图2344.如图233,把△ABC按逆时针转动一定的角度至△AB′C′,其中属于旋转角的是( )A.∠BAC B.∠C′AB′C.∠BAB′ D.∠BAC′5.如图234所示的图形旋转一定角度后能与自身重合,则旋转的角度可以是( ) A.30° B.45° C.60° D.90°6.下列图形中,是中心对称图形的是( )7.如图235,在方格纸中,△ABC经过变换得到△DEF,正确的变换是( )A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°图235图2368.如图236,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )A.25° B.30° C.35 D.40°9.图237是用围棋子摆出的图案[棋子的位置用有序数对表示,如A点在(5,1)],如果再摆1黑1白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )图237A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图238,将正方形纸片两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是( )图238二、填空题(本大题共6小题,每小题4分,共24分)11.如图239所示,图形(1)经过________变换得到图形(2);图形(2)经过________变到图形(3);图形(3)经过________变换得到图形(4).(填平移、旋转或轴对称)图23912.如图2310所示的美丽图案中,既是轴对称图形又是中心对称图形的有________个.图231013.若点P的坐标为(x+1,y-1),其关于原点对称的点P′的坐标为(-3,-5),则(x,y)为______.14.如图2311,D,E分别为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=________°.图231115.如图2312,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是__________.图231216.如图2313,在平面直角坐标系中,将△ABC绕点A逆时针旋转90°后,点B对应点的坐标为________.图2313三、解答题(一)(本大题共3小题,每小题6分,共18分)17.如图2314,画出△ABC关于点O对称的图形.图231418.如图2315,请你画出方格纸中的图形关于点O的中心对称图形,并写出整个图形的对称轴的条数.图231519.如图2316,在△ABC中,∠B=10°,∠ACB=20°,AB=4 cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.图2316四、解答题(二)(本大题共3小题,每小题7分,共21分)20.在平面直角坐标系中,△ABC的位置如图2317所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出点A2的坐标.图231721.如图2318,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B 沿顺时针方向旋转90°得到△A1BC1.(1)线段A1C1的长度是________,∠CBA1的度数是________;(2)连接CC1,求证:四边形CBA1C1是平行四边形.图231822.如图2319,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC 绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.图2319五、解答题(三)(本大题共3小题,每小题9分,共27分)23.某公司为了节约开支,购买了质量相同的两种颜色的残缺地砖,准备用来装修地面,现已加工成如图2320(1)的等腰直角三角形,王聪同学设计了如图2320(2)(3)(4)(5)的四种图案.图2320(1)请问你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用学过的知识再设计一幅与上述不同的图案.24.如图2321,在网格中有一个四边形图案.(1)请你画出此图案绕点O顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为1,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.图232125.如图2322(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且B,C在A,E的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)试说明:BD=DE+CE;(2)若直线AE绕点A旋转到图2322(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果;(3)若直线AE绕点A旋转到图2322(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果,不需说明理由.图2322第二十三章自主检测 1.11.轴对称 平移 旋转 12.3 13.(2,6) 14.80 15.② 16.(0,2) 17.解:如图D88,△A ′B ′C ′与△ABC 关于点O 中心对称.图D8818.解:如图D89.图D89可见共有4条对称轴.19.解:(1)∵△ABC 逆时针旋转一定角度后与△ADE 重合,A 为顶点, ∴旋转中心是点A .根据旋转的性质可知:∠CAE =∠BAD =180°-∠B -∠ACB =150°, ∴旋转度数为150°.(2)由(1)可知:∠BAE =360°-150°×2=60°, 由旋转可知:△ABC ≌△ADE , ∴AB =AD ,AC =AE .又点C 为AD 中点, ∴AE =AC =12AD =12AB =12×4=2(cm).20.解:(1)(2)所画图形如图D90.图D90∴点A2的坐标为(2,-3).21.(1)10 135°解析:∵将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1,∴A1C1=10,∠CBC1=90°.而△ABC是等腰直角三角形,∴∠A1BC1=45°.∴∠CBA1=135°.(2)证明:∵∠A1C1B=∠C1BC=90°,∴A1C1∥BC.又∵A1C1=AC=BC,∴四边形CBA1C1是平行四边形.22.解:由旋转可知,∠PAP′=∠BAC=60°.∵PA=P′A=6,∴△PP′A是等边三角形.∴PP′=PA=6.在△PP′B中,PB=8,PP′=6,P′B=PC=10,∴△P′PB是直角三角形.∴∠APB=∠APP′+∠BPP′=60°+90°=150°.23.解:(1)我喜欢图案(5),图案(5)的形成是以同行或同列的两个由三角形组成的正方形为“基本图案”,绕大正方形的中心旋转180°得到的.(答案不唯一)(2)如图D91.图D9124.解:(1)如图D92,正确画出图案.图D92(2)123AA A A S 四边形=123BB B B S 四边形-43BAA S △=(3+5)2-4×12×3×5=34.故四边形AA 1A 2A 3的面积为34. (3)由图可知:(a +c )2=4×12ac +b 2,整理,得c 2+a 2=b 2. 即AB 2+BC 2=AC 2.25.解:(1)∵∠BAC =90°,∴∠BAD +∠EAC =90°. 又∵BD ⊥AE ,CE ⊥AE ,∴∠BDA =∠AEC =90°,∠BAD +∠ABD =90°. ∴∠ABD =∠CAE .又∵AB =AC ,∴△ABD ≌△CAE . ∴BD =AE ,AD =CE .∵AE =AD +DE =CE +DE ,∴BD =DE +CE . (2)与(1)相同,可得DE =BD +CE . (3)与(1)相同,可得DE =BD +CE .。