八年级数学实数测试题1
- 格式:doc
- 大小:81.50 KB
- 文档页数:3
一、选择题1.下列算式中,运算错误的是( )A =B =C =D .2(=32.在-1.4141,π,2+,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .5 3.一个边长为bcm 的正方形的面积与一个长为8cm 、宽为5cm 的长方形的面积相等,则b 的值在( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间 4.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 5.下列运算中正确的是( )A =B .+=C =D .1)3-= 6.若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( )A .a 是5的平方根B .b 是5的平方根C .1a -是5的算术平方根D .1b -是5的算术平方根 7.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=8.如x 为实数,在“1)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A 1B 1C .D .1-9.8b =+ ).A .3±B .3C .5D .5±10.下列计算正确的是( )A +=B =C 4=D 3=-11.下列计算结果,正确的是( )A 3B +C .=1D .2=5 12.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±5二、填空题13.的整数部分是a .小数部分是b ,则2a b -=______.14.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.15.已知10x ,小数部分是y ,求x ﹣y 的相反数_____.16.已知M 是满足不等式a <<N M N +的平方根为__________.17.=__________. 18.若3109,b a =-且b 的算术平方根为4,则a =__________.19.已知2x =,2y =+.则代数式x 2+y 2﹣2xy 的值为_____.20.若50x -=,则x y +=________.三、解答题 21.化简求值:21a ,b =,求1a b b a ++的值. 22.(1)计算:;).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.23.已知某正数的两个不同的平方根是3a ﹣14和a +2;b +11的立方根为﹣3;c 的整数部分;(1)求a +b +c 的值;(2)求3a ﹣b +c 的平方根.24.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________; (2)若()4,2a =,(),83b =,求(),b a 的值.25.计算:(1)7|2|--(2)2 311 5422⎛⎫⎛⎫⨯-÷-⎪ ⎪⎝⎭⎝⎭26.|1-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】解:∵=∴A选项不合题意;∵=∴B选项不合题意;∵∵C选项符合题意;∵﹣2(=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键. 2.B解析:B【分析】根据无理数的定义判断即可.【详解】解:-1.4141是有限小数,不是无理数;是无理数;π是无理数;2+=2,不是无理数;3.14是有限小数,不是无理数;所以,无理数有3个,故选:B.【点睛】本题考查了无理数的定义,解题关键是知道无理数是无限不循环小数,常见的有π和开不尽方的算术平方根.3.D解析:D【分析】由于边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,根据面积公式列出等量关系式,由此求出b的值,再估计b在哪两个整数之间即可解决问题.【详解】解:∵边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,∴b2=5×8=40,,∵36<40<49,∴67.故选:D.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.5.A解析:A【分析】根据二次根式的除法法则对A进行判断;根据二次根式的加减法对B、C进行判断;利用二次根式的乘法法则对D进行判断.【详解】A=B 、=C ==D 、221)11=-=,原计算错误,不符合题意;故选:A .【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法. 6.C解析:C【分析】根据方程解的定义和算术平方根的意义判断即可.【详解】∵方程2(1)5x -=的解分别为,a b ,∴2(1)5a -=,2(1)5b -=,∴a-1,b-1是5的平方根,∵a b >,∴11a b ->-,∴a-1是5的算术平方根,故选C.【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键. 7.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意; 故选:D .【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.8.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+-=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a≥0,∴a=17,∴b+8=0,解得b=-8,∴==,5故选:C.【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.11.D解析:D【分析】利用二次根式的性质对A、D进行判断;根据二次根式的加减法对B、C进行判断.【详解】解:A、原式=3,所以A选项错误;B B选项错误;C、原式C选项错误;D、原式=5,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.二、填空题13.6-16【分析】先估算确定ab的值进而即可求解【详解】∵<<∴3<<4又∵a是的整数部分b是的小数部分∴a=3b=−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a,b的值,进而即可求解.【详解】∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键.14.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键. 15.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.16.±3【分析】先通过估算确定MN 的值再求M+N 的平方根【详解】解:∵∴∵∴∵∴∴a 的整数值为:-1012M=-1+0+1+2=2∵∴N=7M+N=99的平方根是±3;故答案为:±3【点睛】本题考查了算解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵<< ∴221, ∵< ∴23<<,∵a <<∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵<∴78<<,N=7, M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.17.2a 【分析】根据二次根式的除法法则计算再将计算结果化为最简二次根式即可解题【详解】故答案为:【点睛】本题考查二次根式的除法最简二次根式等知识是重要考点难度较易掌握相关知识是解题关键解析:2a【分析】根据二次根式的除法法则计算,再将计算结果化为最简二次根式即可解题.【详解】2a==== 故答案为:2a .【点睛】本题考查二次根式的除法、最简二次根式等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.19.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.20.8【分析】根据绝对值的非负性及算术平方根的非负性得到x=5y=3再计算代数式即可【详解】∵∴x-5=0y-3=0∴x=5y=3∴x+y=5+3=8故答案为:8【点睛】此题考查代数式的代入求值正确掌握解析:8 【分析】根据绝对值的非负性及算术平方根的非负性得到x=5,y=3,再计算代数式即可.【详解】∵50x -+=,50x -≥≥,∴x-5=0,y-3=0,∴x=5,y=3,∴x+y=5+3=8,故答案为:8.【点睛】此题考查代数式的代入求值,正确掌握绝对值的非负性及算术平方根的非负性求得x=5,y=3是解题的关键.三、解答题21.()2a b ab ab +-;7【分析】 将a 、b 进行分母有理化,然后求出+a b 、ab 的值,对代数式变形,采用整体代入的方法求值 【详解】 ∵21a,b =,∴1a ==,1b ==, ∴)()21211ab =+=,11a b +=++=∴1a b b a++ 221a b ab+=+ 22a b ab ab++= ()2a b abab +-=(2171-==. 故1a b b a++的值为7. 【点睛】本题考察二次根式的有理化,根据二次根式的乘除法则进行二次根式有理化,代数式求值的问题可以先对代数式进行变形,采用整体代入的方法,可使运算简便22.(1)①5;②6-;(2)52x =或12x =-; ②52x =-. 【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算; ②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a =的的形式,再根据平方根定义求解即可; ②将方程移项,再整理为3x a =根据立方根定义求解即可;【详解】解:(1)解:①原式== 5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4x -=则312x -=或312x -=-, 解得,52x =或12x =-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.23.(1)-33;(2)7±【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据23<<可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答.【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,又∵469<<,∴23<<,又∵c的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.24.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a与b的值,然后求解【详解】解:(1)∵328=∴()2,8=3∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键. 25.(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.26.1.【分析】根据二次根式的性质、绝对值的性质、立方根的性质依次化简再计算加减法.【详解】解:原式12=+1=. 【点睛】此题考查实数的混合运算,二次根式的加减运算,掌握二次根式的性质、绝对值的性质、立方根的性质是解题的关键.。
第二章实数测试卷一、选择题(每小题3分,共36分)1.(3分)(2018•锦州)下列实数为无理数的是()A.﹣5 B.C.0 D.π2.(3分)(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.3.(3分)(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上4.(3分)(2018•宁夏)计算:|﹣|﹣的结果是()A.1 B.C.0 D.﹣15.(3分)下列说法错误的是()A.a2与(﹣a)2相等B.与互为相反数C.与是互为相反数D.﹣|a|与|﹣a|互为相反数6.(3分)(2018•贺州)在﹣1、1、、2这四个数中,最小的数是()A.﹣1 B.1 C.D.2 7.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.8.(3分)下列说法正确的是()A.﹣0.064的立方根是0.4 B.16的立方根是C.﹣9的平方根是±3 D.0.01的立方根是0.0000019.(3分)(2018•莱芜)无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间10.(3分)若=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧 B.原点右侧C.原点或原点左侧D.原点或原点右侧11.(3分)若,则a与b的关系是()A.a=b=0 B.a=b C.a+b=0 D.12.(3分)若一个自然数的算术平方根是m,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是()A.B.m2+1 C.m+1 D.二、填空题(每小题3分,共12分)13.(3分)在数轴上表示﹣的点离原点的距离是.14.(3分)一个正数n的两个平方根为m+1和m﹣3,则m= ,n= .15.(3分)若﹣是m的一个平方根,则m+20的算术平方根是.16.(3分)实数a、b在数轴上的位置如图,则化简= .三、解答题(52分)17.(5分)将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.18.(9分)化简①+3﹣5②(﹣)③||+|﹣2|﹣|﹣1|19.(6分)求下列x的值.(1)3x3=﹣81;(2)x2﹣=0.20.(5分)一个正数x的平方根是2a﹣3与5﹣a,则x是多少?21.(5分)如图:A,B两点的坐标分别是(2,),(3,0).(1)将△OAB向下平移个单位求所得的三角形的三个顶点的坐标;(2)求△OAB的面积.22.(5分)小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)23.(5分)已知a、b满足+|b﹣|=0,解关于x的方程(a+2)x+b2=a﹣1.24.(6分)小芳想在墙壁上钉一个三角架(如图),其中两直角边长度之比为3:2,斜边长厘米,求两直角边的长度.25.(6分)已知,a、b互为倒数,c、d互为相反数,求的值.参考答案一、选择题(每小题3分,共36分)1.(3分)(2018•锦州)下列实数为无理数的是()A.﹣5 B.C.0 D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.【分析】直接利用实数的性质结合算术平方根以及倒数的定义分析得出答案.【解答】解:=4,则4的算术平方根为2,故2的倒数是:.故选:C.【点评】此题主要考查了实数的性质以及算术平方根,正确把握相关定义是解题关键.3.(3分)(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.【点评】本题考查的是实数与数轴、相反数的概念,掌握表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等是解题的关键.4.(3分)(2018•宁夏)计算:|﹣|﹣的结果是()A.1 B.C.0 D.﹣1【分析】原式利用绝对值的代数意义,算术平方根定义计算即可求出值.【解答】解:原式=﹣=0,故选:C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.5.(3分)下列说法错误的是()A.a2与(﹣a)2相等B.与互为相反数C.与是互为相反数D.﹣|a|与|﹣a|互为相反数【考点】实数的性质;相反数.【分析】根据互为相反数的平方相等,只有符号不同的两个数互为相反数,可得答案.【解答】解:A、a2与(﹣a)2是互为相反数的平方相等是正确的,不符合题意;B、与是相等的数,故B错误,符合题意;C、被开方数互为相反数的立方根互为相反数,故C正确,不符合题意;D、﹣|a|与|﹣a|互为相反数,故D正确,不符合题意.故选:B.【点评】此题考查了实数的性质,相反数的定义,相反数的概念:只有符号不同的两个数叫做互为相反数.6.(3分)(2018•贺州)在﹣1、1、、2这四个数中,最小的数是()A.﹣1 B.1 C.D.2【分析】根据实数大小比较的法则比较即可.【解答】解:在实数﹣1,1,,2中,最小的数是﹣1.故选:A.【点评】本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.7.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3 B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.【点评】此题考查了有理数大小比较,将各数按照从小到大顺序排列是解本题的关键.8.(3分)下列说法正确的是()A.﹣0.064的立方根是0.4 B.16的立方根是C.﹣9的平方根是±3 D.0.01的立方根是0.000001【考点】立方根;平方根.【分析】A、根据立方根的定义即可判定;B、根据立方根的定义即可判定;C、根据平方根的定义即可判定;D、根据立方根的定义即可判定.【解答】解:A、﹣0.064的立方根是﹣0.4,故选项错误;B、16的立方根是,故选项正确;C、﹣9没有平方根,故选项错误;D、0.01的立方根是,故选项错误.故选B.【点评】主要考查了平方根和立方根的性质以及成立的条件.立方根的性质:①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.9.(3分)(2018•莱芜)无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】首先得出2的取值范围进而得出答案.【解答】解:∵2=,∴6<<7,∴无理数2﹣3在3和4之间.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.10.(3分)若=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧 B.原点右侧C.原点或原点左侧D.原点或原点右侧【考点】实数与数轴.【分析】根据二次根式的性质,知﹣a≥0,即a≤0,根据数轴表示数的方法即可求解.【解答】解:∵=﹣a,∴a≤0,故实数a在数轴上的对应点一定在原点或原点左侧.故选C.【点评】此题主要考查了二次根式的性质:≥0,然后利用熟知数轴的这是即可解答.11.(3分)若,则a与b的关系是()A.a=b=0 B.a=b C.a+b=0 D.【考点】立方根.【分析】根据立方根的和为0,可得被开数互为相反数,可得答案.【解答】解:若,则a与b的关系是a+b=0,故选:C.【点评】本题考查了立方根,注意立方根互为相反数被开方数互为相反数.12.(3分)若一个自然数的算术平方根是m,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是()A.B.m2+1 C.m+1 D.【考点】实数.【分析】先求出这个数,然后加1求出下一个自然数,再根据算术平方根的定义写出即可.【解答】解:∵自然数的算术平方根为m,∴自然数是m2,∴下一个自然数是m2+1,它的算术平方根是.故选A.【点评】本题考查了算术平方根,表示出下一个自然数是解题的关键.二、填空题(每小题3分,共12分)13.(3分)在数轴上表示﹣的点离原点的距离是.【考点】实数与数轴.【分析】本题利用实数与数轴的关系即可解答.【解答】解:数轴上表示﹣的点离原点的距离是|﹣|即;故答案为.【点评】此题主要考查了数轴的点到原点的距离与点所表示的数的对应关系,在数轴上一个负数到原点的距离是这个数的绝对值.14.(3分)一个正数n的两个平方根为m+1和m﹣3,则m= 1 ,n= 4 .【考点】平方根.【专题】计算题.【分析】根据正数的平方根有2个,且互为相反数列出关于m的方程,求出方程的解即可得到m的值,进而求出n的值.【解答】解:根据题意得:m+1+m﹣3=0,解得:m=1,即两个平方根为2和﹣2,则n=4.故答案为:1;4【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.15.(3分)若﹣是m的一个平方根,则m+20的算术平方根是 5 .【考点】算术平方根;平方根.【专题】计算题.【分析】根据平方根定义求出m的值,即可得到结果.【解答】解:根据题意得:m=5,∴m+20=25,则25的算术平方根为5.故答案为:5.【点评】此题考查了算术平方根,以及平方根,熟练掌握各自的定义是解本题的关键.16.(3分)实数a、b在数轴上的位置如图,则化简= ﹣2a .【考点】二次根式的性质与化简;实数与数轴.【分析】利用数轴得出a+b<0,b﹣a>0,进而化简各式得出即可.【解答】解:如图所示:a+b<0,b﹣a>0,故=﹣a﹣b+(b﹣a)=﹣2a.故答案为:﹣2a.【点评】此题主要考查了二次根式的性质与化简,正确化简各式是解题关键.三、解答题(52分)17.(5分)将下列各数填入相应的集合内.﹣7,0.32,,0,,,,π,0.1010010001…①有理数集合{ …}②无理数集合{ …}③负实数集合{ …}.【考点】实数.【分析】根据实数的分类:实数分为有理数、无理数.或者实数分为正实数、0、负实数.进行填空.【解答】解:=5,=2.①有理数集合{﹣7,0.32,,0,}②无理数集合{,,π,0.1010010001…}③负实数集合{﹣7}.故答案是:﹣7,0.32,,0,;,,π,0.1010010001…;﹣7.【点评】本题考查了实数的分类.注意0既不是正实数,也不是负实数.18.(9分)化简①+3﹣5②(﹣)③||+|﹣2|﹣|﹣1|【考点】二次根式的混合运算.【专题】计算题.【分析】①直接合并即可;②利用二次根式的乘法法则运算;③先去绝对值,然后合并即可.【解答】解:①原式=﹣;②原式=1﹣6=﹣5;③原式=﹣+2﹣+﹣1=1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.19.(6分)求下列x的值.(1)3x3=﹣81;(2)x2﹣=0.【考点】立方根;平方根.【分析】(1)先将原式变形为x3=a的形式,然后利用立方根的定义求解即可;(2)先将原式变形为x2=a的形式,然后利用平方根的性质求解即可.【解答】解:(1)系数化为1得:x3=﹣27,∴x=﹣3;(2)移项得:∴,.【点评】本题主要考查的是平方根和立方根,掌握平方根和立方根的定义和性质是解题的关键.20.(5分)一个正数x的平方根是2a﹣3与5﹣a,则x是多少?【考点】平方根.【分析】根据一个正数的平方根互为相反数,可得a的值,再根据平方,可得被开方数.【解答】解:(2a﹣3)+(5﹣a)=0,a=﹣2,2a﹣3=﹣7,(2a﹣3)2=(﹣7)2=49.【点评】本题考查了平方根,根据平方根互为相反数,求出平方根,再求出被开方数.21.(5分)如图:A,B两点的坐标分别是(2,),(3,0).(1)将△OAB向下平移个单位求所得的三角形的三个顶点的坐标;(2)求△OAB的面积.【考点】二次根式的应用;坐标与图形变化-平移.【分析】(1)将△OAB向下平移个单位,此时点A在x轴上;将△OAB各点的横坐标不变,纵坐标减去即可得到平移后的各点的坐标;(2)△OAB的面积=OB×点A的纵坐标÷2,把相关数值代入即可求解.【解答】解:(1)∴所得的三角形的三个顶点的坐标为A′(2,0),O′(0,﹣),B′(3,﹣);(2)△OAB的面积=×3×=.【点评】此题考查了二次根式的应用及平移变化的知识,用到的知识点为:三角形的面积等于底与高积的一半;上下平移只改变点的纵坐标,上加下减.22.(5分)小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)【考点】立方根;近似数和有效数字.【分析】由题意知两个正方形的体积和长方体的体积相等,设正方体的棱长为x,根据正方体的体积公式和立方根的定义即可列出关系式求出x.【解答】解:设正方体的棱长为x,由题意知,2x3=50×40×30,解得x≈31,故这两个正方体纸箱的棱长31厘米.【点评】本题主要考查立方根和近似数和有效数字等知识点,解题关键是根据正方体的体积公式列出方程求出棱长.23.(5分)已知a、b满足+|b﹣|=0,解关于x的方程(a+2)x+b2=a﹣1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;解一元一次方程.【专题】计算题.【分析】根据非负数的性质列式求出a、b的值,然后代入方程得到关于x的方程,求解即可.【解答】解:根据题意得,2a+8=0,b﹣=0,解得a=﹣4,b=,所以(﹣4+2)x+3=﹣4﹣1,即﹣2x=﹣8,解得x=4.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.24.(6分)小芳想在墙壁上钉一个三角架(如图),其中两直角边长度之比为3:2,斜边长厘米,求两直角边的长度.【考点】勾股定理;实数的运算.【分析】根据两直角边之间的比值,设出一边,然后表示出另一边,用勾股定理得到方程即可求出两直角边的长即可.【解答】解:∵两直角边长度之比为3:2,∴设两条直角边分别为:3x厘米、2x厘米,∵斜边长为厘米,∴由勾股定理得:(3x)2+(2x)2=()2解得:x=2,3x=3×2=6,2x=2×2=4.故两直角边的长度为6厘米,4厘米.【点评】本题考查了勾股定理的应用,利用勾股定理不但能在直角三角形中求边长,而且它还是直角三角形中隐含的一个等量关系,利用其可以列出方程.25.(6分)已知,a、b互为倒数,c、d互为相反数,求的值.【考点】实数的运算.【分析】由a、b互为倒数可得ab=1,由c、d互为相反数可得c+d=0,然后将以上两个代数式整体代入所求代数式求值即可.【解答】解:依题意得,ab=1,c+d=0;∴==﹣1+0+1=0.【点评】本题主要考查实数的运算,解题关键是运用整体代入法求代数式的值,涉及到倒数、相反数的定义,要求学生灵活掌握各知识点.。
八年级(上)数学每日练习4.3实数(1)班级 姓名 学号_______【基础练习】1.下列实数中,无理数的是 ( ) A .31 B .π C .16 D .722 2.下列语句中,正确的是 ( ) A .正整数、负整数统称整数 B .正数、0、负数统称有理数 C .开方开不尽的数和π统称无理数 D .有理数、无理数统称实数3.与数轴上的点具有一一对应关系的数是 ( ) A .整数 B .有理数 C .实数 D .无理数 4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;其中错误的是 ( )A .0个B .1个C .2个D .3个5.若无理数a 满足:1<a <4,请写出两个符合条件的无理数 , . 6.写出两个无理数,使它们的和为2: . 7.数轴上表示-3.14的点在表示-π的点的 侧. 8.(1)点M 在数轴上与原点相距个单位长度,则点M 对应的实数为 .(2)数轴上到表示-3的点距离为3的点所对应的实数为 . 9.大于-3且小于5的整数是 ___________. 10.把下列各数填入相应的集合之中.3.14159,64,364,π, 11-,0.121121112…(每两个2之间依次增加1个1),39-,3625, 713,, 0, 38-, 27, 0.5, -0.020020002.有理数集合:{ …}; 无理数集合:{ …}; 负实数 :{ …}; 11.在数轴上作出表示2-、5的点.-1-2-3-4-55432112.如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点分别按下面的要求画图:(1)在图①中画一个面积为5的正方形;(2)在图②中画一个三角形,使它的三边长分别为3、10、13.【拓展提升】13.如图,数轴上1和2的对应点分别为A 、B ,A 是线段BC 的中点,则点C 对应的实数为( ) A .12- B . 21- C .22- D .22-14.数轴上的点A 所表示的数为x ,如图,则x 2-10的立方根是 ( ) A10 B.10 C .2 D .-2 15.若x 、y 为实数,且()2-4230x x y ++-=,则=-y x . 16.设m 是11的整数部分,n 是5的小数部分,试求m -n 的值.完成时间:家长签字:A 1-20CAB第1题第2题图②图①。
2.6 实数一、选择题1.下列说法正确的是( )A .因为1的平方是1,所以1的平方根是1B .因为任何数的平方都是正数,所以任何数的平方根都是正数C .36的负的平方根是-6D .任何数的算术平方根都是正数2.立方根等于本身的数有( )A .1,0,-1B .1,0C .-1,1D .0,-13.下列各式中错误的是( )A .2)2(33-=-B .21)21(33-=-- C .3)3(2=- D .33--=-4.某数的绝对值和算术平方根都等于它本身,这个数是( )A .1或-1B .1或0C .-1或0D .1,-1,05.-27的立方根与81的平方根之和是( )A .0B .6C .0或-6D .-12或66.下列四个命题中,正确的是( )A .数轴上任意一点都表示惟一的一个有理数B .数轴上任意一点都表示惟一的一个无理数C .两个无理数之和一定是无理数D .数轴上任意两个点之间还有无数个点二、填空题1.25的算术平方根是__________.2.971的平方根是___________.3.34327-的立方根是__________.4.如果a a -=,那么a 的取值范围是_________.5.绝对值最小的实数是__________.6.在数轴上位于2左边3个单位的点所表示的实数是___________.三、解答题1.比较下列各组数的大小:(1)2-和2-,(2)π-和-3.1416,(3)23-和32-,(4)5-和.6-2.求下列各数的绝对值:(1)3-,(2)34,(3)5,(4)22-,(5)23-,(6).25-3.用“<”号把下列各组数连接起来:(1)-0.2,2-,3.14,3,π;(2)55,33,22-; (3).23,32,23,32--4.计算(1)6663+,(2))33(321-⨯, (3))32(3-⨯⨯π,(4)2612-, (5)737675+-, (6)551534521+-,参考答案一、选择题1. C 2.A 3.B 4.B 5. C 6.D二、填空题1. 5 2. 34± 3. 73- 4. 0≤a 5. 0 6. 32- 三、解答题1.(1)> (2)> (3)> (4)>2.(1)3 (2)34 (3)5 (4)22 (5)23- (6)25- 3.(1)π<<<-<-14.332.02(2)223355<<-(3)23323223<<-<-4.(1)69 (2)29- (3)π6-(4)265(5)72 (6)53019-。
实数知识点1 无理数1.下列四个实数中是无理数的是( )A .2.5B .103C .πD .1.414 2.下列各数中,不是无理数的是( )A .7B .0.5C .2πD .0.151151115…511(两个之间依次多个)3.有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数的平方根有两个且互为相反数;④是17的平方根,其中正确的有( )A .0个B .1个C .2个D .3个知识点2 实数及其分类4.有理数和 统称实数.5.下列说法正确的是( )A .正实数,0和负实数统称实数B .整数和分数,0统称有理数C .正无理数和负无理数统称无理数D .无限小数就是无理数知识点3 实数大小比较6.-53、、、-2π四个数中,最大的数是( )A .-53B .C .D .-2π7.比较大小163 8.在数轴表示下列各数,并把它们按从小到大的顺序排列,用“>”连接: -•3.0,-2,25,0,3.14 知识点4 实数与数轴9.和数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数10的点表示的数是_________.知识点5 实数与绝对值、相反数、倒数关系11.23-的相反数地 ,绝对值是 .12.-5的相反数是 ,绝对值是 ,没有倒数的实数是 . 学科能力迁移 13.【易错题】实数227,2-,21+, 3π,|3|-中,无理数的个数是( ) A .2个 B .3个 C .4个 D .5个14.【易错题】 414、226、15三个数的大小关系是( )A .41415226<<B .22615414<<C .41422615<<D .22641415<<15.【新情境题】实数a 在数轴上的位置如图1所示,则a ,a -,1a,2a 的大小关系是( )A .21a a a a <-<< B .21a a a a-<<< C . 21a a a a -<<< D . 21a a a a <<<- 16.【多变题】满足大于π-而小于π的整数有( )A .3个B .4个C .6个D .7个17.【开放题】若2a a =-,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧课标能力提升 18.【趣味题】已知a 是13的整数部分,b 是13的小数部分,计算a-b 的值.19.【学科内综合题】某公路规定汽车行驶速度不得超过70千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是16v df =,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦因数.经测量,20d =米, 1.2f =,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度.20.【开放题】 阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=x+y,其中x 是整数,且0<y<1,求x-y 的相反数.21.【探究题】如图3是三个周长相同的长方形,用不同的组合方法,它们的面积就会不一样,请分别计算它们的面积和对角线,并根据计算结果观察一下对角线和面积之间有什么关系?22.【学科内综合题】座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为gl 2T =,其中T 表示周期(单位:秒)l 表示摆长(单位:米)g =9.8米/秒2,假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?品味中考典题23.(2007年广东中山)在三个数0.5,3,13-中,最大的数是()A.0.5B.C.13-D.不能确定24.(2007是.参考答案1.C2.B3.B4.无理数.5.A6.B7.<,>,>,=8.23.002514.3>->->>• 9.D10.11.2-2-12.055,, 13.B14.A15.D16.D17.C18. 点拨:∵,∴a=3,,a-b=3-)19.肇事汽车当时已经超速.20. -12.21.按不同的方式组合,对角线短的面积反而大.22.42次23.A24.2。
13.3 实数(1)班级姓名座号月日主要内容:了解实数的有关概念及分类,理解实数的相反数和绝对值的意义一、课堂练习:1.下列说法正确的是( )A.无限小数是无理数是分数 C.无理数是开方开不尽的数 D.无理数是实数2.把下列各数填入相应的集合中:0.25,π-,,3-9,0,0.1010010001,1 32 -有理数集合:{…}无理数集合:{…}正实数集合:{…}负实数集合:{…}3.某老师在讲实数这一节时,画了如图所示的图形,即以数轴的一个单位长为边作一个正方形,再以点O为圆心,以正方形的对角线长为半径作圆与数轴交于,A B两点.(1),A B表示的数分别是;(2)该图说明了( )A.无理数与数轴上的点是一一对应的B.数轴上的点只能表示无理数C.实数与数轴上的点是一一对应的D.有些无理数可以在数轴上的点表示4.(课本86页)请将数轴上的各点与下列实数对应起来:, 1.5-,π,3.5.(课本86页)填空:2.5的相反数是 ,绝对值是;的相反数是 ,绝对值是;π2-的相反数是 ,绝对值是;0的相反数是 ,绝对值是;2的相反数是 ,绝对值是 .二、课后作业:1.(课本86页)判断下列说法是否正确:⑴无限小数都是无理数; ( )⑵无理数都是无限小数; ( )⑶带根号的数都是无理数;( )⑷所有的有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数;( ) ⑸所有的实数都可以用数轴上的点表示,反过来,数轴上所有的点都表示实数.( )2.下列说法中,正确的是( )B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数D.绝对值最小的实数是03.如果一个圆的半径是有理数,那么这个圆的周长、面积分别属于( )A.有理数、无理数B.无理数、无理数C.有理数、有理数D.无理数、有理数4.下列各组数中,互为相反数的是( )A.3-B.3-与13-C.3-D.3-与135.(课本86页)把下列各数分别填在相应的集合中:227,3.141592658-,32,0.6,0π3. 有理数集合:{ …}无理数集合:{ …}6.在数轴上的点A 个单位,则点A 表示的实数是 .7.若a ,则a = ;若a =则a = .8.,则ab = .9.(课本87页)填空: 的绝对值是 ;17的绝对值是 ;的绝对值是 ; 1.7的绝对值是 ;1.4的绝对值是 .10.(课本87页)请在下列横线上填上“有”或“没有”.(1)有没有最小的正整数? ; (2)有没有最小的整数? ;(3)有没有最小的有理数? ; (4)有没有最小的无理数? ;(5)有没有最小的实数? ; (6)有没有绝对值最小的实数? .三、新课预习:1.计算下列各式的值:(1)(2)2.利用计算器计算:2.34π-≈ (精确到0.1) ≈ (保留3个有效数字)3.比较下列各数大小:(1)π2 1.5 (3)3参考答案一、课堂练习:1.下列说法正确的是( D )A.无限小数是无理数是分数 C.无理数是开方开不尽的数 D.无理数是实数 2.把下列各数填入相应的集合中:0.25,π-,,3-9,0 ,0.1010010001,132-有理数集合:{0.25,0, 0.1010010001,132- …}无理数集合:{-π,3-9…}正实数集合:{0.25,0.1010010001…}负实数集合:{-π,,3-9,132- …} 3.某老师在讲实数这一节时,画了如图所示的图形,即以数轴的一个单位长为边作一个正方形,再以点O 为圆心,以正方形的对角线长为半径作圆与数轴交于,A B 两点.(1),A B ;(2)该图说明了( C )A.无理数与数轴上的点是一一对应的B.数轴上的点只能表示无理数C.实数与数轴上的点是一一对应的D.有些无理数可以在数轴上的点表示4.(课本86页)请将数轴上的各点与下列实数对应起来:, 1.5-,π,3.答:数轴上的点与实数对应如图所示.5.(课本86页)填空:2.5的相反数是 2.5 - ,绝对值是 2.5 ;;π2-的相反数是π2 ,绝对值是π2 ; 0的相反数是0 ,绝对值是0 ;2,.二、课后作业:1.(课本86页)判断下列说法是否正确:⑴无限小数都是无理数; ( × )⑵无理数都是无限小数; ( √ )⑶带根号的数都是无理数;( × )⑷所有的有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数;( × ) ⑸所有的实数都可以用数轴上的点表示,反过来,数轴上所有的点都表示实数. ( √ )2.下列说法中,正确的是( D )B.无理数包括正无理数、负无理数和零C.实数分为正实数和负实数D.绝对值最小的实数是03.如果一个圆的半径是有理数,那么这个圆的周长、面积分别属于( B )A.有理数、无理数B.无理数、无理数C.有理数、有理数D.无理数、有理数4.下列各组数中,互为相反数的是( C )A.3-B.3-与13-C.3-D.3-与135.(课本86页)把下列各数分别填在相应的集合中:227,3.141592658-,32,0.6,0π3.有理数集合:{227,3.14159264,8-,0.6,0…}无理数集合:,32,π3…}6.在数轴上的点A 个单位,则点A .7.若a ,则a =;若a =则a =.8.,则ab =9 .9.(课本87页)填空:3-8的绝对值是2 ;17;的绝对值是3; 1.71.4.10.(课本87页)请在下列横线上填上“有”或“没有”.(1)有没有最小的正整数? 有 ; (2)有没有最小的整数? 没有 ;(3)有没有最小的有理数? 没有 ; (4)有没有最小的无理数? 没有 ;(5)有没有最小的实数? 没有 ; (6)有没有绝对值最小的实数? 有 .三、新课预习:1.计算下列各式的值:(1)(2)解:原式=解:原式(6=-== 2.利用计算器计算:2.34π-≈0.3 (精确到0.1)3.15 (保留3个有效数字) 3.比较下列各数大小:(1)π2> 1.5 > 3 (3) < 3-。
2024-2025学年八年级数学上学期第一次月考卷(深圳专用)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版第一章勾股定理+第二章实数。
5.难度系数:0.68。
第Ⅰ卷一、选择题:本大题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列数中是无理数的是()A.2πB.3.1415926C.117D. 3.6-2.以下列各组数为边长,不能构成直角三角形的是()A.8,15,17B.7,24,25C.6,8,10D.1,13)A3=B=C6´=D+= 4.如图是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A.16B.25C.144D.1695.实数a ,b 在数轴上的位置如图所示,且|a |>|b ||2a +b |的结果为( )A .2a +b .﹣2a +b C .a +b D .2a ﹣b6.使代数式y =有意义的自变量x 的取值范围是( )A .4x ¹B .3x >C .3x ³D .3x ³且4x ¹7.在四边形ABCD 中,AD BC ∥,90D Ð=°,5AD =,3BC =,分别以A ,C 为圆心,大于12AC 的长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O ,若点O 是AC 的中点,则CD 的长为( )A B C .D .48.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD ,交于点O .若1AD =,4BC =,则22AB CD +等于( )A .15B .16C .17D .20第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分。
2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:(北师版)八年级上册第一章~第四章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。
第二章《实数》单元复习卷
班级姓名_______学号得分__________
一、选择题(每小题2分,共20分).
1.边长为4的正方形的对角线的长是().
A.整数
B.分数
C.有理数
D.不是有理数
2.算术平方根等于它本身的数是().
A.1和0
B.0
C.1
D.1±和0
3.下列说法正确的是().
A.064.0-的立方根是-0.4
B.9-的平方根是3±
C.16的立方根是4
D.0.01的立方根是0.1
4.0;0.2- ;π37
22,1.1010010001···,无理数的个数是().
A.2
B.3
C.4
D.5
5.2)5(-的平方根是().
A.5±
B.5
C.5-
D.5±
6.下列计正确的是(). A.5.00125.03= B.4364273=- C.2118333= D.5
212583-=-- 7.下列各组数中,互为相反数的一组是().
A.2-与2)2(-
B.2-与38-
C.2与4-
D.410-与2
8.若规定误差小于1,那么60的估算值为().
A.6
B.7
C.8
D.7或8
9.下列运算中,错误的是(). ①12
51144251=;②416±=;③22222-=-=-;④4)4(2=- ⑤20
95141251161=+=+ A.2个B.3个C.4个D.5个
10.下列计算中,正确的是(). A.532=+ B.3332=+ C.3935
153515==⨯=⨯÷ D.231)32)(31(-=-=-+
二、填空题(每小题2分,共10分).
11.已知直角三角形的两边长为3cm 和4cm ,则第三边的长是___________.
12.9
4的平方根是__________;-0.216的立方根是__________;81的算术平方根是________.
13.满足53<<x -的整数x 是_________________________. 14.21-的绝对值是_______,38-的相反数是______,3
1000
27-倒数是______. 15.已知032=++-b a ,则______)(2=-b a .
三、解答题(写出必要的解题步骤,共70分).
16.(6分)
(1)求1.96的算术平方根;(2)求610-的平方根;(3)求64125-的立方根. 17.比较大小(9分):(1)7.1与50;(2)3100与30(3)32与23.
18.计算:(每小题4分,共32分). (1)2
1)232(⨯+;(2)45 - 1255 + 3 ; (3))52)(53(-+;(4)2)35(-; (5)8350324-+;(6)9·273
1+; (7)360061424--;(8)2
13)606(-⨯-.
19.(5分)通过估算,比较
14与21的大小 20.(5分)一个长方形的长与宽的比是5∶3,它的对角线长为68,求这个长方形的长与宽(结果保留2个有效数字).
21.(6分)解方程:(1)0822=-x ;(2)039
83=+x . 22.(7分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:
①.作出钝角三角形,使它的面积为4(在图①中画出一个既可),并计算你所画三角形的三边的长;
②.作出面积为10的正方形(在图②中画出一个既可);
③在数轴上求出表示10和10
的点A、B.
①②。