2017创新导学案(人教版·文科数学)新课标高考总复习专项演练:第六章 数列 6-1 Word版含答案
- 格式:doc
- 大小:157.00 KB
- 文档页数:6
2-7A 组 专项基础训练 (时间:45分钟)1.函数y =5x 与函数y =-15x 的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称【解析】 y =-15x =-5-x ,可将函数y =5x 中的x ,y 分别换成-x ,-y 得到,故两者图象关于原点对称.【答案】 C2.(2015·浙江)函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )【解析】 根据函数的奇偶性及特值法进行判断.函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎫π-1πcos π=1π-π<0,排除选项C ,故选D.【答案】 D3.(2016·揭阳模拟)设定义在-1,7]上的函数y =f (x )的图象如图所示,则关于函数y =1f (x )的单调区间表述正确的是( )A .在-1,1]上单调递增B .在(0,1]上单调递减,在1,3)上单调递增C .在5,7]上单调递增D .在3,5]上单调递增【解析】 由题图可知,f (0)=f (3)=f (6)=0,所以函数y =1f (x )在x =0,x =3,x =6时无定义,故排除A 、C 、D ,选B.【答案】 B4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2} 【解析】 借助函数的图象求解该不等式. 令g (x )=y =log 2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2(x +1),得⎩⎪⎨⎪⎧x =1,y =1. ∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.【答案】 C5.(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,+∞)【解析】 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为⎝⎛⎭⎫12,1.【答案】 B6.已知f (x )=⎝⎛⎭⎫13x,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.【解析】 设g (x )上的任意一点A (x ,y ),则该点关于直线x =1的对称点为B (2-x ,y ),而该点在f (x )的图象上.∴y =⎝⎛⎭⎫132-x=3x -2,即g (x )=3x -2.【答案】 g (x )=3x -27.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为________.【解析】 f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4. 当x =4时,f (x )取最大值, f (4)=6. 【答案】 68.(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.【解析】 画出函数y =|x -a |-1的图象与直线y =2a ,利用数形结合思想求解即可. 函数y =|x -a |-1的图象如图所示,因为直线y =2a 与函数y =|x -a |-1的图象只有一个交点, 故2a =-1,解得a =-12.【答案】 -129.已知函数f (x )=x1+x .(1)画出f (x )的草图; (2)指出f (x )的单调区间.【解析】 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )有两个单调递增区间: (-∞,-1),(-1,+∞).10.已知函数f (x )=2x ,当m 取何值时方程|f (x )-2|=m 有一个解,两个解? 【解析】 令F (x )=|f (x )-2|=|2x -2|, G (x )=m ,画出F (x )的图象如图所示.由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. B 组 专项能力提升 (时间:20分钟)11.(2016·唐山模拟)函数y =e |ln x |-|x -1|的图象大致是( )【解析】 函数的定义域为(0,+∞). 当0<x <1时,y =e-ln x-1+x =1x-1+x ;当x ≥1时,y =e ln x +1-x =x +1-x =1,故选项D 正确. 【答案】 D12.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8 【解析】 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3. 又y =2sin πx =2sin π(1-t )=2sin πt . 在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在-3,3]上共有8个交点,且这8个交点两两关于原点对称. 因此这8个交点的横坐标的和为0, 即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0, 因此x 1+x 2+…+x 8=8. 【答案】 D13.(2014·天津)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.【解析】 设y 1=f (x )=|x 2+3x |,y 2=a |x -1|, 在同一直角坐标系中作出y 1=|x 2+3x |, y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,所以,①⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0有两个不等实根x 1,x 2, ∴Δ=(3-a )2-4a >0,即a 2-10a +9>0,又∵x 1+x 2=a -3<0,x 1·x 2=a >0,∴0<a <1.②⎩⎪⎨⎪⎧y =x 2+3x ,y =a (x -1)(x >1)有两组不同解. 消去y 得x 2+(3-a )x +a =0有两不等实根x 3、x 4, ∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,∴a >9. 综上可知,0<a <1或a >9. 【答案】 (0,1)∪(9,+∞)14.(2016·湖北重点中学联考)设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.【解析】 y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧x >1,f (x )≤0或⎩⎪⎨⎪⎧x <1,f (x )≥0.由图可知符合条件的解集为(-∞,0]∪(1,2]. 【答案】 (-∞,0]∪(1,2]15.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 【解析】 (1)∵f (4)=0,∴4|m -4|=0,即m =4. (2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4. f (x )的图象如图所示.(3)f (x )的减区间是2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,方程f (x )=a 只有一个实数根,即a 的取值范围是(-∞,0)∪(4,+∞).。
12-1A组专项基础训练(时间:45分钟)1.(教材改编)数列2,5,11,20,x,47,…中的x等于()A.28B.32C.33 D.27【解析】5-2=3,11-5=6,20-11=9,推出x-20=12,所以x=32.【答案】B2.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理() A.结论正确B.大前提不正确C.小前提不正确D.全不正确【解析】f(x)=sin(x2+1)不是正弦函数,所以小前提错误.【答案】C3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇【解析】从S1,S2,S3猜想出数列的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.【答案】B4.给出下列三个类比结论:①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中正确结论的个数是()A.0 B.1C .2D .3【解析】 (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34,故②错误. 由向量的运算公式知③正确. 【答案】 B5.若数列{a n }是等差数列,则数列{b n }⎝⎛⎭⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c nnC .d n = n c n1+c n 2+…+c n nnD .d n =n c 1·c 2·…·c n【解析】 若{a n }是等差数列, 则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列; 若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q 1+2+…+(n -1)=c n 1·qn (n -1)2,∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D. 【答案】 D6.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.【解析】 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1) =n (n +3)2, 易知f (14)=119,f (15)=135,故n =14. 【答案】 147.在平面几何中,有“正三角形内切圆半径等于这个正三角形高的13”.拓展到空间,类比平面几何的上述正确结论,则正四面体的内切球半径等于这个正四面体的高的________.【解析】 设正三角形的边长为a ,高为h ,内切圆半径为r ,由等面积法知3ar =ah ,所以r =13h ;同理,由等体积法知4SR =HS ,所以R =14H .【答案】 148.(2015·福建)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组: ⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.【解析】 根据校验方程组推理.因为x 2⊕x 3⊕x 6⊕x 7=0,所以x 2,x 3,x 6,x 7都正确.又因为x 4⊕x 5⊕x 6⊕x 7=1,x 1⊕x 3⊕x 5⊕x 7=1,故x 1和x 4都错误,或仅x 5错误.因为条件中要求仅在第k 位发生码元错误,故只有x 5错误.【答案】 59.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律. 【解析】 (1)∵a 1=5,d =2,∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n 2(2n +3)-5]=4n 2+n . ∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39, T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45. 由此可知S 1=T 1,当2≤n ≤5,n ∈N 时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.(2015·辽宁铁岭二模改编)已知椭圆具有性质:若M 、N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出类似的性质.【解析】 类似的性质为:若M 、N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM 、PN 的斜率都存在,并记为k PM 、k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M 、P 的坐标分别为(m ,n )、(x ,y ),则N (-m ,-n ). 因为点M (m ,n )在已知双曲线上,所以n 2=b 2a2m 2-b 2.同理,y 2=b 2a 2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2(x 2-m 2)x 2-m 2=b 2a 2(定值).B 组 专项能力提升 (时间:30分钟)11.已知①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.根据“三段论”推理出一个结论.则这个结论是( )A .正方形的对角线相等B .矩形的对角线相等C .正方形是矩形D .其他【解析】 根据演绎推理的特点,正方形与矩形是特殊与一般的关系,所以结论是正方形的对角线相等.【答案】 A12.设⊕是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有a ⊕b ∈A ,则称A 对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( )A .自然数集B .整数集C .有理数集D .无理数集【解析】 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭.【答案】 C13.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为________________.【解析】 考查类比推理问题,由图看出三棱锥P 1OR 1Q 1及三棱锥P 2OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2, 故体积之比为VO P 1Q 1R 1VO P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2.【答案】VO P 1Q 1R 1VO P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 214.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .【证明】 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)15.(2015·汉中调研)对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现.(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f ⎝⎛⎭⎫12 013+f ⎝⎛⎭⎫22 013+f ⎝⎛⎭⎫32 013+f ⎝⎛⎭⎫42 013+…+f ⎝⎛⎭⎫2 0122 013. 【解析】 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1. (2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1, 所以f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2, 即f (x )+f (1-x )=2. 故f ⎝⎛⎭⎫12 013+f ⎝⎛⎭⎫2 0122 013=2, f ⎝⎛⎭⎫22 013+f ⎝⎛⎭⎫2 0112 013=2, f ⎝⎛⎭⎫32 013+f ⎝⎛⎭⎫2 0102 013=2, …f ⎝⎛⎭⎫2 0122 013+f ⎝⎛⎭⎫12 013=2.所以f ⎝⎛⎭⎫12 013+f ⎝⎛⎭⎫22 013+f ⎝⎛⎭⎫32 013+f ⎝⎛⎭⎫42 013+…+f ⎝⎛⎭⎫2 0122 013=12×2×2 012=2 012.。
2-9A 组 专项基础训练(时间:45分钟)1.(2016·临沂质检)某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元【解析】 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.【答案】 D2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h (cm)与燃烧时间t (小时)的函数关系用图象表示为( )【解析】 根据题意得解析式为h =20-5t (0≤t ≤4),其图象为B.【答案】 B3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( ) A .240吨 B .200吨C .180吨D .160吨【解析】 依题意,得每吨的成本为y x =x 10+4 000x-30, 则y x ≥2 x 10·4 000x-30=10,当且仅当x 10=4 000x,即x =200时取等号, 因此,当每吨成本最低时,年产量为200吨,故选B.【答案】 B4.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元 D.403元 【解析】 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15, t =150时,150k 2-150k 1-20=150×15-20=10. 【答案】 A5.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元【解析】 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎫x -2122+0.1×2124+32. 因为x ∈0,16],且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.【答案】 C6.如图是某质点在4秒钟内作直线运动时,速度函数v =v (t )的图象,则该质点运动的总路程为________ cm.【解析】 总路程为(2+4)×1×12+4×1+12×2×4=11. 【答案】 117.(2016·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________ min ,容器中的沙子只有开始时的八分之一.【解析】 当t =0时,y =a ,当t =8时,y =a e-8b =12a , ∴e -8b =12,容器中的沙子只有开始时的八分之一时, 即y =a e-bt =18a , e -bt =18=(e -8b )3=e -24b ,则t =24. 所以再经过16 min.【答案】 168.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.【解析】 设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9.【答案】 99.某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)(元)成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?收益=用电量×(实际电价-成本价)]【解析】 (1)∵y 与(x -0.4)成反比例,∴设y =k x -0.4(k ≠0).把x =0.65,y =0.8代入上式,得0.8=k 0.65-0.4,k =0.2. ∴y =0.2x -0.4=15x -2, 即y 与x 之间的函数关系式为y =15x -2. (2)根据题意,得⎝⎛⎭⎫1+15x -2·(x -0.3) =1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6.经检验x 1=0.5,x 2=0.6都是所列方程的根.∵x 的取值范围是0.55~0.75,故x =0.5不符合题意,应舍去.∴x =0.6.∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.10.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4<x ≤20时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.【解析】 (1)由题意得当0<x ≤4时,v =2;当4<x ≤20时,设v =ax +b ,显然v =ax +b 在(4,20]内是减函数,由已知得⎩⎪⎨⎪⎧20a +b =0,4a +b =2,解得⎩⎨⎧a =-18,b =52,所以v =-18x +52, 故函数v =⎩⎪⎨⎪⎧2, 0<x ≤4,-18x +52, 4<x ≤20. (2)设年生长量为f (x )千克/立方米,依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧2x , 0<x ≤4,-18x 2+52x , 4<x ≤20, 当0<x ≤4时,f (x )为增函数,故f (x )max =f (4)=4×2=8;当4<x ≤20时,f (x )=-18x 2+52x =-18(x 2-20x )=-18(x -10)2+1008, f (x )max =f (10)=12.5.所以当0<x ≤20时,f (x )的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.B 组 专项能力提升(时间:25分钟)11.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10:00B .中午12:00C .下午4:00D .下午6:00【解析】 当x ∈0,4]时,设y =k 1x ,把(4,320)代入,得k 1=80,∴y =80x .当x ∈4,20]时,设y =k 2x +b .把(4,320),(20,0)分别代入可得⎩⎪⎨⎪⎧k 2=-20,b =400. ∴y =400-20x .∴y =f (x )=⎩⎪⎨⎪⎧80x , 0≤x ≤4,400-20x , 4<x ≤20. 由y ≥240,得⎩⎪⎨⎪⎧0≤x ≤480x ≥240或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240. 解得3≤x ≤4或4<x ≤8,∴3≤x ≤8.故第二次服药最迟应在当日下午4:00.故选C.【答案】 C12.(2016·江门模拟)我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A .2B .6C .8D .10【解析】 由分析可知,每年此项经营中所收取的附加税额为104·(100-10x )·70·x 100, 令104·(100-10x )·70·x 100≥112×104, 解得2≤x ≤8.故x 的最小值为2.【答案】 A13.某工厂采用高科技改革,在两年内产值的月增长率都是a ,则这两年内第二年某月的产值比第一年相应月产值的增长率为( )A .a 12-1B .(1+a )12-1C .aD .a -1【解析】 不妨设第一年8月份的产值为b ,则9月份的产值为b (1+a ),10月份的产值为b (1+a )2,依次类推,到第二年8月份是第一年8月份后的第12个月,即一个时间间隔是1个月,这里跨过了12个月,故第二年8月份产值是b (1+a )12.又由增长率的概念知,这两年内的第二年某月的产值比第一年相应月产值的增长率为b (1+a )12-b b=(1+a )12-1. 【答案】 B14.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.【解析】 设第n (n ∈N *)年的年产量为a n ,则a 1=12×1×2×3=3; 当n ≥2时,a n =f (n )-f (n -1)=12n (n +1)·(2n +1)-12n (n -1)(2n -1)=3n 2. 又a 1=3也符合a n =3n 2,所以a n =3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-52≤n ≤52,所以1≤n ≤7,n ∈N *,故最长的生产期限为7年.【答案】 715.(2015·福建福州月考)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·q x;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.【解析】(1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f(x)=x(x-q)2+p.(2)对于f(x)=x(x-q)2+p,由f(0)=4,f(2)=6,可得p=4,(2-q)2=1,又q>1,所以q=3,所以f(x)=x3-6x2+9x+4(0≤x≤5).(3)因为f(x)=x3-6x2+9x+4(0≤x≤5),所以f′(x)=3x2-12x+9,令f′(x)<0,得1<x<3.所以函数f(x)在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.。
【创新设计】(浙江专用)2017版高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n 项和练习基础巩固题组 (建议用时:40分钟)一、选择题1.(2016·宜昌模拟)等比数列{a n }中a 1=3,a 4=24,则a 3+a 4+a 5=( ) A.33B.72C.84D.189解析 由已知,得q 3=a 4a 1=8,解得q =2,则有a 3+a 4+a 5=a 1(q 2+q 3+q 4)=3×(4+8+16)=84. 答案 C2.已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A.-3B.±3C.-3 3D.±3 3解析 由等比中项知y 2=3,∴y =±3,又∵y 与-1,-3符号相同,∴y =-3,y 2=xz , 所以xyz =y 3=-3 3. 答案 C3.在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为( ) A.2B.12C.2或12D.-2或12解析 设数列{a n }的公比为q ,由a 1+a 4a 2+a 3=a 1(1+q 3)a 1(q +q 2)=1+q 3q +q 2=(1+q )(1-q +q 2)q (1+q )=1-q +q2q=1812,得q =2或q =12.故选C. 答案 C4.(2015·浙江卷)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A.a 1d >0,dS 4>0 B.a 1d <0,dS 4<0 C.a 1d >0,dS 4<0D.a 1d <0,dS 4>0解析 ∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )(a 1+7d ), 整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d3,∴dS 4=-2d23<0,故选B.答案 B5.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A.150B.-200C.150或-200D.400或-50解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20), 故S 20=-20或S 20=30,又S 20>0, 因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80.S 40=150.故选A. 答案 A 二、填空题6.(2016·舟山联考)等比数列{a n }的前n 项和为S n ,若S 1,S 3,S 2成等差数列,则{a n }的公比q 等于________.解析 ∵S 1,S 3,S 2成等差数列,∴a 1+a 1+a 1q =2(a 1+a 1q +a 1q 2).∵a 1≠0,q ≠0,∴解得q =-12.答案 -127.(2016·哈尔滨一模)正项等比数列{a n }中,a 2=4,a 4=16,则数列{a n }的前9项和等于________.解析 正项等比数列{a n }的公比q =a 4a 2=164=2, a 1=a 2q =2,∴S 9=2(1-29)1-2=1 022.答案 1 0228.(2016·甘肃诊断)已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.解析 设等比数列{a n }的首项为a 1,公比为q ,显然q ≠1且q >0,因为S 4=3S 2,所以a 1(1-q 4)1-q =3a 1(1-q 2)1-q,解得q 2=2,因为a 3=2,所以a 7=a 3q 4=2×22=8.答案 8三、解答题9.(2015·四川卷)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1, 有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),所以q =2, 从而a 2=2a 1,a 3=2a 2=4a 1, 又因为a 1,a 2+1,a 3成等差数列, 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列, 故a n =2n.(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000, 即2n>1 000,因为29=512<1 000<1 024=210,所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10.10.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. (1)证明 依题意S n =4a n -3(n ∈N *),n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)解 由(1)知a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3·⎝ ⎛⎭⎪⎫43n -1-1(n ≥2).当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝ ⎛⎭⎪⎫43n -1-1(n ∈N *).能力提升题组 (建议用时:20分钟)11.(2016·绍兴十校联考)已知数列{a n }是首项a 1=4的等比数列,且4a 1,a 5, -2a 3成等差数列,则其公比q 等于( ) A.-1B.1C.1或-1D. 2解析 ∵4a 1,a 5,-2a 3成等差数列,∴2a 5=4a 1-2a 3,即2a 1q 4=4a 1-2a 1q 2,又∵a 1=4,则有q 4+q 2-2=0,解得q 2=1,∴q =±1,故选C. 答案 C12.(2016·临沂模拟)数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n-1) C.9n-1D.14(3n-1) 解析 ∵a 1+a 2+…+a n =3n-1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列. 因此a 21+a 22+…+a 2n =4(1-9n)1-9=12(9n-1).答案 B13.(2016·温州诊断)数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n,若b 10b 11=2 015110,则a 21=________. 解析 由b n =a n +1a n ,且a 1=1,得b 1=a 2a 1=a 2;b 2=a 3a 2,a 3=a 2b 2=b 1b 2;b 3=a 4a 3,a 4=a 3b 3=b 1b 2b 3;……;b n -1=a na n -1,a n =b 1b 2…b n -1,∴a 21=b 1b 2…b 20.∵数列{b n }为等比数列,∴a 21=(b 1b 20)(b 2b 19)…(b 10b 11)=(b 10b 11)10=(2 015110)10=2 015. 答案 2 01514.已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.(1)解 由已知点A n 在y 2-x 2=1上知,a n +1-a n =1, ∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明 ∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1,①∴T n -1=-12b n -1+1(n ≥2),②①②两式相减得b n =-12b n +12b n -1(n ≥2),∴32b n =12b n -1,∴b n =13b n -1(n ≥2). 令n =1,得b 1=-12b 1+1,∴b 1=23,∴{b n }是一个以23为首项,以13为公比的等比数列.。
4-6A 组 专项基础训练(时间:45分钟)1.(2015·乌鲁木齐诊断测试三)已知sin 2α=-2425,且α∈⎝⎛⎭⎫3π4,π,则sin α=( ) A.35 B.45C .-35D .-45【解析】 ∵α∈⎝⎛⎭⎫3π4,π,∴cos α<0,sin α>0, 且|cos α|>|sin α|,又(sin α+cos α)2=1+sin 2α=1-2425=125, ∴sin α+cos α=-15, 同理可得sin α-cos α=75,∴sin α=35,故选A. 【答案】 A2.若sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos α等于( ) A.225 B .-225C.425 D .-425【解析】 sin ⎝⎛⎭⎫α+π4-22cos α =sin αcosπ4+cos αsin π4-22cos α=45×22=225. 【答案】 A3.在△ABC 中,tan B =-2,tan C =13,则A 等于( ) A.π4 B.3π4C.π3D.π6【解析】 tan A =tan π-(B +C )]=-tan(B +C )=-tan B +tan C 1-tan B tan C =--2+131-(-2)×13=1.又A 为△ABC 的内角.故A =π4. 【答案】 A4.若tan α+1tan α=103,α∈⎝⎛⎭⎫π4,π2,则sin ⎝⎛⎭⎫2α+π4的值为( ) A .-210 B.210C.3210D.7210【解析】 由tan α+1tan α=103 得sin αcos α+cos αsin α=103, ∴1sin αcos α=103,∴sin 2α=35. ∵α∈⎝⎛⎭⎫π4,π2,∴2α∈⎝⎛⎭⎫π2,π, ∴cos 2α=-45. ∴sin ⎝⎛⎭⎫2α+π4=sin 2αcos π4+cos 2αsin π4 =22×⎝⎛⎭⎫35-45=-210. 【答案】 A5.已知cos 2θ=23,则sin 4θ+cos 4θ的值为( ) A.1318 B.1118C.79D .-1 【解析】 sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-12sin 22θ=1-12(1-cos 22θ)=1118. 【答案】 B6.(2015·浙江)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,最小值是________.【解析】 利用三角恒等变换,化为正弦型函数再求解.f (x )=sin 2x +sin x cos x +1 =1-cos 2x 2+12sin 2x +1=32+22sin ⎝⎛⎭⎫2x -π4. 故最小正周期T =2π2=π.当sin ⎝⎛⎭⎫2x -π4=-1时, f (x )取得最小值为32-22=3-22. 【答案】 π 3-227.设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x 的最小值为________. 【解析】 方法一:因为y =2sin 2x +1sin 2x =2-cos 2x sin 2x, 所以令k =2-cos 2x sin 2x .又x ∈⎝⎛⎭⎫0,π2, 所以k 就是单位圆x 2+y 2=1的左半圆上的动点P (-sin 2x ,cos 2x )与定点Q (0,2)所成直线的斜率. 又k min =tan 60°=3,所以函数y =2sin 2x +1sin 2x的最小值为 3. 方法二:y =2sin 2x +1sin 2x =3sin 2x +cos 2x 2sin x cos x=3tan 2x +12tan x =32tan x +12tan x. ∵x ∈⎝⎛⎭⎫0,π2,∴tan x >0. ∴32tan x +12tan x ≥2 32tan x ·12tan x= 3. ⎝⎛⎭⎫当tan x =33,即x =π6时取等号 即函数的最小值为 3.【答案】 3 8.已知tan ⎝⎛⎭⎫π4+θ=3,则sin 2θ-2cos 2θ的值为________. 【解析】 ∵tan ⎝⎛⎭⎫π4+θ=3, ∴1+tan θ1-tan θ=3,解得tan θ=12. ∵sin 2θ-2cos 2θ=sin 2θ-cos 2θ-1=2sin θcos θsin 2θ+cos 2θ-cos 2θ-sin 2θsin 2θ+cos 2θ-1=2tan θ1+tan 2θ-1-tan 2θ1+tan 2θ-1 =45-35-1=-45. 【答案】 -459.已知tan α=-13,cos β=55,α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求tan(α+β)的值,并求出α+β的值.【解析】 由cos β=55,β∈⎝⎛⎭⎫0,π2, 得sin β=255,tan β=2. ∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,∴π2<α+β<3π2,∴α+β=5π4. 10.已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. 【解析】 (1)由题设知:f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)由题设知:1013=f ⎝⎛⎭⎫3α+π2=2sin α, 65=f (3β+2π)=2sin ⎝⎛⎭⎫β+π2=2cos β, 即sin α=513,cos β=35, 又α,β∈⎣⎡⎦⎤0,π2,∴cos α=1213,sin β=45, ∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665. B 组 专项能力提升(时间:25分钟)11.(2016·邯郸期末联考)cos 20°cos 40°cos 60°·cos 80°等于( ) A.14 B.18C.116D.132【解析】 原式=sin 20°cos 20°cos 40°cos 80°2sin 20°=sin 40°cos 40°cos 80°4sin 20°=sin 80°cos 80°8sin 20°=sin 160°16sin 20°=116. 【答案】 C12.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6C.π4D.π3【解析】 依题意有sin αcos β-cos αsin β=sin(α-β)=3314, 又0<β<α<π2,∴0<α-β<π2, 故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437, 于是sin β=sin α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32,故β=π3,故选D. 【答案】 D13.sin ⎝⎛⎭⎫α+π4=24,则sin 2α=________. 【解析】 sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=24, ∴sin α+cos α=12, (sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+sin 2α=14,故sin 2α=-34. 【答案】 -3414.(2015·天津)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 【解析】 (1)由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数, 在区间⎣⎡⎦⎤-π6,π4上是增函数, 且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34, 最小值为-12. 15.(2015·安徽合肥质检)已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值. 【解析】 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3·cos π3-cos ⎝⎛⎭⎫2α+π3·sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。
4-4A 组 专项基础训练 (时间:45分钟)1.(2015·陕西西安八校联考)若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8【解析】 由题意知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z ),又ω∈N *,∴ωmin =2,故选B. 【答案】 B2.(2015·云南统考)已知函数①y =sin x +cos x ,②y =22·sin x cos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0中心对称B .两个函数的图象均关于直线x =-π4轴对称C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数D .两个函数的最小正周期相同【解析】 设f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4,g (x )=22sin x cos x =2sin 2x .对于A 、B ,f ⎝⎛⎭⎫-π4=0,g ⎝⎛⎭⎫-π4=-2≠0,易知A 、B 都不正确.对于C ,由-π2+2k π≤x +π4≤π2+2k π(k ∈Z ),得f (x )的单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),由-π2+2k π≤2x ≤π2+2k π(k ∈Z ),得g (x )的单调递增区间为⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z ),易知C 正确.对于D ,f (x )的最小正周期为2π,g (x )的最小正周期为π,D 不正确.故选C. 【答案】 C3.已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎡⎦⎤-7π12,5π12B.⎣⎡⎦⎤-7π12,-π12C.⎣⎡⎦⎤-π12,7π12D.⎣⎡⎦⎤-π12,5π12 【解析】 由函数的图象可得14T =23π-512π,∴T =π,则ω=2.又图象过点⎝⎛⎭⎫512π,2,∴2sin ⎝⎛⎭⎫2×512π+φ=2, ∴φ=-π3+2k π,k ∈Z ,∵|φ|<π2.∴取k =0,即得f (x )=2sin ⎝⎛⎭⎫2x -π3,其单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ,取k =0,即得选项D. 【答案】 D4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)⎝⎛⎭⎫A >0,ω>0,0<φ<π2的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .53安D .10安【解析】 由图象知A =10,T 2=4300-1300=1100,∴ω=2πT=100π.∴I =10sin(100πt +φ).⎝⎛⎭⎫1300,10为五点中的第二个点, ∴100π×1300+φ=π2.∴φ=π6.∴I =10sin ⎝⎛⎭⎫100πt +π6,当t =1100秒时,I =-5安.【答案】 A5.已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是( )A.⎝⎛⎦⎤-∞,-92∪6,+∞) B.⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫32,+∞ C .(-∞,-2]∪6,+∞) D .(-∞,-2]∪⎣⎡⎭⎫32,+∞ 【解析】 当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎡⎭⎫32,+∞. 【答案】 D6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝⎛⎭⎫16的值为________.【解析】 取K ,L 中点N ,则MN =12,因此A =12.由T =2得ω=π.∵函数为偶函数,0<φ<π,∴φ=π2, ∴f (x )=12cos πx ,∴f ⎝⎛⎭⎫16=12cos π6=34. 【答案】347.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的月平均气温最低,为18 ℃,则10月份的平均气温值为________℃.【解析】 由题意得⎩⎪⎨⎪⎧a +A =28,a -A =18,∴⎩⎪⎨⎪⎧a =23,A =5,∴y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5×⎝⎛⎭⎫-12=20.5. 【答案】 20.58.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________.【解析】 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题; f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.【答案】 ③④9.已知函数f (x )=cos x ·cos ⎝⎛⎭⎫x -π3.(1)求f ⎝⎛⎭⎫2π3的值;(2)求使f (x )<14成立的x 的取值集合.【解析】 (1)f ⎝⎛⎭⎫2π3=cos 2π3·cos π3=-cos π3·cos π3=-⎝⎛⎭⎫122=-14. (2)f (x )=cos x cos ⎝⎛⎭⎫x -π3=cos x ·⎝⎛⎭⎫12cos x +32sin x=12cos 2x +32sin x cos x =14(1+cos 2x )+34sin 2x=12cos ⎝⎛⎭⎫2x -π3+14. f (x )<14等价于12cos ⎝⎛⎭⎫2x -π3+14<14,即cos ⎝⎛⎭⎫2x -π3<0,于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪k π+5π12<x <k π+11π12,k ∈Z. 10.(2015·湖北)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值. 【解析】 (1)根据表中已知数据, 解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -6.(2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6,则g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6.因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z ,令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.B 组 专项能力提升 (时间:20分钟)11.将函数y =sin(x +φ)的图象F 向左平移π6个单位长度后得到图象F ′,若F ′的一个对称中心为⎝⎛⎭⎫π4,0,则φ的一个可能取值是( ) A.π12 B.π6 C.5π6 D.7π12【解析】 图象F ′对应的函数y =sin ⎝⎛⎭⎫x +π6+φ,则π4+π6+φ=k π,k ∈Z ,即φ=k π-5π12,k ∈Z , 当k =1时,φ=7π12,故选D.【答案】 D12.(2016·黄冈市高三年级质量检测)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6【解析】 因为CD →在x 轴上的投影为π12,又点A ⎝⎛⎭⎫-π6,0,所以函数的四分之一个最小正周期为π6+π12=π4.即函数的最小正周期为π,故ω=2ππ=2.又点A ⎝⎛⎭⎫-π6,0是处于递增区间上的零点,所以2×⎝⎛⎭⎫-π6+φ=2k π(k ∈Z ),则φ=2k π+π3(k ∈Z ).又因为0<φ<π2,所以φ=π3.故选A.【答案】 A13.(2015·安徽)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)【解析】 根据三角函数的性质确定ω,φ的值,结合图象进行判断. 方法一:由题意,得T =2πω=π,∴ω=2,∴f (x )=A sin(2x +φ),而当x =2π3时,2×2π3+φ=2k π+3π2(k ∈Z ),∴φ=2k π+π6(k ∈Z ),∴f (x )=A sin ⎝⎛⎭⎫2x +π6.当2x +π6=2k π+π2(k ∈Z ),即x =π6+k π(k ∈Z )时,f (x )取得最大值.下面只需判断2,-2,0与最近的最大值处的对称轴距离大小,距离越大,函数值越小. 当k =0时,x =π6,⎪⎪⎪⎪0-π6≈0.52,⎪⎪⎪⎪2-π6≈1.48,当k =-1时,x =-5π6,⎪⎪⎪⎪-2-⎝⎛⎭⎫-5π6≈0.6,∴f (2)<f (-2)<f (0).方法二:将要比较的函数值化归到函数的同一单调区间上. ∵f (x )的最小正周期为π,∴f (-2)=f (π-2). 又当x =2π3时,f (x )取得最小值,故当x =π6时,f (x )取得最大值,⎣⎡⎦⎤π6,2π3是函数f (x )的一个递减区间.又∵π6<π-2<2<2π3,∴f (π-2)>f (2),即f (-2)>f (2).再比较0,π-2与对称轴x =π6距离的大小.∵⎪⎪⎪⎪π-2-π6-⎪⎪⎪⎪0-π6=5π6-2-π6=2π3-2>0,∴f (0)>f (π-2),即f (0)>f (-2). 综上,f (0)>f (-2)>f (2).故选A. 【答案】 A14.(2015·福建)已知函数f (x )=103sin x 2cos x 2+10cos 2x2.(1)求函数f (x )的最小正周期;(2)将函数f (x )的图象向右平移π6个单位长度,再向下平移a (a >0)个单位长度后得到函数g (x )的图象,且函数g (x )的最大值为2.求函数g (x )的解析式.【解析】 (1)因为f (x )=103sin x 2cos x 2+10cos 2x2=53sin x +5cos x +5=10sin ⎝⎛⎭⎫x +π6+5,所以函数f (x )的最小正周期T =2π.(2)将f (x )的图象向右平移π6个单位长度后得到y =10sin x +5 的图象,再向下平移a (a >0)个单位长度后得到g (x )=10sin x +5-a 的图象.又已知函数g (x )的最大值为2,所以10+5-a =2,解得a =13. 所以g (x )=10sin x -8.15.已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,求实数k 的取值范围.【解析】 (1)f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎫2ωx +π6, 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎫4x +π6.(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin ⎝⎛⎭⎫4x -π3的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x -π3的图象,所以g (x )=sin ⎝⎛⎭⎫2x -π3,因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈⎣⎡⎦⎤-32,1 又g (x )+k =0在区间⎣⎡⎦⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎡⎦⎤0,π2上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1, 所以实数k 的取值范围是⎝⎛⎦⎤-32,32∪{-1}.。
2-2A 组 专项基础训练(时间:45分钟)1.下列函数中,在区间(0,+∞)上为增函数的是( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x【解析】 ∵函数y =ln(x +2)在(-2,+∞)上为增函数,∴在(0,+∞)上也是增函数.【答案】 A2.(2016·辽宁五校联考)已知函数f (x )是定义在R 上的单调递增函数,且满足对任意的实数x 都有ff (x )-3x ]=4,则f (x )+f (-x )的最小值等于( )A .2B .4C .8D .12【解析】 由已知条件可知存在唯一实数k 使f (k )=4,且f (x )=3x +k ,令x =k ,得f (k )=3k +k =4. 可得k =1,从而f (x )=3x +1,∴f (x )+f (-x )=3x +13x +2≥2 3x ·13x +2=4, 当且仅当x =0时取等号.故选B.【答案】 B3.(2014·天津)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)【解析】 因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).【答案】 D4.已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞)【解析】 依题意得1x <1,即x -1x>0, 所以x 的取值范围是x >1或x <0.5.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈-2,2]的最大值等于( )A .-1B .1C .6D .12【解析】 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.【答案】 C6.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________.【解析】 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数在(-∞,-1]上单调递减,在3,+∞)上单调递增.又因为y =t 在0,+∞)上单调递增.所以函数f (x )的增区间为3,+∞).【答案】 3,+∞)7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.【解析】 由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).【答案】 (-3,-1)∪(3,+∞)8.(2015·福建)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在m ,+∞)上单调递增,则实数m 的最小值等于________.【解析】 利用m ,+∞)是函数f (x )的单调递增区间的子区间求解.因为f (x )=2|x -a |, 所以f (x )的图象关于直线x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是1,+∞), 由函数f (x )在m ,+∞)上单调递增,知m ,+∞)⊆1,+∞),所以m ≥1,故m 的最小值为1.9.已知函数f (x )=1a -1x(a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 【解析】 (1)证明:设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, ∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2, 又f (x )在⎣⎡⎦⎤12,2上单调递增,∴f ⎝⎛⎭⎫12=12,f (2)=2. 易得a =25. 10.已知函数f (x )=-2x +1,x ∈0,2],用定义证明函数的单调性,并求函数的最大值和最小值. 【解析】 设x 1,x 2是区间0,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-2x 1+1-⎝⎛⎭⎫-2x 2+1 =-2(x 2+1-x 1-1)(x 1+1)(x 2+1)=-2(x 2-x 1)(x 1+1)(x 2+1). 由0≤x 1<x 2≤2,得x 2-x 1>0,(x 1+1)(x 2+1)>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在区间0,2]上是增函数.因此,函数f (x )=-2x +1在区间0,2]的左端点取得最小值,右端点取得最大值,即最小值是f (0)=-2,最大值是f (2)=-23. B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5, x ≤1,2a x, x >1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]【解析】 由题意得⎩⎪⎨⎪⎧a -3<0,a >0,a -3+5≥2a ,解得0<a ≤2.【答案】 D12.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)【解析】 由题意知f (x )在(0,+∞)上是减函数,A 中,f (x )=1x满足要求; B 中,f (x )=(x -1)2在0,1]上是减函数,在(1,+∞)上是增函数;C 中,f (x )=e x 是增函数;D 中,f (x )=ln(x +1)是增函数.【答案】 A13.(2015·湖北)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn g (x )]=sgn xB .sgn g (x )]=sgn f (x )]C .sgn g (x )]=-sgn xD .sgn g (x )]=-sgn f (x )]【解析】 分类比较x 与ax 的大小,根据f (x )的单调性确定g (x )的符号,从而确定sgn g (x )],再结合选项判断.因为a >1,所以当x >0时,x <ax ,因为f (x )是R 上的增函数,所以f (x )<f (ax ),所以g (x )=f (x )-f (ax )<0,sgn g (x )]=-1=-sgn x ;同理可得当x <0时,g (x )=f (x )-f (ax )>0,sgn g (x )]=1=-sgn x ;当x =0时,g (x )=0,sgn g (x )]=0=-sgn x 也成立.故C 正确.【答案】 C14.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.【解析】 (1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].15.(2016·昆明模拟)已知函数f (x )=x 2+2x +a x,x ∈1,+∞). (1)当a =12时,求函数f (x )的最小值; (2)若对任意x ∈1,+∞),f (x )>0恒成立,试求实数a 的取值范围.【解析】 (1)当a =12时,f (x )=x +12x+2, 设1≤x 1<x 2,则f (x 2)-f (x 1)=(x 2-x 1)⎝⎛⎭⎫1-12x 1x 2, ∵1≤x 1<x 2,∴x 2-x 1>0,2x 1x 2>2,∴0<12x 1x 2<12,1-12x 1x 2>0, ∴f (x 2)-f (x 1)>0,f (x 1)<f (x 2).∴f (x )在区间1,+∞)上为增函数,∴f (x )在区间1,+∞)上的最小值为f (1)=72. (2)在区间1,+∞)上f (x )>0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈1,+∞),则函数y =x 2+2x +a =(x +1)2+a -1在区间1,+∞)上是增函数. 所以当x =1时,y 取最小值,即y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.。
【大高考】2017版高考数学一轮总复习 第6章 数列 第2节 等差数列及其前n 项和高考AB 卷 理等差数列中的运算问题1.(2016·全国Ⅰ,3)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100 B.99 C.98D.97解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.答案 C2.(2013·全国Ⅰ,7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A.3 B.4 C.5D.6解析 ∵a m =S m -S m -1=2,a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.∵S m =ma 1+m (m -1)2×1=0,∴a 1=-m -12.又∵a m +1=a 1+m ×1=3, ∴-m -12+m =3.∴m =5.故选C.答案 C3.(2013·全国Ⅱ,16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 设等差数列{a n }的首项为a 1,公差为d , 则S 10=10a 1+10×92d =10a 1+45d =0,①S 15=15a 1+15×142d =15a 1+105d =25.② 联立①②,得a 1=-3,d =23,所以S n =-3n +n (n -1)2×23=13n 2-103n . 令f (n )=nS n ,则f (n )=13n 3-103n 2,设f (x )=13x 3-103x 2,则f ′(x )=x 2-203x ,令f ′(x )=0,得x =0或x =203,∴当x >203时,f ′(x )>0,0<x <203时,f ′(x )<0,则f (n )的最小值在f (6)、f (7)中取到. 则f (6)=-48,f (7)=-49, 所以当n =7时,f (n )取最小值-49. 答案 -494.(2016·全国Ⅱ,17)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解 (1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.5.(2014·大纲全国,18)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知:等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0. 解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n10(10-3n ). 6.(2015·全国Ⅰ,17)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3. 可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即 2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3. 所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17⎦⎥⎤+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n 3(2n +3).等差数列中的运算问题1.(2015·重庆,2)在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A.-1 B.0 C.1D.6解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B. 答案 B2.(2014·福建,3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A.8 B.10 C.12D.14解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C. 答案 C3.(2014·辽宁,8)设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A.d <0 B.d >0 C.a 1d <0D.a 1d >0解析 {2a 1a n }为递减数列,可知{a 1a n }也为递减数列,又a 1a n =a 21+a 1(n -1)d =a 1dn +a 21-a 1d ,故a 1d <0,故选C.答案 C4.(2016·北京,12)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析 ∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.答案 65.(2016·江苏,8)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 答案 206.(2015·陕西,13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析由题意设首项为a1,则a1+2 015=2×1 010=2 020,∴a1=5.答案5等差数列的性质7.(2015·北京,6)设{a n}是等差数列,下列结论中正确的是( )A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>a1a3D.若a1<0,则(a2-a1)(a2-a3)>0解析A,B选项易举反例,C中若0<a1<a2,∴a3>a2>a1>0,∵a1+a3>2a1a3,又2a2=a1+a3,∴2a2>2a1a3,即a2>a1a3成立.答案C8.(2015·广东,10)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=________.解析因为{a n}是等差数列,所以a3+a7=a4+a6=a2+a8=2a5,a3+a4+a5+a6+a7=5a5=25,即a5=5,a2+a8=2a5=10.答案109.(2012·江西,12)设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________.解析∵{a n},{b n}均是等差数列,根据等差数列的性质a1+a5=2a3,b1+b5=2b3,即a5=2a3-a1,b5=2b3-b1,∴a5+b5=2(a3+b3)-(a1+b1)=2×21-7=35.答案35等差数列的综合应用10.(2016·浙江,6)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*(P≠Q表示点P与Q不重合).若d n =|A n B n|,S n为△A n B n B n+1的面积,则( )A.{S n }是等差数列B.{S 2n }是等差数列 C.{d n }是等差数列D.{d 2n }是等差数列解析 S n 表示点A n 到对面直线的距离(设为h n )乘以|B n B n -1|长度一半,即S n =12h n |B n B n -1|,由题目中条件可知|B n B n -1|的长度为定值,过A 1作垂直得到初始距离h 1,那么A 1,A n 和两个垂足构成等腰梯形,则h n =h 1+|A 1A n |tan θ(其中θ为两条线所成的锐角,为定值),从而S n =12(h 1+|A 1A n |tan θ)|B n B n +1|,S n +1=12(h 1+|A 1A n +1|)|B n B n +1|,则S n +1-S n =12|A n A n +1||B n B n +1|tan θ,都为定值,所以S n +1-S n 为定值,故选A. 答案 A11.(2015·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2),所以公比q =2, 从而a 2=2a 1,a 3=2a 2=4a 1, 又因为a 1,a 2+1,a 3成等差数列, 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以,数列{a n }是首项为2,公比为2的等比数列,故a n =2n. (2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000, 即2n>1 000,因为29=512<1 000<1 024=210,所以n ≥10,于是,使|T n -1|<11 000成立的n 的最小值为10.12.(2013·山东,20)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且T n +a n +12n=λ(λ为常数).令c n =b 2n ,(n ∈N *),求数列{c n }的前n 项和R n .解 (1)设等差数列{a n }的公差为d ,令n =1, 则a 2=2a 1+1,即a 1=d -1,① 又S 4=4S 2,即2a 1=d ,② 由①②联立解得a 1=1,d =2, 所以a n =2n -1(n ∈N *). (2)由题意知,T n =λ-n2n -1,所以当n ≥2时,b n =T n -T n -1=⎝⎛⎭⎪⎫λ-n 2n-1-⎝ ⎛⎭⎪⎫λ-n -12n -2=n -22n -1. 故c n =b 2n =n -14n -1(n ∈N *).∴R n =c 1+c 2+…+c n -1+c n =0+14+242+…+n -14n -1,14R n =142+243+…+n -24n -1+n -14n , 两式相减得34R n =14+142+…+14n -1-n -14n=14⎝ ⎛⎭⎪⎫1-14n -11-14-n -14n=13⎝⎛⎭⎪⎫1-3n +14n ,整理得R n =49⎝ ⎛⎭⎪⎫1-3n +14n =19⎝ ⎛⎭⎪⎫4-3n +14n -1.所以数列{c n }的前n 项和R n =19⎝ ⎛⎭⎪⎫4-3n +14n -1。
6-1
A 组 专项基础训练
(时间:45分钟)
1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )
A.(-1)n +12 B .cos n π2
C .cos n +12π
D .cos n +22
π 【解析】 令n =1,2,3,…逐一验证四个选项,易得D 正确.
【答案】 D
2.(2015·福建南安一中上学期期末)已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是
( )
A .7
B .5
C .30
D .31
【解析】 由题意得a 2=2a 1+1=3,a 3=2×3+1=7,
a 4=2×7+1=15,a 5=2×15+1=31.
【答案】 D
3.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( )
A .15
B .12
C .-12
D .-15
【解析】 由题意知,a 1+a 2+…+a 10
=-1+4-7+10-…+(-1)10×(3×10-2)
=(-1+4)+(-7+10)+…+(-1)9×(3×9-2)+(-1)10×(3×10-2)]=3×5=15.
【答案】 A
4.若S n 为数列{a n }的前n 项和,且S n =n n +1
,则1a 5等于( ) A.56 B.65
C.130
D .30 【解析】 当n ≥2时,a n =S n -S n -1=n
n +1-n -1n =1n (n +1),
所以1a 5
=5×6=30. 【答案】 D
5.(2016·嘉兴模拟)已知数列{a n }满足a 1=1,a n +1a n =2n (n ∈N *),则a 10等于( )
A .64
B .32
C .16
D .8
【解析】 因为a n +1a n =2n ,所以a n +1a n +2=2n +1,
两式相除得a n +2a n
=2. 又a 1a 2=2,a 1=1,所以a 2=2,
则a 10a 8·a 8a 6·a 6a 4·a 4a 2
=24,即a 10=25=32. 【答案】 B
6.若数列{a n }满足关系:a n +1=1+1a n ,a 8=3421
,则a 5=________. 【解析】 借助递推关系,则a 8递推依次得到
a 7=2113,a 6=138,a 5=85
. 【答案】 85
7.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.
【解析】 由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2,
∴a n =⎝ ⎛⎭
⎪⎫n n -12(n ≥2),∴a 3+a 5=⎝⎛⎭⎫322+⎝⎛⎭⎫542=6116. 【答案】 6116
8.已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.
【解析】 因为{a n }是递增数列,所以对任意的n ∈N *,
都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,
得2n +1+λ>0,即λ>-(2n +1).(*)
因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.
【答案】 (-3,+∞)
9.已知数列{a n}的前n项和S n=2n+1-2.
(1)求数列{a n}的通项公式;
(2)设b n=a n+a n+1,求数列{b n}的通项公式.
【解析】(1)当n=1时,a1=S1=22-2=2;
当n≥2时,a n=S n-S n-1=2n+1-2-(2n-2)
=2n+1-2n=2n;
因为a1也适合此等式,所以a n=2n(n∈N*).
(2)因为b n=a n+a n+1,且a n=2n,a n+1=2n+1,
所以b n=2n+2n+1=3·2n.
B组专项能力提升
(时间:30分钟)
11.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6等于()
A .3×44
B .3×44+1
C .45
D .45+1
【解析】 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,
∴a n +2-a n +1=3S n +1-3S n =3a n +1,
即a n +2=4a n +1,
∴该数列从第二项开始是以4为公比的等比数列.
又a 2=3S 1=3a 1=3,∴a n =⎩
⎪⎨⎪⎧1(n =1),
3×4n -2(n ≥2). ∴当n =6时,a 6=3×46-2=3×44.
【答案】 A
12.对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( )
A .必要不充分条件
B .充分不必要条件
C .充要条件
D .既不充分也不必要条件
【解析】 当a n +1>|a n |(n =1,2,…)时,
∵|a n |≥a n ,∴a n +1>a n ,∴{a n }为递增数列.
当{a n }为递增数列时,若该数列为-2,0,1,
则a 2>|a 1|不成立,
即知:a n +1>|a n |(n =1,2,…)不一定成立.
综上知,“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的充分不必要条件.
【答案】 B
13.已知数列⎩⎨⎧⎭⎬⎫n 2
n 2+1,则0.98是它的第________项. 【解析】 n 2
n 2+1=0.98=4950,∴n =7. 【答案】 7
14.已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1
,且前n 项和为T n ,设c n =T 2n +1-T n .
(1)求数列{b n }的通项公式;
(2)判断数列{c n }的增减性.
【解析】 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).
∴b n
=⎩⎨⎧23
(n =1),
1n (n ≥2).
(2)∵c n =b n +1+b n +2+…+b 2n +1
=1
n +1+1n +2+…+1
2n +1,
∴c n +1-c n =12n +2+1
2n +3-1
n +1
=1
2n +3-1
2n +2=-1
(2n +3)(2n +2)<0,
∴c n +1<c n .
∴数列{c n }为递减数列.
15.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N +.
(1)设b n =S n -3n ,求数列{b n }的通项公式;
(2)若a n +1≥a n ,n ∈N +,求a 的取值范围.
【解析】 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ). 即b n +1=2b n ,又b 1=S 1-3=a -3,
因此,所求通项公式为
b n =S n -3n =(a -3)2n -1,n ∈N +.
(2)由(1)知S n =3n +(a -3)2n -1,n ∈N +,
于是,当n ≥2时,
a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2 =2×3n -1+(a -3)2n -2,
a n +1-a n =4×3n -1+(a -3)2n -2
=2n -2⎣⎢⎡⎦⎥⎤
12⎝⎛⎭⎫32n -2+a -3,
当n ≥2时,a n +1≥a n ⇒12⎝⎛⎭⎫32n -2
+a -3≥0⇒a ≥-9.
又a2=a1+3>a1.
综上,所求的a的取值范围是-9,3)∪(3,+∞).。