类比探究
- 格式:doc
- 大小:126.50 KB
- 文档页数:3
人教版八年级下册期中备考提升训练类比探究问题➢知识点睛1.类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单到复杂)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主——“条件类似、图形结构类似、问法类似”.2.类比探究的处理思路:(1)类比是解决类比探究的第一原则,即类比上一问思路,迁移解决下一问;(2)对比前后条件变化,寻找并利用不变特征,考虑相关几何结构解决问题.①若属于类比探究常见结构,调用结构类比解决;②若不属于常见结构,依据不变特征大胆猜测、尝试、验证、构造.3.类比探究常见结构举例(1)中点结构直角+中点平行夹中点见中点,要倍长斜边中线延长证全等倍长之后证全等多个中点,考虑中位线(2)旋转结构常见模型11如图,△ABC,△ADE 均为等边三角形,则出现了AB=AC,AD=AE 等线段共端点的结构,所以连接BD,CE,可以证明△ABD≌△ACE,即把△ABD 绕点A 逆时针旋转60°得到△ACE.常见模型2如图,正方形ABCD 中,点E,F 分别在边BC,CD 上,且∠EAF=45°,则EF=BE+DF.思路提示:正方形四条边都相等,提供了等线段共端点,所以考虑构造旋转解决问题,即找到等线段AD=AB,把线段AD 绕点A 顺时针旋转90°,与线段AB 重合,则AD 所在△ADF 绕着点A 顺时针旋转90°得到△ABG.(3)直角结构直角结构——斜直角放正➢精讲精练【中点结构】1.已知P 是Rt△ABC 的斜边AB 上一动点(不与点A,B 重合),分别过点A,B 向直线CP 作垂线,垂足分别为点E,F,Q 为斜边AB 的中点.(1)如图1,当点P与点Q重合时,AE 与B F 的位置关系是,QE 与Q F 的数量关系是.(2)如图2,当点P 不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图3,当点P 在线段BA(或AB)的延长线上时,(2)中的结论是否仍然成立?请画出图形并给予证明.2.如图,四边形ABCD 和四边形CGEF 均为正方形,M 是线段AE 的中点.(1)如图1所示,点B,C,G 在同一条直线上,DM 的延长线交E F 于点N,位置关系为连接F M,则D M 与F M 的数量关系为,(直接写出答案,无需写证明过程).(2)如图2,当点B,C,F 在同一条直线上,DM 的延长线交EG 于点N,其余条件不变,试探究线段DM 与FM 有怎样的关系?请写出猜想,并给予证明.(3)如图3,当点E,B,C 在同一条直线上,DM 的延长线交CE 的延长线于点N,若此时点A 恰好为CG 的中点,AB=1,其余条件不变,请直接写出FM 的长度.43.已知等腰三角形ABC 中,∠ACB=90°,点E在AC 的延长线上,且∠DEC=45°,M,N 分别是DE,AE 的中点,连接MN,交直线BE 于点F.当点D 在CB的延长线上时,如图 1 所示,易证MF +FN =1BE .2(1)如图2,当点D 在CB 边上时,上述结论是否成立?若成立,请给出证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 的延长线上时,如图3 所示,请直接写出线段MF,FN,BE 之间的数量关系(不需要证明).4.已知点O 是△ABC 内任意一点,连接OA 并延长到点E,使得AE=OA,以OB,OC 为邻边作□OBFC,连接OF,与BC 交于点H,连接EF.(1)问题发现如图1,若△ABC 为等边三角形,线段E F 与B C 的位置关系是,数量关系为.(2)拓展探究如图2,若△ABC 为等腰直角三角形(BC 为斜边),(1)中的两个结论是否成立?若成立,请给予证明;若不成立,请写出正确结论再给予证明.(3)解决问题如图3,若△ABC 是等腰三角形,AB=AC=2,BC=3,请你直接写出线段EF 的长.5.操作与证明:如图1,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角形的直角顶点和正方形的顶点C 重合,点E,F分别在正方形的边CB,CD 上,连接AF,取AF 中点M,EF 的中点N,连接MD,MN.(1)连接AE,求证:△AEF 是等腰三角形.猜想与发现:(2)在(1)的条件下,请判断MD,MN 的数量关系和位置关系.(不需要证明)结论1:MD,MN 的数量关系是;结论2:MD,MN 的位置关系是.拓展与探究:(3)如图2,将图1 中的直角三角板ECF 绕点C 顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【旋转结构】6.以四边形ABCD 的边AB,AD 为边分别向外侧作等边△ABF 和等边△ADE,连接EB,FD,交点为G.(1)问题发现:当四边形A BCD 为正方形时(如图1),EB 和F D 的数量关系是.(2)拓展探究:当四边形ABCD 为矩形时(如图2),EB 和FD 具有怎样的数量关系?请加以证明.(3)问题解决:四边形ABCD 由正方形到矩形到一般平行四边形的变化过程中,∠EGD 是否发生变化?如果改变,请说明理由;如果不变,请在图3 中求出∠EGD 的度数.7. 已知四边形 ABCD 是菱形,AB =4,∠ABC =60°,∠EAF 的两边分别与射线 CB ,DC 相交于点 E ,F ,且∠EAF =60°.(1) 如图 1,当点 E 是线段 C B 的中点.线段 AE ,EF ,AF 之间的数量关系; (2) 如图 2,当点 E 是线段 CB 上任意一点时(点 E 不与 B ,C 重合),求证:BE =CF ;(3) 如图 3,当点 E 在线段 CB 的延长线上,且∠EAB =15°时,求点 F 到 BC 的距离.108.如图1,在正方形ABCD 中,点E,F 分别为DC,BC 边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.小明是这样解决的:延长CB 到点G,使BG=DE,连接AG,再证明△GAF≌△EAF,可证得结论.感悟小明的解题方法,运用你所积累的经验和知识,完成下题:(1)如图2,在四边形ABCD 中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E 是CD 上一点,且∠BAE=45°,DE=4,求BE 的长.(2)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,若△ABC 固定不动,△AFG 绕点A 旋转,AF,AG 与边BC 的交点分别为D,E (点D 不与点B 重合,点E 不与点C 重合),在旋转过程中,等式BD2+CE2=DE2 始终成立,请说明理由.9.问题背景如图1,在四边形ABCD 中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,EF 分别是BC,CD 上的点,且∠EAF=60°,探究图中线段BE,EF,FD 之间的数量关系.小王同学探究此问题的方法是延长FD 到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.(2)探索延伸如图2,在四边形ABCD 中,AB=AD,∠B+∠D=180°,E,F 分别是BC,CD 上的点,且∠EAF= 1 ∠BAD,上述结论是否仍然成立,并说明理由.2(3)结论应用如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60 海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80 海里/小时的速度前进,1.5 小时后,指挥中心观测到甲、乙两舰艇分别到达E,F 处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.【直角结构】10.情境创设:如图1,两块全等的直角三角板,△ABC≌△DEF,且∠C=∠F=90°,现如图放置,则∠ABE= .问题探究:如图2,△ABC 中,AH⊥BC 于点H,以A 为直角顶点,分别以AB,AC 为直角边,向△ABC 外作等腰直角△ABE 和等腰直角△ACF,过点E,F 作射线HA 的垂线,垂足分别为M,N,试探究线段EM 和FN 之间的数量关系,并说明理由.拓展延伸:如图,△ABC 中,AH⊥BC 于点H,以A 为直角顶点,分别以AB,AC 为一边,向△ABC 外作正方形ABME 和正方形ACNF,连接EF 交射线HA 于点G,试探究线段EG 和FG 之间的数量关系,并说明理由.11.(1)观察猜想如图1,点B,A,C 在同一条直线上,DB⊥BC,EC⊥BC 且∠DAE=90°,AD=AE,则B C,BD,CE 之间的数量关系为;(2)问题解决如图2,在Rt△ABC 中,∠ABC=90°,CB=4,AB=2,以AC 为直角边向外作等腰Rt△DAC,连接BD,求BD 的长;图1图2(3)拓展延伸如图3,在四边形ABCD 中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD 的长.12.问题原型:如图1,在等腰直角三角形ABC 中,∠ACB=90°,BC=a.将边AB 绕点B 顺时针旋转90°得到线段BD,连接CD.过点D 作△BCD 的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD 的面积为1a2 .2初步探究:如图2,在Rt△ABC 中,∠ACB=90°,BC=a.将边AB 绕点B 顺时针旋转90°得到线段BD,连接CD.用含a 的代数式表示△BCD 的面积,并说明理由.简单应用:如图3,在等腰三角形ABC 中,AB=AC,BC=a.将边AB 绕点B 顺时针旋转90°得到线段BD,连接CD.直接写出△BCD 的面积.(用含a 的代数式表示)213.已知边长为的正方形A BCD 中,P 是对角线A C 上的一个动点(与点A,C 不重合),过点P 作PE⊥PB,PE 交射线DC 于点E,过点E 作EF⊥AC,垂足为点F.(1)求证:PB=PE.(2)在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值,写出解答过程;若变化,试说明理由.(3)在点P 的运动过程中,△PEC 能否为等腰三角形?如果能,直接写出此时AP 的长;如果不能,试说明理由.【其他类型】14.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且P A=PE,PE 交CD 于F.(1)证明:PC=PE;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP 与线段CE 的数量关系,并说明理由.15.如图,在等边三角形ABC 中,点D 在直线BC 上,连接AD,作∠ADN=60°,直线DN 交射线AB 于点E,过点C 作CF∥AB,交直线DN 于点F.(1)当点D 在线段BC 上,∠NDB 为锐角时,如图 1 ,求证:CF+BE=CD.(提示:过点F 作FM∥BC,交射线AB 于点M)(2)当点D 在线段BC 的延长线上,∠NDB 为锐角时,如图2;当点D 在线段CB 的延长线上,∠NDB 为钝角时,如图3.请分别写出线段CF,BE,CD 之间的数量关系,不需要证明.(3)在(2)的条件下,若∠ADC=30°,S△ABC4 CD= .,则B E= ,318。
➢例题示范类比探究(习题)例1:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G.(1)尝试探究:如图1,若AF= 3 ,则CD的值是.EF CG(2)类比延伸:如图2,在原题的条件下,若AF=m (m>EF0),则CD的值是CG解答过程.(用含m 的代数式表示),试写出(3)拓展迁移:如图3,在梯形ABCD 中,DC∥AB,点E是BC 延长线上一点,AE 和BD 相交于点F.若AB=a ,CDBC=b(a>0,b>0),则AF的值是(用含a,b 的代BE EF 数式表示).1【思路分析】根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,考虑通过相似传递比例关系,进而求 CD的值.CG构造相似利用作平行线的方法,即过中点 E 作 EH ∥AB 交 BG于点 H ,可得“A ”字型相似△BEH ∽△BCG ,“X ”型相似△EFH ∽△AFB ,结合 AF= 3 ,可得 CG =2EH ,AB =3EH ,故EFCD = 3 .CG 2类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是 AF ,EF 的比例,照搬第一问思路,过点 E 作 EH ∥AB 交BG 于点 H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时 CG =2EH ,AB =mEH ,故 CD = m.CG 2照搬思路解决第三问.虽然此问中图形、中点 E 、比例关系均发生变化,但 DC ∥AB 不变,依然可利用相似来整合条件,可照搬前面思路处理, 依然构造平行.过点 E 作 EH ∥AB 交 BD 的延长线于点 H ,可得△BCD ∽△BEH ,△AFB ∽△EFH ,可得 BC = CD,BE EHAF = AB ,结合 AB = a , BC = b ,可知 EF EH CD BE AF = AB = a ⋅CD = ab . EF EH EH212 3➢巩固练习1.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P,边EF 与边BC 交于点Q.【探究】在旋转过程中,(1)如图2,当CE=1时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(2)如图3,当CE= 2 时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(3)根据你对(1),(2)的探究结果,试写出当CE=m时,EAEP 与EQ 满足的数量关系式为.3,=2.如图1,在等边三角形ABC 中,线段AD 为其内角角平分线,过点D 的直线B1C1⊥AC 于C1,交AB 的延长线于B1.(1)请你探究:AC =CD AC1 C1D 是否都成立?AB BD AB1DB1(2)请你继续探究:如图2,若△ABC 为任意三角形,线段AD 为其内角角平分线,请问AC=CD一定成立吗?并证明AB BD你的判断.(3)如图3,在Rt△ABC 中,∠ACB=90°,AC=8,AB=40,3E 为AB 上一点且AE=5,CE 交其内角角平分线AD 于F.试求DF的值.FA43.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1) 操作发现如图 2,固定△ABC ,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空:①线段 DE 与 AC 的位置关系是 ;②设△BDC 的面积为 S 1,△AEC 的面积为 S 2,则 S 1 与 S 2 的数量关系是.图 1图 2(2) 猜想论证当△DEC 绕点 C 旋转到图 3 所示的位置时,小明猜想(1) 中 S 1 与 S 2 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中 BC ,CE 边上的高,请你证明小明的猜想.(3) 拓展探究如图 4 , 已知∠ ABC =60°, 点 D 是其角平分线上一点, BD =CD =4,DE ∥AB 交 BC 于点 E .若在射线 BA 上存在点 F , 使 S △DCF =S △BDE ,请直.接.写.出.相应的 BF 的长.5➢思考小结总结类比探究问题中的常见结构①旋转结构始终含有等腰结构(正方形、等腰直角三角形等),并且经过旋转后,能将各条件重新组合应用.②中点结构平行夹中点(类)倍长中线中位线始终含有中点,常考虑利用中点结构补全图形,然后将所证目标放在一个较大的背景下(等腰三角形、直角三角形、等腰直角三角形等)研究.③直角结构始终含有直角,常构造直角与斜直角配合,得到同角的余角相等;再配合构造的其他直角证明相似,所求目标往往和比例关系相关.6④平行结构所求目标为线段间的比例关系,题目中没有相似三角形,往往考虑利用平行线构造相似求解.78 3 3 【参考答案】 ➢ 巩固练习1. (1)EP =EQ ,证明略;(2) EP = 1EQ ,证明略;2 (3) EP = 1EQ .m2. (1)都成立,证明略; (2)一定成立,证明略;(3) DF = 5 .FA 83. (1)①DE ∥AC ;②S 1=S 2.(2) 证明略; (3) BF 的长为4 3或 .38。
九年级思维拓展:类比探究(一)【知识点睛】➢引言:类比:就是由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理形式.探究:是指学生在学习情境中通过观察、阅读,发现问题,搜集数据,形成解释,获得答案并进行交流、检验、探究性学习.学习过程的本质 类比与探究.处处皆类比!!!➢综合几何题中的类比探究问题:1.解题策略:①类比——类比字母、辅助线、思路②不变特征——相同或相似的性质(可类比的关键)③应用——类比思路、应用结论④作图——关注待确定点的特征及轨迹,尝试分析转化2.类比探究常见结构:①旋转结构:找“等线段共端点”,借助全等整合条件②直角结构:斜直角放正,找全等或相似③平行结构:作平行,造相似,转比例(A型、X型)④中点结构:构造全等或中位线,转移、整合条件【精讲精练】1.如图,在Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC,已知AC=5,OC=62,则另一直角边BC的长为________.第1题图第2题图2.如图,在Rt△ABC中,∠ACB=90°,以斜边AB为边向外作等腰直角三角形ABO,∠AOB=90°,连接OC,已知AC=5,OC=2BC的长为________.3.如图,抛物线272 2y x x 与直线122y x交于C,D两点.点P是y轴右侧抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.若存在点P,使∠PCF=45°,则点P的坐标为________________.4.(1)阅读理解:如图1,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB,AD,DC之间的等量关系为_____________;(2)问题探究:如图2,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论;(3)问题解决:如图3,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB,DF,CF之间的等量关系,并证明你的结论.CDBA Oyx PC FDBEA Oyx5. 【问题背景】如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,BE ,点P 为DC 的中点.(1)【观察猜想】观察图1,猜想线段AP 与BE 的数量关系是________,位置关系是_________.(2)【拓展探究】把△ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立,请证明;否则写出新的结论并说明理由. (3)【问题解决】把△ADE 绕点A 在平面内自由旋转,若DE =4,BC =8,请直接写出线段AP 长的取值范围.图1EDC BA PPABCDE图26. 如图,在Rt △ABC 中,∠ACB =90°,BC mAC n,CD ⊥AB 于点D ,点E 是直线AC 上一动点,连接DE ,过点D 作FD ⊥ED ,交直线BC 于点F .(1)探究发现:如图1,若m =n ,点E 在线段AC 上,则DE DF__________.(2)数学思考:①如图2,若点E 在线段AC 上,则DEDF_______(用含m ,n 的代数式表示);②当点E 在直线AC 上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明.(3)拓展应用:若ACBC=DF=CE 的长.图1F E DCBA图2BCF E AD图3DAEFC B备用图DCBA7. 在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过点G 的直线分别交AB ,AC 于点E ,F .(1)如图1,当EF ∥BC 时,求证:1=+AFCFAE BE . (2)如图2,当EF 和BC 不平行,且点E ,F 分别在线段AB ,AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由. (3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.图1G F E D CBA 图2ABCD E FG 图3GFED CBA8.(1)问题发现如图1,△ABC和△CDE均为等边三角形,直线AD和直线BE交于点F.填空:①∠AFB的度数是________;②线段AD,BE之间的数量关系为__________.(2)类比探究如图2,△ABC和△CDE均为等腰直角三角形,∠ABC=∠DEC=90°,AB=BC,DE=EC,直线AD和直线BE交于点F.请判断∠AFB的度数及线段AD,BE之间的数量关系,并说明理由.(3)解决问题如图3,在平面直角坐标系中,点A坐标为(4,0),点B为y轴上任意一点,连接AB,将BA绕点B逆时针旋转90°至BC,连接OC,请直接写出OC的最小值.FEDCBA图2FED CBA图3图1【参考答案】1. 72. 73. ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1813,62327,21或4. (1)AD =AB +DC (2)AB =AF +CF(3)DF CF AB +=235. (1)BE =2AP ;BE ⊥AP(2)成立(3)232≤≤AP 6. (1)1(2)①mn;②成立 (3)52552或=CE 7. (1)证明略(2)成立 (3)不成立,理由:当点E 在AB 的延长线上时,1>AFCF;点F 在AC 的延长线上时,1>AE BE 8. (1)60°;AD =BE(2)45°;AD =BE (3)22。
数学类比探究知识点引言数学是一门精确严谨的学科,它在现代科学和技术领域扮演着重要角色。
但对于很多人来说,数学可能显得复杂难懂。
通过将数学知识与日常生活中的事物进行类比,我们可以更好地理解和掌握数学概念。
本文将通过一系列的类比,帮助读者逐步思考数学知识点,以期提升数学学习的效果。
步骤一:类比的概念类比是一种比较两个不同领域的事物或概念的方法。
通过找出两者之间的共同点,我们可以将一个较为复杂或抽象的概念转化为一个较为简单或具体的事物进行理解。
在数学学习中,类比可以帮助我们将抽象的数学概念与我们熟悉的日常事物联系起来,从而更好地理解和应用数学知识。
步骤二:类比整数和钱币我们首先以整数为例进行类比。
整数是数学中的基础概念之一,但对于一些人来说,它可能比较抽象。
我们可以将整数类比为钱币。
想象一下,你手中有一堆硬币,每个硬币都代表一个整数。
当你往上数的时候,代表正数,当你往下数的时候,代表负数。
通过这个类比,我们可以更好地理解整数的正负概念和整数的加减运算。
步骤三:类比分数和比例接下来,我们来类比分数和比例。
分数是指一个数被另一个数除的结果,比例是指两个量之间的比较关系。
我们可以将分数类比为一个比例问题。
想象一下,你有一块巧克力,你想将它平均分给你的两个朋友。
你可以将巧克力分成若干块,每一块代表一个分数。
这样,你就可以通过这个类比更好地理解分数的概念和分数的运算规则。
步骤四:类比几何图形和建筑几何图形是数学中的重要组成部分,它们在我们的日常生活中无处不在。
我们可以将几何图形类比为建筑物。
想象一下,你要建造一座房子,你需要使用不同形状的砖块。
这些砖块就代表不同的几何图形,比如长方形、正方形等。
通过这个类比,我们可以更好地理解几何图形的性质和几何变换的规则。
步骤五:类比函数和关系函数是数学中的重要概念,它描述了两个量之间的关系。
我们可以将函数类比为人际关系。
想象一下,你和你的朋友之间有一个函数关系,你的朋友的身高是你的身高加上一个固定值。
类比探究(讲义)➢ 知识点睛1. 类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单到复杂)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主——“条件类似、图形结构类似、问法类似”.2. 类比探究问题的处理思路(1)根据题干条件,结合分支条件先解决第一问; (2)整体类比上一问,迁移解决下一问.①类比是解决类比探究问题的第一原则,如类比字母、类比辅助线、类比思路;②对比前后条件变化,寻找并利用不变特征,考虑相关几何结构解决问题.类比探究问题中常见几何结构举例旋转结构(手拉手模型):等线段共端点,考虑旋转,借助全等整合条件.EDC B AEDC B A如图,△ABC 和△ADE 均为等边三角形,则出现了AB =AC ,AD =AE 等线段共端点的结构.连接BD ,CE ,可以证明△ABD ≌△ACE ,△ACE 可看作是由△ABD 绕点A 逆时针旋转60°得到的.➢ 精讲精练1. 如图,在△ABC ,△CDE 中,∠ACB =∠ECD =90°,CA =CB ,CD =CE ,点D在AB 边上.若AD =5,BD =12,则AE =______,DE =_______.EDCA2.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE.以下五个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=ED2+EC2;⑤BE2=2(AD2+AB2),其中正确结论的个数是()A.2 B.3 C.4 D.5A BD E3.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE,AF平分∠DAE交BC 于F.(1)求证:△ABD≌△ACE;(2)若BD=3,CF=4,则DF=_________.EFDBA4.(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE,CD,求证:BE=CD.(2)如图2,已知△ABC,以AB,AC为边分别向外作正方形ABFD和正方形ACGE,连接BE,CD,猜想BE与CD有什么数量关系?请说明理由.(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,则BE的长为___________.图1DBACE图2CBEADGF图35. 已知△ABC 和△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°,点D 是等腰直角三角形ABC 斜边AB 所在直线上一点(不与点B 重合).(1)如图1,当点D 在线段AB 上时,直接写出DA 2,DB 2,DE 2三者之间的数量关系:_______________.(2)如图2,当点D 在线段AB 的延长线上时,(1)中的结论仍然成立,请你利用图2给出证明过程. (3)若点D 满足14AD AB ,直接写出DEDB的值:___________.图1EDCB A图2ECAABC备用图6. 在Rt △ABC 中,∠BAC =90°,AB =AC ,在BC 的同侧作任意Rt △DBC ,∠BDC =90°.(1)若CD =2BD ,M 是CD 中点(如图1), 求证:△ADB ≌△AMC .(2)若CD <BD (如图2),在BD 边上是否存在一点N ,使得△ADN 是以DN 为斜边的等腰直角三角形?若存在,请在图2中确定点N 的位置,并加以证明;若不存在,请说明理由.小明在解决此题时,是在BD 上截取BN =CD ,连接AN .你知道小明是怎么解决的吗?请写出过程.(3)当CD =1,BD =4时,则AD 的长为__________.MOD C BA图1ODBA图27.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF.(2)如图2,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB AN+=.小聪在解决此题时,过点M作AM的垂线,交AB的延长线于点P.你知道小聪是怎么解决的吗?请写出过程.AEB D FC图1ANDB CM图2【参考答案】➢精讲精练1.12,132. C3.(1)略;(2)5,证明略;(3)4.(1)略;(2)BE CD5.(1)222DA DB DE;(2)成立,证明略;(3+=6.(1)略;(2)略;(3)27.(1)略;(2)略。
相似之类比探究(讲义)一、 知识点睛● 类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主. ● 解决类比探究问题的通常思路解决类比探究问题的核心思想是类比(照搬),类比上一问的思路方法(如照搬字母,照搬辅助线等).探究变化过程中的不变特征(如常见结构),是类比的前提.● 类比探究中的常见结构平行结构:由比例找平行,构造A 字型或X 型; 直角结构:由斜置的直角通过作垂线构造相似三角形.二、 精讲精练1. 类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若3AFEF=,求CD CG 的值. (1)尝试探究:在图1中,过点E 作EH ∥AB 交BG 于点H , 则AB 和EH 的数量关系是_____________,CG 和EH 的数量关系是_____________,CDCG的值是_________.(2)类比延伸:如图2,在原题的条件下,若AFm EF=(m >0), 则CD CG的值是_________(用含m 的代数式表示),试写出 解答过程.图3BFE CDA图2ADE F G图1ABCDE F G(3)拓展迁移:如图3,在梯形ABCD 中,DC ∥AB ,点E是BC 的延长线上一点,AE 和BD 相交于点F .若ABa CD=,BCb BE=(a >0,b >0),则AF EF 的值是________(用含a ,b 的代数式表示).2. 数学课上,魏老师出示图1和下面框中条件:(1)①当点C 与点F 重合时,如图2所示,可得AMDM的值为___________;②在平移过程中,AMDM的值为___________(用含x 的代数 式表示).(2)将图2中的三角板ABC 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段DF 上时,如图3所示,请计算AMDM的值. (3)将图1中的三角板ABC 绕点C 逆时针旋转m 度,090m <≤,原题中的其他条件保持不变,如图4所示,请计算AMDM的值(用含x 的代数式表示).如图1,两个等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,∠ABC =∠DEF =90°,AB =1,DE =2.将直线EB 绕点E 逆时针旋转45°,交直线AD 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C ,E 两点间的距离为x .图2l图1图4图3图3FECDA3. 如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点E 与正方形ABCD 的顶点A 重合,三角板的一边交CD 于点F ,另一边交CB 的延长线于点G .(1)求证:EF =EG .(2)如图2,移动三角板,使顶点E 始终在正方形ABCD 的对角线AC 上,其他条件不变,(1)中的结论是否仍然成 立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,将(2)中的“正方形ABCD ”改为“矩形ABCD ”, 且使三角板的一边经过点B ,其他条件不变,若AB =a ,BC =b ,求EFEG的值.E (A )BCD FGG FD CBAEEACD FG (B )图1图2图34. 如图1,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F ,AC =mBC ,CE =nEA (m ,n 为实数).试探究线段EF 与EG 的数量关系.(1)如图2,当m =1,n =1时,EF 与EG 的数量关系是 ____________.(2)如图3,当m =1,n 为任意实数时,EF 与EG 的数量关 系是______________,并证明你的结论.(3)如图1,当m ,n 均为任意实数时,EF 与EG 的数量关 系是______________.(写出关系式,不必证明)三、 回顾与思考__________________________________________________________________________________________________________________________________________________________________D A B图1GC E图2G D FEC图3C GBA D F E【参考答案】1.(1)AB =3EH ;CG =2EH ;32(2)2m;提示:过点E 作EH ∥AB 交BG 于点H (3)ab ;提示:过点E 作EH ∥AB 交BD 的延长线于点H2.(1)①1;②2x(2)提示:过点B 作BE 的垂线交EM 的延长线于点G ,连接AG ,证AG ∥DE ,得△AMG ∽△DME ,所以212AM AG DM DE ===(3)提示:过点B 作BE 的垂线交EM 的延长线于点G ,连接AG ,证AG ∥DE ,得△AMG ∽△DME ,所以2AM AG xDM DE ==.3.(1)提示:证明Rt △FED ≌Rt △GEB (ASA),所以EF =EG ; (2)成立.理由如下: 证明:如图,I HEAB CD FG过点E 分别作BC ,CD 的垂线,垂足分别为H ,I , 证明Rt △FEI ≌Rt △GEH (ASA),所以EF =EG ; (3)解:如图,MN G (B )FD CAE过点E 分别作BC ,CD 的垂线,垂足分别为M ,N , 证明△GME ∽△FNE ,所以EF bEG a. 4. (1)EF =EG .(2)EF =1nEG ;作EM ⊥AB 于点M ,EN ⊥CD 于点NN MEC FAG(3)EF =1mnEG . I H C EF DA BG相似之类比探究(每日一题) 姓名_________1. 在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O ,某学生在研究这一问题时,发现了如下的事实:(1)当11211==+AE AC 时,有22321==+AO AD ; (2)当11312==+AE AC 时,有22422==+AO AD ; (3)当11413==+AE AC 时,有22523==+AO AD ; (4)当11=+AE AC n 时,参照上述研究结论,请你猜想用n 表示AOAD的一般结 论,并给出证明(其中n 是正整数).OE D CBA2. 在图1至图3中,直线MN 与线段AB 相交于点O ,∠1=∠2=45°. (1)如图1,若AO =OB ,请写出AO 与BD 的数量关系和位置关系. (2)将图1中的MN 绕点O 顺时针旋转得到图2,其中AO =OB . 求证:AC =BD ,AC ⊥BD .(3)将图2中的OB 拉长为AO 的k 倍得到图3,求BDAC的值. ABD OM NC 1221NM O D BA21C NMO D BA图1图2图33. 已知:线段OA ⊥OB ,点C 为OB 中点,D 为线段OA 上一点.连接AC ,BD 交于点P .(1)如图1,当D 为OA 中点时,求APPC 的值; (2)如图2,当AD :DO =1:m 时,求APPC的值;(3)如图3,把题目中“点C 为OB 中点”改为“BC :CO =1:n ”,当AD :DO =1:m 时,直接写出APPC的值. ABC DOPPODC BA PODC BA 图1图2图34. (1)如图1,已知正方形ABCD ,E 是AD 上一点,F 是BC 上一点,G 是AB 上一点,H 是CD 上一点,线段EF ,GH 交于点O ,∠EOH =∠C .求证:EF =GH .(2)如图2,若将“正方形ABCD ”改为“矩形ABCD ”,且AD =mAB ,其他 条件不变,探索线段EF 与线段GH 的数量关系并加以证明.(3)根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能, 写出推广命题,画出图形,并证明;若不能,说明理由.A BCD EFG HOOHG F EDCBA图1图25. 在矩形ABCD 中,E 是BC 的中点,点F 在BC 的延长线上,CM 平分∠DCF ,连接AE ,作EM ⊥AE 交CM 于点M .(1)如图1,当AB =BC 时,请判断AE 与EM 的数量关系并证明; (2)如图2,当AB =nBC 时,请判断AE 与EM 的数量关系并证明; (3)如图3,把题目中“E 是BC 的中点”改为“BE =mEC ”,当AB =nBC 时, 请判断AE 与EM 的数量关系并证明.图3图2图1ABCDFEM ABCDFE MME FDCBA【参考答案】1.解:当11=+AE AC n 时,2=2AO AD n+ FOEDCBA证明如下:过点A 作BC 的平行线交BE 的延长线于点F ∵ 11=+AE AC n ∴1AE EC n =∵ AF ∥BC∴ △AEF ∽△CEB ,△AOF ∽△DOB ∴1AF AE BC EC n ==,AF AOBD OD =∵ D 为BC 的中点 ∴ BD =DC∴2212AF AF AFBD BC nBC===∴2=AOOD n,即:2=2AOAD n+2.解:(1)由题意知∠BOD=∠1=45°,此时△OBD是等腰直角三角形∴OB=BD,OB⊥BD∴AO=BD,AO⊥BD(2)如图2,EFC21NMODBA图2过点B作BE//AC交CD于点E,延长AC,DB交于点F.∴∠DEB=∠DCF=∠1=45°,∠ACO=∠BEO,∠OAC=∠OBE ∴△BED,△FCD是等腰直角三角形∴BD=BE,AC⊥BD∵AO=BO∴△AOC≌△BOE,∴AC=BE∴AC=BD,AC⊥BD(3)如图3,EF21CNMODBA图3过点B作BE//AC交CD于点E,延长AC,DB交于点F.∴∠DEB=∠DCF=∠1=45°,∠ACO=∠BEO,∠OAC=∠OBE ∴△BED、△FCD是等腰直角三角形,且△AOC∽△BOE∴BD=BE,BE OB AC OA=∵OB是OA的k倍∴BE AC=k∴BDk AC=3.解:(1)如图1,E图1BPODCA过点D作DE∥OB交AC于点E,∠ADE=∠O,∠AED=∠ACO∴△ADE∽△AOC∴12 AE AD DE DE AC AO OC BC====又∵DE∥OB∴∠EDP=∠B,∠DEP=∠BCP ∴△DEP∽△BCP∴12 EP DE PC BC==∴AP PC=2(2)如图2,E图2OADPB过点D作DE∥OB交AC于点E,∠ADE=∠O,∠AED=∠ACO ∴△ADE∽△AOC∴11AE AD DE DEAC AO OC BC m====+,1AE ADEC DO m==∵DE∥OB∴∠EDP=∠B,∠DEP=∠BCP ∴△DEP∽△BCP∴11 EP DEPC BC m==+∴12 EPEC m=+设AE =k ,则EC =mk ∴ EP =2mkm + ∴ AP =AE +EP =2222mk mk kk m m ++=++,PC =EC -EP =222mk m k mk mk m m +-=++ ∴AP PC =2m(3)1n m+ 4.证明:(1)如图1,Q N MR 图1OHG FED C BA过点F 作FM ⊥AD 于M ,过点G 作GN ⊥CD 于N则FM =GN =CD =BC ,且GN ⊥FM ,设它们的垂足为Q ,EF ,GN 交于点R ∵ ∠EOH =∠GOF =∠C =90°,∴ ∠OGR =90°-∠GRO =90°-∠QRF =∠OFM . ∵ ∠GNH =∠FME =90°,FM =GN , ∴ △GNH ≌△FME . ∴ EF =GH(2)GH=mEF证明如下:如图2,MNRQ图2AB CDEFGHO过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF,GN交于点R,GN,MF交于点Q∵∠EOH=∠GOF=∠C=90°,∴∠OGR=90°-∠GRO=90°-∠QRF =∠OFM.∵∠GNH=∠FME=90°,∴△GNH∽△FME.∴GH ADEF AB=m,即:GH=mEF(3)A E M DHNCQORFGB如图,已知平行四边形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF,GH交于点O,∠EOH=∠C,AD=mAB,则GH=mEF.证明:如图,过点F作FM⊥AD于M,过点G作GN⊥CD于N,设EF,GN交于点R、GN,MF交于点Q,在四边形MQND中,∠QMD=∠QND=90°∴∠ADC+∠MQN=180°.∴∠MQN=∠C=∠EOH=∠GOF.∵∠ORG=∠QRF,∴∠HGN=∠EFM.∵∠FME=∠GNH=90°,∴△GNH∽△FME.∴GH GN EF MF=∵AB⋅GN=AD⋅MF∴GN AD FM AB==m∴GHmEF=,即:GH=mEF5.解:(1)AE=EM,理由如下:如图1,G图1ME FDCBA取AB的中点G,连接GE.∵∠AEM=90°∴∠MEC+∠AEB=90°∵∠B=90°∴∠EAG+∠AEB=90°∴∠EAG=∠MEC∵点E,G分别为正方形ABCD的边BC和AB的中点∴AG=EC∵△BGE是等腰直角三角形∴∠AGE=135°∵CM平分∠DCF∴∠ECM=135°∴△AEG≌△EMC∴AE=EM(2)当AB=nBC时,AE=(2n-1)EM,理由如下:如图2,G图2AB CDFEM在AB上截取BG=BE,连接GE,则△BGE为等腰直角三角形∴∠BGE=45°∴∠AGE=∠ECM=135°∵∠AEM=90°∴∠MEC+∠AEB=90°∵∠B=90°∴∠EAG+∠AEB=90°∴∠EAG=∠MEC∴△AEG∽△EMC∴AE AG EM EC=∵AB=nBC,BC=2BE=2EC,BG=BE ∴AG+BG=2nEC∴AG=(2n-1)EC∴AE AGEM EC==(2n-1)∴AE=(2n-1)EM(3)当AB=nBC,BE=mEC时,AE=(mn+n-m)EM,理由如下:如图3,ME FDCBA图3G在AB上截取BG=BE,连接GE,则△BGE为等腰直角三角形∴∠BGE=45°∴∠AGE=∠ECM=135°∵∠AEM=90°∴∠MEC+∠AEB=90°∵∠B=90°∴∠EAG+∠AEB=90°∴∠EAG=∠MEC∴△AEG∽△EMC∴AE AG EM EC=∵BE=mEC∴BC=BE+EC=(m+1)EC ∵AB=nBC,BG=BE∴AG+BG=n(m+1)EC∴AG+mEC=n(m+1)EC ∴AG=(mn+n-m)EC∴AE AGEM EC==(mn+n-m)∴AE=(mn+n-m)EM相似之类比探究(随堂测试)1. 已知:在Rt △ABC 中,∠ABC =90°,∠A =30°,点P 在AC 上,且∠MPN =90°.当点P 为线段AC 的中点,点M ,N 分别在线段AB ,BC 上时(如图1),过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,可证Rt △PME ∽Rt △PNF ,得出PN(不需证明).当PCP A ,点M ,N 分别在线段AB ,BC 或其延长线上,如图2、图3这两种情况时,请写出线段PN ,PM 之间的数量关系,并任选一种情况给予证明.图3B NAPMC【参考答案】如图2,如图3中都有结论:PNPM .理由略HG AMBPCI QC MPANB图1AEFMCPB 图2CPBMA相似之类比探究(作业)2. 原题:如图1,D 是△ABC 的边BC 上一点,过点D 的一条直线交AC 于点F ,交BA 的延长线于点E .若BD =CD ,CF =2AF ,则EAEB的值是_____________.(1)如图2,在原题的条件下,若BD =CD ,CF =mAF ,则EAEB的值是__________(用含m 的代数式表示),试写出解答过程.(2)如图3,若将原题改为“过点D 的一条直线交AC 的延长线于点F ,交AB 于点E ”,且BD =aCD ,CF =bAF ,则EAEB的值是__________(用含a ,b的代数式表示).图1BD FEA图2FAE B 图3BCD E A3. 如图1,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO ,交AD 于点F ,OE ⊥OB 交BC 于点E . (1)求证:△ABF ∽△COE ; (2)如图2,当O 为边AC 中点,2AC AB =时,求OFOE的值; (3)如图3,当O 为边AC 中点,ACn AB=时,请直接写出OFOE的值.DEFBA图2A CED F B图3图1BF D O ECA4. 如图,在△ABC 中,∠A =60°,BD ,CE 分别是AC ,AB 上的高.求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ; (3)BC =2ED .DCAEB【参考答案】1. 原题:12; (1)1m ; (2)1ab;2. 解:(1)略(2)2OF OE=.提示:如图,过点O 作OG ∥AB 交BC 于点G ,证明△AOF ∽△GOEGDEOCFBA(3)OFn OE = 3.(1)略;(2)略;(3)略。
(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论;(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论。
操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN。
探究:线段BM、MN、NC之间的关系,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。
①AN=NC(如图②);②DM∥AC(如图③)。
附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由。
(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。
类比探究(讲义)➢知识点睛1.类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单到复杂)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主——“条件类似、图形结构类似、问法类似”.2.类比探究问题的处理思路(1)根据题干条件,结合分支条件先解决第一问;(2)整体类比第一问,迁移解决下一问.①类比是解决类比探究问题的第一原则,如类比字母、类比辅助线、类比思路;②对比前后条件变化,寻找并利用不变特征,考虑相关几何结构解决问题.3.类比探究问题中的常见特征举例手拉手模型:两个共顶点且顶角相等的等腰三角形构成,在相对位置变化的过程中,始终存在一对全等三角形.EDAB C条件:AB=AC,AD=AE,∠BAC=∠DAE结论:△ABD≌△ACE➢精讲精练1.如图,在△ABC,△CDE中,∠ACB=∠ECD=90°,CA=CB,CD=CE,点D在AB边上.若AD=5,BD=12,则AE=______,DE=_______.ADEB2. 如图,点D 为等边三角形ABC 内一点,AD =4,BD =3,CD =5.以BD 为一边作等边三角形BDE ,连接CE . (1)判断△DEC 的形状,并说明理由; (2)求∠ADB 的度数.EDCBA3. 如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE .以下五个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=ED 2+EC 2;⑤BE 2=2(AD 2+AB 2),其中正确结论的个数是( ) A .2B .3C .4D .5ABC DE4. 如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE ,AF 平分∠DAE 交BC 于F . (1)求证:△ABD ≌△ACE ;(2)若BD =3,CF =4,则DF =_________.ECFDBA5. 已知△ABC 和△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°,点D 是等腰直角三角形ABC 斜边AB 所在直线上一点(不与点B 重合).(1)如图1,当点D在线段AB上时,直接写出DA2,DB2,DE2三者之间的数量关系:_______________.(2)如图2,当点D在线段AB的延长线上时,(1)中的结论仍然成立,请你利用图2给出证明过程.(3)若点D满足14ADAB,直接写出DEDB的值:_________.图1ECBA图2ECAA BC备用图6. 在Rt △ABC 中,∠BAC =90°,AB =AC ,在BC 的同侧作任意Rt △DBC ,∠BDC =90°.(1)若CD =2BD ,M 是CD 中点(如图1), 求证:△ADB ≌△AMC .(2)若CD <BD (如图2),在BD 边上是否存在一点N ,使得△ADN 是以DN 为斜边的等腰直角三角形?若存在,请在图2中确定点N 的位置,并加以证明;若不存在,请说明理由.(提示:在BD 上截取BN =CD ,连接AN ) (3)当CD =1,BD =4时,则AD 的长为__________.MOD CBA图1OD BA图27.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF.(2)如图2,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+ANAM.(提示:过点M作AM的垂线,交AB的延长线于点P)AEB D FC图1ADNMB C图2【参考答案】➢精讲精练1.12,132.(1)△DEC是直角三角形,理由略;(2)∠ADB=150°3. C4.(1)略;(2)55.(1)222DA DB DE;(2)略;(3+=6.(1)略;(2)存在,证明略;(3)27.(1)略;(2)略。
平行四边形之类比探究(讲义)➢ 知识点睛1. 类比探究问题的处理思路(1)根据题干条件,结合分支条件先解决第一问; (2)整体类比第一问,迁移解决下一问.①类比是解决类比探究问题的第一原则,如类比字母、类比辅助线、类比思路;②如果不能类比,分析两问条件变化,寻找不变特征,结合所求目标,依据不变特征,大胆猜测、尝试、验证.注:类比过程中,往往要在不变结构的框架下去思考分析,有时也会进行适当的探索来解决图形变化过程中产生的一些新问题,如有时第3问需要根据前2问发现的不变结构先补全图形,再类比求解. 2. 类比探究问题中的常见结构举例:(1)旋转结构:等线段共端点,补全旋转,利用全等转移条件.D'DCA(2)中点结构A MF E CBANMCB A平行夹中点 (类)倍长中线 中位线➢ 精讲精练1. 在□ABCD 中,点P 和点Q 是直线BD 上不重合的两个动点,AP ∥CQ ,AD =BD .(1)如图1,求证:BP +BQ =BC ;(2)请直接写出图2、图3中BP ,BQ ,BC 三者之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,若DQ =1,DP =3,则BC =__________.图1QPDC BA图2QPD C BA图3QPDC BA2. 如图,在等边三角形ABC 中,点D 在直线BC 上,连接AD ,作∠ADN =60°,直线DN 交射线AB 于点E ,过点C 作CF ∥AB ,交直线DN 于点F . (1)当点D 在线段BC 上,∠NDB 为锐角时,如图1,求证:CF +BE =CD .(提示:过点F 作FM ∥BC ,交射线AB 于点M )(2)当点D 在线段BC 的延长线上,∠NDB 为锐角时,如图2,请猜想线段CF ,BE ,CD 之间的数量关系,并证明.(3)当点D 在线段CB 的延长线上,∠NDB 为钝角时,如图3,则线段CF ,BE ,CD 之间的数量关系为____________.图1N MFEDCB A图2NFEDCBA图3ABCD EF N3. 已知点O 是△ABC 内任意一点,连接OA 并延长到点E ,使得AE =OA ,以OB ,OC 为邻边作□OBFC ,连接OF ,与BC 交于点H ,连接EF . (1)问题发现如图1,若△ABC 为等边三角形,线段EF 与BC 的位置关系是________,数量关系是__________. (2)拓展探究如图2,若△ABC 为等腰直角三角形(BC 为斜边),(1)中的两个结论是否成立?若成立,请给予证明;若不成立,请写出正确结论再给予证明. (3)解决问题如图3,若△ABC 是等腰三角形,AB =AC =2,BC =3,请你直接写出线段EF 的长.ABCEF HO图1图2F BAOHCE图3F BHOCAE4.△ABC与△CDE是等边三角形,连接AD,取AD的中点P,连接BP并延长至点M,使PM=BP,连接AM,EM,AE,将△CDE绕点C顺时针旋转.(1)如图1,当点D在BC上,点E在AC上时,则△AEM的形状为_____________;(2)将△CDE绕点C顺时针旋转至图2的位置,请判断△AEM的形状,并说明理由;(3)若CD=12BC,将△CDE由图1位置绕点C顺时针旋转α(0°≤α<360°),当MECD时,请直接写出α的值.图1MP ED CBA图2MPEDCBA备用图CBA【参考答案】 ➢ 精讲精练1. (1)证明略;(2)图2:BQ -BP =BC ,图3:BP -BQ =BC ; (3)4或2. 2. (1)证明略;(2)BE -CF =CD ,证明略; (3)CF -BE =CD .3. (1)EF ⊥BC ,EF ;(2)不成立,EF ⊥BC ,EF =BC ,证明略;(3)EF . 4. (1)等边三角形;(2)△AEM 为等边三角形,证明略; (3)=60300α︒︒或.。
中考专题类比探究(二)
1、在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.
(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.
2、有一副直角三角板,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA与FD 在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.
(1)如图2,当三角板DEF运动到点D到点A重合时,设EF与BC交于点M,则∠EMC= 度;
(2)如图3,当三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.
3、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF
(1)如图1,当点D在线段BC上时.求证CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD 三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.
4.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN 于点E,过点B作BF⊥MN于点F.
(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)
(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.
5.已知四边形ABCD 中,E 、F 分别是AB 、AD 边上的点,DE 与CF 交于点G .
(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证
CD
AD
CF DE =
; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得
CD
AD
CF DE =
成立?并证明你的结论; (3)如图③,若BA =BC =6,DA =DC =8,∠BAD =90°,DE ⊥CF ,请直接写出CF
DE
的值.
6.如图1,△ABC 为等腰直角三角形,∠ACB=90°,F 是AC 边上的一个动点(点F 与A 、C 不重合),以CF 为一边在等腰直角三角形外作正方形CDEF ,连接BF 、AD . (1)①猜想图1中线段BF 、AD 的数量关系及所在直线的位置关系,直接写出结论; ②将图1中的正方形CDEF ,绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF 交AC 于点H ,交AD 于点O ,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC 改为直角三角形ABC ,∠ACB=90°,正方形CDEF 改为矩形CDEF ,如图4,且AC=4,BC=3,CD=,CF=1,BF 交AC 于点H ,交AD 于点O ,连接BD 、AF ,求BD 2
+AF 2
的值.
E F G
A B C
D
第24题图①
第24题图②
A
B
C
D
F G
E
第24题图③
A
B
C
D
F
G
E。